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Abstract

A problem of assigning cooperating uninhabited aerial vehicles to perform multiple tasks on multiple targets is
posed as a new combinatorial optimization problem. A genetic algorithm for solving such a problem is proposed.
The algorithm allows us to efficiently solve this NP-hard problem that has prohibitive computational complexity
for classical combinatorial optimization methods. It also allows us to take into account the unique requirements
of the scenario such as task precedence and coordination, timing constraints, and trajectory limitations. A matrix
representation of the genetic algorithm chromosomes simplifies the encoding process and the application of the
genetic operators. The performance of the algorithm is compared to that of deterministic branch and bound search
and stochastic random search methods. Monte Carlo simulations demonstrate the viability of the genetic algorithm
by showing that it consistently and quickly provides good feasible solutions. This makes the real time implementation
for high-dimensional problems feasible.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of uninhabited aerial vehicles (UAVs) for various military missions has received a growing
attention in the last decade. Apart from the obvious advantage of not putting human life in harm’s way,
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the lack of a human pilot enables significant weight savings, lower costs, and gives an opportunity for
new operational paradigms.

Historically, UAVs have been employed as intelligence assets monitored and controlled from the
ground. For helping the operator in on-line generation of trajectories between numerous targets several
routing methods have been recently proposed [1,2]. In future scenarios the UAVs are expected to have
a high level of autonomy and preferably work in groups. In this context, an intensive research effort
has been conducted in recent years on the development of cooperative decision and control algorithms.
Scenarios of particular interest are the wide area search and destroy (WASD) [3] and combat intelligence,
surveillance, and reconnaissance (ISR) missions, which have similar characteristics except that the combat
ISR scenario typically has a longer duration. In such scenarios powered vehicles are released in the target
area and are independently capable of searching, classifying, and attacking targets, along with subsequent
battle damage verification. Exchange of information within the group can improve the group’s capability
to meet performance requirements related to fast and reliable execution of such tasks. While cooperation
between the UAVs is desirable, it can be very complicated to implement. For the cooperation, sophisticated
optimization problems must be solved, in real time, taking into account the need for task precedence and
coordination, timing constraints, and flyable trajectories.

One of the main challenges in cooperative decision and control problems is computational complexity.
The sheer size of the problem (e.g. number of vehicles, targets, and threats) is one form of complexity.
However, in scenarios such as WASD and combat ISR, coupling between the completion of the four
different tasks (search, classification, attack, and verification) and coupling between the assignment
process and trajectory optimization have the most significant impact on complexity. For example, if
the vehicles each have a default task of searching then performing it cooperatively introduces extensive
coupling in their search trajectories. Once a target has been found it needs be classified, attacked, and
verified by the UAV team which further imposes coupling between the trajectories of different team
members [4].

Emerging cooperative decision and control algorithms of different classes have been proposed for
solving such problems. These algorithms are based on customized combinatorial optimization methods
including: mixed integer linear programming (MILP) [5,6], the capacitated transhipment problem [3],
and the iterative capacitated transhipment problem [7]. Due to the special characteristics of the problem
and the requirement for a tractable solution, all of these proposed algorithms are suboptimal in some
sense. For example, the MILP algorithm of [5] uses Euclidean distances while that of [6] uses piecewise
UAV trajectories between targets; and hence both do not fully take into account the need for flyable
trajectories. The single task assignment algorithm [3] is only optimal for the current tasks and does not
take into account tasks that will be required when the current tasks are completed. Although performing
iterations on the single task assignment algorithm (that utilize in essence a greedy solver) [8] provides a
solution to the multiple task assignment requirement, it is heuristic in nature and therefore optimality is
not achieved. Note also that for most problems of realistic complexity the algorithms in [5,6] take a long
time to set up and to execute.

In a recent paper [9], a tree generation algorithm was developed that produces the optimal solution to the
assignment problem based on piecewise optimal trajectories. This algorithm generates a tree of feasible
assignments and then performs exhaustive search to find the optimal assignment. During the generation
of the tree all of the requirements of the mission are met. However, since it requires an enumeration of
all the feasible assignments, direct use of this approach is only reasonable for relatively low-dimensional
scenarios and off-line applications. For an on-line application, a best first search (BFS) algorithm that
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uses the branch and bound concept has been proposed [10]. This deterministic greedy search method has
desirable qualities such as providing immediately a feasible solution, that improves monotonically and,
eventually, converges to the optimal solution.

Stochastic and non-gradient search methods [11] might be considered in order to avoid the compu-
tational complexity of the combinatorial optimization methods described above and thus speed up the
convergence to a good feasible solution. The genetic algorithm (GA) is such an approach that does not
require explicit computation of the gradients in the problem [12]. Assuming that the search space is not
extremely rugged [13], the GA will often quickly yield good feasible solutions and will not be trapped in
any local minimum; however, it may not yield the optimal solution. Another key attribute of the method
is the possibility of parallel implementation.

In this paper the GA methodology is used to solve the UAV cooperative multiple task assignment
problem (CMTAP). The remainder of this manuscript is organized as follows: In the next section, the GA
optimization method and its previous use for solving classical combinatorial optimization problems is
discussed. Then, the UAV CMTAP is posed. This is followed by an analysis of the problem’s computational
complexity and the design of the GA. A performance analysis is then presented and concluding remarks
are offered in the last section.

2. Methodology

In this section, the GA methodology and its previous use in solving classical combinatorial optimization
problems is reviewed.

2.1. GA—brief review

GAs are described in many papers and textbooks including [12,14], and will only briefly be reviewed in
this section. It enables efficient search of a decision state space of possible solutions, as long as the search
space is not extremely rugged. The method involves iteratively manipulating a population of solutions,
called chromosomes, to obtain a population that includes better solutions. The encoding of the GA chro-
mosome is a major part of the solution process. After that stage has been overcome, the algorithm consists
of the following steps: (1) initialization—generation of an initial population, (2) fitness—evaluation of
the fitness of each chromosome in the population, (3) test—stopping if an end condition is satisfied and
continuing if not, (4) candidate new solutions—creating new candidate chromosomes by applying genetic
operators, thus simulating the evolution process, (5) replacement—replacement of old chromosomes by
new ones, (6) loop—going back to step 2.

The genetic operators mentioned above are: selection, crossover, mutation, and elitism. These operators
are performed on the chromosome solutions consisting each of Nc genes. In the selection stage two
parent chromosomes are chosen from the population based on their fitness. Several selection methods are
commonly used, including: roulette wheel, rank, and binary tournament. In all of these methods the better
the fitness, the better the chance of being selected. Crossover is performed in single or multiple points
across the chromosome, location of which is selected randomly. For example, in the simple one-point
crossover operator on chromosomes with Nc genes, the child solution consists of the first g genes from
the first parent and Nc-g genes from the second parent; and vice versa for the second child. The mutation
operator involves randomly changing one of the genes in the child chromosome. This operator reduces
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the probability of the algorithm getting trapped in any local minimum. The Elitism operator is used to
save the best solutions of the generation.

For parallel implementation of the GA several methods can be used. The master-slave GAs are probably
the simplest type of parallel GAs. The master process stores the population and executes the genetic
operators discussed earlier; at the same time the slave process evaluates different subsets of the population
[15].Another type of parallelization is achieved via the multiple population parallel GAs. In such a method
multiple population GAs are run in parallel, infrequently exchanging individuals [15].

2.2. GA in classical combinatorial optimization problems

Many combinatorial optimization problems are concerned with pairing between agents and tasks. The
simplest one is the classical assignment problem consisting of such optimal pairing, without assigning
an agent more than once and ensuring that all tasks are completed. Such a problem can be easily solved
by the Hungarian algorithm [16]. When an agent can be assigned to more than one task, or there are
resource limitations to process a given task by an agent, the problem becomes much more complicated
and cannot be solved in polynomial time. Such problems include the travelling salesman problem (TSP),
the generalized assignment problem (GAP), and the vehicle routing problem (VRP). In all of these
classical problems the minimum cost assignment is sought where: in the TSP the tour is of one agent
between a finite number of cities; in the GAP m agents need to perform n jobs, such that each job is
assigned to exactly one agent and the resource of each agent is limited; and in the VRP m vehicles, with
a given capacity, are dispatched from a single depot to deliver to n customers each requiring a specified
weight of goods, and then return to the depot.

The application of GAs to these problems has been widely studied. Much work in applying GAs to the
TSP [14] is concerned with the encoding of the chromosomes and the use of special crossover operators
to preserve the feasibility of the solution representation. In [17] a GA was used to solve the GAP. Using
simulations it was shown that on average the GA finds solutions that are within 0.01% from the optimal
one. The VRP was solved in [18] using a pure GA and a hybrid GA with neighborhood search methods
showing promising results compared to simulated annealing and Tabu search, with respect to solution
time and quality. In all of these studies the assignments solved require one tour/service per target and
there are no precedence requirements as in the UAV task assignment problem, discussed in detail next.

3. Cooperative multiple task assignment problem

Based on [3] a generic CMTAP is defined in this section. First, the tasks precedence and requirements
are discussed and then a tree representation is given. Next, different performance measures are reviewed
and finally the problem is posed as a new combinatorial optimization problem.

3.1. Tasks

It is assumed that the terrain has already been searched (by other UAVs or sensor assets) and Nt targets
have been found. Let T = {1, 2, . . . , Nt} be the set of targets found and let V = {1, 2, . . . , Nv} be a set
of UAVs performing tasks on these targets. The set of tasks that need be performed by the UAV team
on each target is M = {Classify, Attack,Verify} and we let Nm be the number of such tasks. Each of
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these tasks has requirements governing its execution. Target classification, consisting of maximizing the
correct target recognition under given observation ability, can be performed only if the vehicle follows a
trajectory that places its sensor footprint on the target. After a target has been successfully classified from
a standoff distance, one or more UAVs attack it by releasing appropriate weapons. Following target attack,
cooperative damage verification is performed. For the sake of simplicity, we assume that the probability
of accomplishing a task given the physical requirements have been met (e.g. for the classification task,
the target is in the UAV sensor foot print) is one. If this assumption is found not to be true, then the
assignment algorithms must be re-evaluated.

3.2. Assignment requirements

The requirements from the assignment algorithm for a feasible solution include taking into account
task precedence and coordination, timing constraints, and flyable trajectories.

The precedence requirement states that tasks on each target must be accomplished in order; i.e. a target
can be attacked only after it has been classified, and verified only after an attack on it has been performed.
For group coordination each task should be accomplished once, e.g. UAVs should not be assigned to
attack a target twice, unless the target is verified alive after an attack or there is a predefined need for
multiple attacks. The timing constraints require that a certain task be performed within a given time frame.
Such a requirement is of importance when engaging time critical targets, e.g. surface to air missile sites.
The requirement of flyable trajectories is a prerequisite for an assignment that can be performed by the
UAV team members. Otherwise, assigned tasks may not be executed and the team coordination could
collapse.

3.3. Tree representation

In [9] it was demonstrated that the UAV CMTAP can be represented by a tree. This tree not only
spans the decision space of the problem, but it also incorporates the state of the problem in its nodes.
The tree is constructed by generating nodes that represent the assignment of a vehicle i ∈ V to a task
k ∈ M on a target j ∈ T at a specific time. The child nodes are found by enumerating all of the possible
assignments that can be made, based on the remaining tasks and requirements of the UAV CMTAP. Nodes
are constructed until all combinations of vehicles, targets, and tasks have been taken into account. Note
that a branch of the tree, from a root node to a leaf node, represents a feasible set of assignments for the
UAV group.

Fig. 1 shows an example of the tree in a scenario consisting of just two vehicles performing two tasks on
two targets. Note that this figure shows four subtrees. The top node of each of these subtrees is connected
to the root node of the entire tree. Each node represents one assignment of a vehicle to a task where the
notations Cij and Aij denote that vehicle i performs on target j classification or attack, respectively.

In the case of the UAV CMTAP, the tree is wide and shallow. The depth of the tree, i.e. the number of
nodes from the root node to the leaf nodes is equal to

Nc = NtNm, (1)

and in the investigated problem Nm = 3 (the number of tasks). Since, as noted above, traversing the
tree from a root node to a leaf node produces a feasible assignment it is possible to compute such an
assignment in a known time, which is the node processing rate times Nc.
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Fig. 1. UAV CMTAP tree, Nv = Nt = Nm = 2.
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3.4. Performance requirements

Different performance indexes can be chosen for the UAV CMTAP. Two such criteria are discussed
next.

One performance criterion that can be used is the cumulative distance travelled by the vehicles to
perform all required tasks,

J1 =
Nv∑

i=1

Ri > 0, (2)

where Ri is the distance travelled by UAV i ∈ V from the beginning of the mission until finishing its
part in the group task plan. The group objective is to minimize J subject to the assignment requirements
of Section 3.2. By minimizing this cost function the use of the overall group resources (i.e. flight time,
assuming constant fuel consumption) is optimized. After each UAV fulfills its group tasks it can then
resume a default task, such as searching for new targets. This cost function is appropriate mainly for
problems involving low-value stationary targets.

Another possible performance criterion is the minimum time for the team to accomplish the required
tasks on all targets. Assuming constant equal speeds for all UAVs, this performance criterion can be
replaced by

J2 = max
i∈V

Ri > 0. (3)

Thus, the group objective is to minimize the longest distance travelled by one (or more) of its members
subject to the assignment requirements of Section 3.2. This cost function can be used in a scenario where
it is critical to service targets as quickly as possible, e.g. hunting mobile ballistic missile launchers.

3.5. Combinatorial optimization problem

The problem is to minimize the cost function J1 or J2 of Eq. (2) or (3) by optimizing the Nc assignments
of vehicles to targets. Let S = {1, 2, . . . , Nc} be the set of stages in which the assignment is made, where
each stage l ∈ S corresponds to a layer in the tree representation plotted in Fig. 1. Let xl,i,j ∈ {0, 1} be
a decision variable that is 1 if at stage l ∈ S vehicle i ∈ V performs a task on target j ∈ T and is 0
otherwise; and Xl = {x1,i,j , x2,i,j , . . . , xl,i,j } be the set of assignments up to, and including, stage l. Let

c
Xl−1
l,i,j be the distance to be travelled by vehicle i ∈ V to perform a task on target j ∈ T at stage l ∈ S,

given the prior assignment history Xl−1; r
Xl−1
l,i,j be the resource (fuel) required to perform the task; and bi

as the resource availability of vehicle i ∈ V (fuel capacity of each vehicle).
The mathematical formulation of the CMTAP with the two different cost functions is given next, where

Eq. (4) corresponds to the cost function of Eq. (2) and Eq. (5) to that of Eq. (3). Thus, the problem is

Min J1 =
Nc∑

l=1

Nv∑

i=1

Nt∑

j=1

c
Xl−1
l,i,j xl,i,j (4)
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or

Min J2 = max
Nc∑

l=1

Nt∑

j=1

c
Xl−1
l,i,j xl,i,j , i ∈ V (5)

s.t. xl,i,j ∈ {0, 1}, l ∈ S, i ∈ V, j ∈ T , (6)

Nv∑

i=1

Nt∑

j=1

xl,i,j = 1, l ∈ S, (7)

Nc∑

l=1

Nv∑

i=1

xl,i,j = Nm, j ∈ T , (8)

Nc∑

l=1

Nt∑

j=1

r
Xl−1
l,i,j xl,i,j �bi, i ∈ V . (9)

Eq. (6) is the binary constraint on the decision variables; Eq. (7) ensures that at each stage exactly one
task on a target j ∈ T is assigned to exactly one vehicle i ∈ V ; Eq. (8) ensures that on each target j ∈ T

exactly Nm tasks are performed; and Eq. (9) ensures that the total resource requirement of the tasks from
each vehicle i ∈ V does not exceed its capacity.

4. GA synthesis

The UAV CMTAP discussed in the previous section is a very complex combinatorial optimization
problem, even for relatively small numbers of vehicles and targets. Due to the need for on-line imple-
mentation, an algorithm is sought that has the following desirable attributes: quick feasible solution,
monotonically improving solution over time, and convergence near to the optimal solution. As discussed
in Section 2 it has been shown that GAs can be used to solve combinatorial optimization problems such
as the TSP, GAP, and VRP. In this section we derive a GA, having the desirable attributes sought, for
solving the UAV CMTAP with its special characteristics.

4.1. Encoding

The most critical part of deriving a GA is the chromosome encoding. For this problem the encoding of
the GA chromosomes is based on the UAV CMTAP tree. It is customary to use a string for the chromosome
encoding. However, for simplifying the encoding process and the application of the genetic operators, for
our problem we use a matrix. Each chromosome matrix is composed of two rows and Nc columns. The
columns of the chromosome matrix correspond to genes. We define the set of genes as G={1, 2, . . . , Nc}.
The first row presents the assignment of vehicle i ∈ V to perform a task on target j ∈ T appearing in the
second row. The ordering of appearance of the target determines which task k ∈ M is being performed;
e.g. the first time a target appears in the second row (from left to right) means it has been assigned to be
classified. Thus, we avoid the need to explicitly specify the task being performed and are able to simplify



3260 T. Shima et al. / Computers & Operations Research 33 (2006) 3252–3269

Vehicle 1 1 2 2 1 2 2 2 1

Target 2 3 1 3 1 1 2 2 3

Fig. 2. Example of chromosome representation.

significantly the chromosome encoding of the assignments. We denote a feasible chromosome as defining
an assignment for the cooperating vehicles performing exactly Nm tasks on each of the Nt targets.

An example chromosome for a problem of two vehicles (Nv = 2) performing the three tasks (Nm = 3)
on three targets (Nt = 3) is shown in Fig. 2. It can be seen that the chromosome is of length Nc = 9 and
the assignment is as follows: Vehicle 1 classifies target 2 and then classifies target 3. In the meanwhile
vehicle 2 classifies target 1 and then attacks target 3 (after it has been classified by vehicle 1). After target
1 has been classified (by vehicle 2) it is attacked by vehicle 1 and then verified by vehicle 2. Vehicle 2
then attacks target 2 and verifies its kill. In the meantime vehicle 1 verifies the kill of target 3.

4.2. Computational complexity

Finding good solutions requires searching the space of feasible solutions. Thus, the number of feasible
solutions is a measure of the problem’s computational complexity. In the investigated problem the number
of different feasible chromosomes Nf is given by

Nf = (NtNm)!
(Nm!)Nt

NNtNm
v . (10)

Note that Nf is an upper bound on the number of different feasible assignments (see the appendix for
relevant proofs).

From Eq. (10) it is apparent that the number of feasible chromosomes explodes as the number of targets
and/or vehicles is raised. Note that the dependency on the number of targets is larger than on the number
of vehicles. This can be explained by noting that the addition of a target adds Nm genes to the chromosome
while the addition of a vehicle just provides more possibilities for the current chromosome structure.

The fitness f of each of the solutions coded in the chromosomes will be based on computing the value
of Eqs. (2) or (3) where

f = 1/Ji, i = 1, 2. (11)

This computation is accomplished by using the trajectory optimization subroutine of the MultiUAV2 sim-
ulation [19] that calculates the relevant c

Xl−1
l,i,j for Eqs. (4) and (5). The calculation is performed using

the Dubin’s car model [20] and it enables enforcing flyable trajectories as well as timing constraints.
The function also optimizes the path planning for each single assignment. Note that the computation of
c
Xl−1
l,i,j for l�2 is dependent on the tasks performed by vehicle i prior to step l, since those tasks affect its

trajectory. Thus, c
Xl−1
l,i,j cannot be computed a priori and is different for every assignment.

The MultiUAV2 subroutine mentioned above allows only to perform the trajectory optimization inde-
pendently for each stage l ∈ S. Thus, using it the optimization of the path planning is decoupled from the
assignment problem. This greatly simplifies the computational complexity of the problem on the expense
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of obtaining a suboptimal solution. Note that only when the turn radius of the aerial vehicle is very small
compared to the distance between the targets then this decoupling may not have a negative effect on the
overall optimality of the solution.

4.3. The solution process

The initial population is obtained by employing a random search method over the tree. In order to
comply with the requirement of a feasible chromosome we impose that each target appears exactly Nm
times in the bottom row of each chromosome. We denote the population size as Ns.

Producing children/offspring chromosomes from the parent ones, in each of the next generations, is
composed of three stages:

4.3.1. Selection
We select randomly, using the roulette wheel method, two parents based on their fitness.
Let C = {c1, c2, . . . , cNs} be the set of chromosomes and using the mapping of Eq. (11) let F =

{f1, f2, . . . , fNs} be the set of corresponding fitness of the chromosomes, that does not have to be ordered
based on fitness. We now calculate

Fs =
Ns∑

�=1

f� (12)

and define the set Fc = {Fc1, F c2, . . . , F cNs} where

Fc� =
�∑

�=1

f�; � = 1, 2, . . . , Ns. (13)

Note that Fc1 = f1 and FcNs = Fs.
We then generate a uniformly distributed random number � ∼ U(0, F s) and select as the first parent

the chromosome that satisfies

parent = arg
c�∈C

min(Fc� − ��0) (14)

and repeat the process for the second parent.

4.3.2. Crossover
We apply the crossover operator with a high probability pc. Thus, there is a high probability that the

parents will reproduce between themselves and a low probability (1−pc) that the offsprings will be exact
replicas of their parents.

In this study the single point crossover method has been chosen. This point is selected randomly based
on a uniform distribution. When applying this operator, the first child solution consists of the first g ∈ G

genes (columns) from the first parent and Nc-g genes from the second parent; and vice versa for the
second child.

In order for the children chromosome solutions to be feasible each target j ∈ T has to appear exactly Nm
times in the second row. We perform a check on the number of times each target appears in the Nc-g genes
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switched between the parents. We start checking the second row of the switched part from its beginning
(from left to right) and whenever a target appears more times than is required than that gene is changed
randomly so as to reference a target that does not appear the required number of times. Thus, we enforce
that each child chromosome is feasible. Note that using this crossover mechanism we do not change the
first row of the switched part and hence the ordering of the vehicles performing tasks remains the same.

The application of this operator actually utilizes the implicit gradients in the problem. A crossover at
one of the genes corresponds to a perturbation in the direction encoded in the other parent’s gene. Note
that, generally speaking, a crossover at one of the first genes corresponds to a larger perturbation than in
one of the last genes since it has a higher probability of affecting the rest of the group plan.

4.3.3. Mutation
In this stage a mutation operator is applied with a small probability pm to each gene (column) of the

chromosome. We mutate only the identity of the vehicle iold ∈ V (first row) performing the task, so as
not to affect the integrity of the assignment. The identity of the new vehicle is selected randomly such
that inew ∈ V and inew �= iold. The application of this operator prevents the algorithm from getting stuck
in one branch of the tree and thus tries to avoid getting trapped in a local minimum. Generally speaking,
as for the crossover operator, mutating the first genes has a larger effect on J than mutating the last genes,
since it has a higher probability of affecting the rest of the group plan.

Note that whenever the first part of each offspring chromosome is identical to one of its parents (usually
up to the crossover point, unless mutation has been performed) then there is no need in re-computing the
cost of the sub-assignment encoded in that part of the chromosome. The cost can be obtained from the
computations already performed, using the MultiUAV2 path optimization subroutine, for the parent and
thus save computations.

4.4. Generations

We produce an entire generation at each step and keep a constant population size. In order to avoid the
possibility of loosing the best solutions, when propagating to the new generation, we employ the elitism
genetic operator and keep the best Ne chromosomes from the previous generation. The rest of the new
chromosomes (Ns − Ne) are obtained by repeatedly producing children, by the methods described in the
previous subsection, until the new population is filled. At this stage the new population replaces the entire
previous generation of chromosomes. Off-line, the process of producing new generations can be repeated
until some stopping criterion is met. For an online implementation the algorithm can be run for a specific
allotted time. In this study the generations have been progressed for a given number of times, denoted Ng.

Since for each generation numerous candidate solutions are evaluated independently, the most straight-
forward parallel implementation would be the slave-master method. It will allow us to utilize possibly
multiple on board processors. And, under a perfect communication assumption, it will allow us to dis-
tribute the evaluation process of the chromosomes between the different UAVs in the group.

5. Performance analysis

The performance of the proposed GA is analyzed in this section using simulation. We utilized the graph-
ics and path optimization subroutines of the, publicly released, MultiUAV2 simulation [19]. Assuming a
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Table 1
Simulation parameters

GA Scenario

Ns = 200 Nt ∈ {3, 10}
Ne = 6 Nv ∈ {4, 8}
pm = 0.01 Nm = 3
pc = 0.94 v = 105 m/s
Ng = 100 �max = 0.05 rad/s

vehicle constant speed v and maximum turning rate �max, the corresponding optimal trajectories (plotted
in Figs. 7 and 8) consist of straight lines and arcs with radius Rmin = v/�max [20]. We assume in our
study that the vehicles’ resource limit is not reached, i.e. they each have enough fuel to accomplish any
assignment (corresponding, from Eq. (9) to bi → ∞ ∀i). The parameters used for the simulation and the
GA are summarized in Table 1.

5.1. Monte Carlo study

A Monte Carlo study, consisting of 100 runs, is used in this section to compare the performance of the
GA to the BFS and random search algorithms for the two different cost functions of Eqs. (4) and (5).
Note that the random search algorithm explores only feasible solutions and the best solution is kept. Two
problems of different sizes are examined: four UAVs on three targets and eight UAVs on 10 targets. The
random variables are the initial location of the targets and the location and heading of the members of
the UAV team.

To enable a comparison that is independent of the computer platform on which the different algorithms
are run, we chose the independent variable in the following figures as the number of nodes (vehicle-
target pairs) that need to be processed by the MultiUAV2 path optimization subroutine to compute the
individual assignment cost c

Xl−1
l,i,j . This computation, that involves optimizing the UAV trajectories for a

given vehicle–target pair, is the main computational burden in running the different algorithms (between
70% and 85% in the investigated cases). For the sake of completeness the corresponding approximate run
time on a personal computer (Pentium IV—2400 MHz) is given as an additional top axis in each figure.

First, the small size scenario of four UAVs on three targets is analyzed. In Figs. 3 and 4 the convergence
of the measures of interest J1 min/J1 and J2 min/J2 are plotted where J1 min and J2 min are the costs of
the a posteriori best assignments for the cost functions of Eqs. (4) and (5), respectively (found using the
BFS algorithm). For the cost function J1 it is apparent that, in the domain of interest of short run time
(enabling on-board implementation), the GA outperforms the other methods. However, for J2 while the
GA still performs better than random search, the best performance is obtained using the BFS algorithm.
The improved performance of the BFS algorithm can be explained by noting that for the cost function J2
the BFS algorithm prunes the tree considerably faster than for the cost function J1, since it is dependent on
the trajectory of only one vehicle. Note that on average the BFS algorithm finishes exhaustively searching
the tree after 8 × 105 nodes (corresponding to a run time of approximately 114 s) for J2 compared to
3.3 × 106 nodes (corresponding to a run time of approximately 471 s) for J1.

Performing a complete search of the tree using the BFS algorithm in a problem of higher dimension
(Nv = 8, Nt = 10) proved computationally infeasible on a personal computer (Pentium IV—2400 MHz);
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Fig. 3. Mean of Monte Carlo runs: 4 × 3 × 3 scenario, J1 cost function.
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Fig. 4. Mean of Monte Carlo runs: 4 × 3 × 3 scenario, J2 cost function.

since one run time of the BFS algorithm took more than 3 weeks. Thus, the optimal assignments were not
found and the normalizing factors J1 min and J2 min are the costs of the best solutions found in the given
time by all the methods (by GA in these cases). In Figs. 5 and 6 the average of J1 min/J1 and J2 min/J2
as a function of the number of nodes computed and run time is plotted for the different algorithms. The
superior performance of the GA is clearly evident for both cost functions.
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Fig. 5. Mean of Monte Carlo runs: 8 × 10 × 3 scenario, J1 cost function.
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Fig. 6. Mean of Monte Carlo runs: 8 × 10 × 3 scenario, J2 cost function.

Note that in all the cases investigated the standard deviation of the solution using the GA was of the
same order as the other methods. Also, the value of the standard deviation when using the three methods
was small (< 0.12), thus validating that enough Monte Carlo runs have been performed.
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Fig. 7. Example trajectories, for a 4 × 3 × 3 scenario, produced by the genetic algorithm, J1 cost function.

5.2. Sample runs comparison

In this section the UAV trajectories that correspond to sample representative solutions found by
the GA algorithm for a scenario of four UAVs on three targets are plotted. The cost functions be-
ing optimized are J1 and J2 and the solutions have been obtained after computing 7 × 104 nodes
(corresponding to approximately 10 s of run time). In both cases the initial location of the targets
and the location and heading of the members of the UAV team are identical. Note that the trajecto-
ries of each UAV are plotted from its initial location until completion of its part of the task assign-
ment. Thus, when a UAV does not participate is executing the group task assignment only its initial
location is shown.

The corresponding routes for the GA solution providing a cost J1 = 92, 128 m are plotted in Fig. 7.
A circle represents a vehicle and a square represents a target. The cooperative assignment is as follows:
vehicle 3 classifies and attacks target 2. Vehicle 4 classifies and attacks target 3 and then verifies the kill
of target 2. Vehicle 1 classifies and attacks target 1 and then verifies the kill of targets 1 and 3. Vehicle 2
is not involved in the assignment and thus its trajectory, for conducting the default task of searching for
new targets, is not plotted.

The UAVs’ trajectories, corresponding to the GA solution providing J2 = 29, 358 m are plotted in
Fig. 8. The cooperative assignment is as follows: vehicle 1 classifies target 2. Vehicle 3 classifies and
attacks target 1. It then attacks target 2 and verifies the kill of target 3, after it has been classified and
attacked by UAV 2. To finish the assignment, UAVs 2 and 4 verify the kill of targets 2 and 1, respectively.

The enhanced cooperation in Fig. 8 compared to Fig. 7 is evident since all 4 vehicles participate in
executing the group tasks. Note that the enhanced cooperation when using J2 instead of J1 is typical
over the Monte Carlo simulations. As expected, the enhanced cooperation results in a shorter maxi-
mum path for finishing all the tasks (29, 358 m compared to 47, 814 m for the trajectories given in Fig.
7). This results with only a marginal expense on longer overall trajectories (92, 342 m compared to
92, 128 m for the trajectories given in Fig. 7). Thus, when it is critical to service targets as quickly as
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Fig. 8. Example trajectories, for a 4 × 3 × 3 scenario, produced by the genetic algorithm, J2 cost function.

possible, e.g. hunting mobile ballistic missile launchers, the penalty is in somewhat increased overall team
trajectories.

6. Conclusions

A new cooperative multiple task assignment problem has been posed and its computational complexity
has been analyzed. The scenario of interest was of assigning multiple uninhabited aerial vehicles to
perform multiple tasks on multiple targets. A GA has been proposed for solving this NP-hard problem
that has prohibitive computational complexity for classical combinatorial optimization methods. A matrix
representation of the GA chromosomes simplifies the encoding process and the application of the genetic
operators.

Using simulations the performance of the algorithm was compared to stochastic random search and
deterministic branch and bound search methods for two different cost functions. The selection of the
cost function has a considerable effect on the level of the group cooperation and consequently on their
trajectories. The main advantage of using the genetic algorithm has been established in large size problems
by providing good solutions considerably faster than the other search methods. This enables real-time
implementation for high dimensional problems.
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Appendix

Theorem 1. The number of different feasible chromosomes is given by

(Nc)!
(Nm!)Nt

NNc
v . (15)

Proof. Assigning a vehicle i1 ∈ V to perform a task on a given target j1 ∈ T appearing in column g1 ∈ G

is independent from assigning a vehicle i2 ∈ V to perform a task on a given target j2 ∈ T appearing in
column g2 ∈ G for g1 �= g2. Hence, the number of possible assignments of vehicles to a given target/task
sequence (given bottom row) is N

Nc
v .

Assigning a target j1 ∈ T to a given vehicle i1 ∈ V appearing in column g1 ∈ G is dependent on the
assignment of a target j2 ∈ T to a given vehicle i2 ∈ V , since each target should be serviced by the UAV
team exactly Nm times. Using the combinatorial relationship from [21], the number of possible target
assignments to a given vehicle sequence (given top row) is (Nc)!/(Nm!)Nt .

Since assigning a specific vehicle i ∈ V to perform a specific task on target j ∈ T are mutually
independent events the two rows are independent and the theorem is proved. �

Theorem 2. The number of different feasible chromosomes is an upper bound on the number of different
feasible assignments.

Proof. Let c1 be a feasible chromosome where in column g1 ∈ G, vehicle i1 ∈ V is assigned to
target j1 ∈ T ; and in the nearby column g2 ∈ G, vehicle i2 ∈ V is assigned to target j2 ∈ T where
i1 �= i2 and j1 �= j2. Now let c2 be a similar chromosome having the same genes ga ∈ G ∀a > 2 and
the two remaining genes are switched. It is apparent that the assignments encoded in chromosomes c1
and c2 are identical. Thus, different chromosomes may encode the same assignments and the theorem
is proved. �
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