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Honey Bee Swarm Cognition:
Decision-Making Performance
and Adaptation

Kevin M. Passino, Ohio State University, USA

ABSTRACT

A synthesis of findings from neuroscience, psychology, and behavioral biology has been recently used to show
that several key features of cognition in neuron-based brains of vertebrates are also present in bee-based
swarms of honey bees. Here, simulation tests are administered to the honey bee swarm cognition system to
study its decision-making performance. First, tests are used to evaluate the ability of the swarm to discriminate
berween choice options and avoid picking inferior “distractor™ options. Second, a " Treisman feature search
test” from psychology, and tests of irrationality developed for humans, are administered to show that the
swarm possesses some features of human decision-making performance. Evolutionary adaptation of swarm
decision making is studied by administering swarm choice tests when there are variations on the parameters
of the swarm s decision-making mechanisms. The key result is that in addition to trading off decision-making
speed and accuracy, natural selection seems to have settled on parameters that result in individual bee-level
assessment noise being effectively filtered out to not adversely affect swarm-level decision-making performance.
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1. INTRODUCTION

The “collective intelligence” or “super-or-
ganism” perspectives have been used for both
animals and humans to discuss fully integrated
group functioning, especially group decision-
making (Holldobler & Wilson, 2008, 1990;
Levine etal., 1993; Franks, 1989; Seeley, 1989,
1995; Hinsz et al., 1997; Wilson, 2000; Cama-
zine et al., 2001; Surowiecki, 2004). But, how
does a group of organisms implement a “mind”
that supports group decision-making? Recently,
this question has been partially answered. View-
ing the honey bee super-organism as a single

DOI: 10.4018/jsir.2010040105

decision-maker, a detailed explanation of the
honey bee nest-site selection process has been
usedtoidentify the key elements and functional
organization of swarm cognition (Passinoetal.,
2008). It was shown that the swarm has identifi-
able elements that correspondto neurons, action
potentials, inter-neuron communications, lateral
inhibition, short-term memory, neural images,
and layers of processing (Kandel et al., 2000).
Functional similarities to the networks of neu-
rons that perform certain attention, perception,
and choice functions (Gazzaniga et al., 1998;
Kandel et al., 2000) in solitary animals were
identified. It was shown that the swarm’s short-
term memory (“group memory”) is on average
a representation of the relative quality of the
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discovered nest sites that leads to good choice
performance. Then, two basic properties of the
swarm’s choice process were tested: discrimi-
nation (the ability to distinguish between nest
sites of different quality) and distraction (the
ability to ignore nest sites of inferior quality).
The focus of this paper is to analyze swarm
decision-making performance and adaptation
to provide additional evidence that bee-based
swarms have a cognition process that shares
key features with neuron-based brains.

The key experimental work in the area of
honey bee nest-site selection is in (Seeley &
Buhrman, 1999; Camazine et al., 1999; Seeley
& Buhrman, 2001; Seeley, 2003; Seeley &
Visscher, 2003, 2004a). A number of models
of the nest-site selection process have been
published. First, there are the ODE models
introduced in (Britton et al., 2002) to study the
issue of whether bees make direct comparisons
between the qualities of more than one nest in
order to make a decision (which they do not).
There is a discrete-time population matrix
model introduced in (Myerscough, 2003). A
simulation model that was validated for arange
of experiments (those in (Seeley & Buhrman,
1999; Camazineetal., 1999; Seeley & Buhrman,
2001; Seeley, 2003, Seeley & Visscher, 2003,
2004a)) is introduced in (Passino and Seeley,
2006) and used to study the speed-accuracy
trade-otf in the choice process. In Perdriau
and Myerscough (2007) the authors introduce
a density-dependent Markov process model of
honey bee nest-site selection and study the ef-
fects of site quality, competition between sites,
and delays in site discovery. Next, the work in
(Janson et al., 2007) introduces an individual-
based model and studies the swarm'’s scouting
behavior and the impact of distance on choice.
Antcolonies performing nest-site selection have
some broad similarities to the bees’ nest-site
selection process (¢.g., aspeed-accuracy trade-
of), and corresponding models and simulations
have been developed (Mallonetal., 2001; Pratt
et al., 2002; Franks et al., 2003; Pratt, 2005;
Pratt et al., 2005). Finally, note that recently a
common framework was introduced to study
the optimality of decision-making in the brain

along with nest-site selection in both ants and
bees (Marshall et al., 2009).

In this paper, the simulator from (Passino
& Seeley, 2006) is used to administer tests to
the swarm to evaluate its decision-making
performance and adaptation. First, basic prop-
erties of discrimination and distraction and their
interaction are studied by administering swarm
choice tests. Then, it is shown that choice per-
formance analogous to what humans possess
is found if the Treisman feature search test for
humans (Treisman & Gelade, 1980) is given to
the swarm. In particular, the Treisman test il-
lustrates how swarm cognition dynamics oper-
ate in parallel in early processing and how
cognition delays can occur in the presence of
many inferior choices. Next, it is determined
whether swarms exhibit “irrational” choice
behavior commonly found in (individual) hu-
man decision making (Luce & Suppes, 1965;
Huber et al., 1982; Tversky, 1972; Simonson,
1989; Simonson & Tversky, 1992) in the pres-
ence of context-dependent effects (i.e., certain
patterns of choice alternatives that can conspire
to mislead the decision-maker). Irrationality
has already been studied in the field of behav-
ioral ecology. In hoarding gray jays, simultane-
ous choice errors decrease as the rate of avail-
ability of choices decreases, since then choice
errors are costly (Waite, 2001; Waite & Field,
2000; Waite, 2002). Honey bees and gray jays
have been shown to exhibit context-dependent
decision making (Shafir et al., 2002). In these
studies errors (“irrationality™”) seem to arise due
to sensory noise, cognitive processing limita-
tions, and physical constraints (which all cause
choice errors in nest-site selection also). Con-
text-dependence has also been studied for hu-
man group decision making (Steiner, 1966;
Laughlin & Ellis, 1986; Kerr & Tindale, 2004;
Hastie & Kameda, 2005) as summarized in
(Hinsz et al., 1997). Here, analogous to the
studiesin(Ratcliffetal., 1999; Ratcliff & Smith,
2004; Roeetal.,2001; Busemeyer & Townsend,
1993) for humans, context-dependent decision
making is studied forareaction-time test (quick
choice of the best-of- N nest sites). For a very

wide variety of nest-site quality patterns,
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simulations here show that the swarm cannot
be tricked into misordering its choice percent-
ages in relation to the nest-site quality pattern.
This implies that violations of strong stochastic
transitivity (Luce & Suppes, 1965) will not
occur. Next, it is shown that for a special nest-
site quality pattern (where a discrimination-
distraction interaction is induced) the attraction
effect (Huber et al., 1982) can occur. However,
this leads to improved choice performance.
Finally, using a cognitive ecological per-
spective (Dukas, 1998) swarm-level choice
performance is studied when individual-level
bee behavioral parameters are perturbed (a
“pseudo-mutated” swarm (Passino & Seeley,
2006)). Simulations show how natural selection
seems to have settled on cognition mechanisms
that balance the speed and accuracy of nest-site
choice andfilter error-prone individual bee deci-
sions. From a broad perspective, this last part of
the paper provides an initial synthesis of ideas
from group decision making and cognitive ecol-
ogy (Dukas, 1998), which has been previously
thought to only apply to neuron-based brains.

2. NEST-SITE SELECTION
BY HONEY BEES

The simulation model from (Passino & Seeley,
2006) is used here to administer all choice
tests and to study adaptation. This model was
validated using the experiments in (Seeley &
Buhrman, 1999; Camazine et al., 1999; Seeley
& Buhrman, 2001; Seeley, 2003; Seeley &
Visscher, 2003, 2004a) and is summarized here
toexplain the nest-site selection process and set
the notation for our analysis.

In nest-site selection (reviewed in (Seeley
& Visscher, 2004b; Seeley et al., 2006; Passino
et al., 2008)), the colony splits itself when the
queen and about half the old colony depart and
assemble as a cluster nearby, typically on a tree
branch. Assume B = 100 “scout” bees take

on different roles (explorer, observer, commit-
ted, rester, and dead) in the nest-site selection
process that occurs on the surface of the cluster
of bees. Let & be the time step index. A scout

bee can conduct one expedition from the swarm
cluster per time step. When a scout, functioning
as an “explorer,” successfully finds a candidate
nest site (e.g., a hollow of a tree) it evaluates
its attributes to form a quality assessment based
on cavity volume, entrance height, entrance
area, and other attributes that are correlated
with colony success. Denote the quality of site

7 as N’ €[0,1] with“I” representing a perfect

site. Let the position of scout bee i be 6", and
let J(6) denote the “landscape” of site quality,

with 8 = [0,0]" the position ofthe cluster. Then
J(8') = N’ if scout ¢ is atsite j.Scout i has
assessmentnoise w’(k), andaquality threshold
e, = 0.2 below which it will ignore a site.
Hence, scout ¢’s assessment of a site at time
step &k is §'(k) = J(@' (k) +w'(k), if
J(8(k)) + w'(k) > ¢, and zero otherwise.
Here, w'(k) is uniformly distributed on

(~01,01) to represent errors up to +10% in

the scout’s assessment of nest-site quality (a
normal distribution is inappropriate because

large but unlikely deviations from the mean do

not seem to exist in nature). Any scout bee that
finds an above-threshold nest site dances for it
(recruits other bees to it) and hence becomes
“committed” to that site. Bees die with a small

probability p, = 0.0016 on each expedition

so that less than 10% die over the whole nest-
site selection process.

An unsuccessful explorer returns to the
cluster and seeks to observe a dance. The time
step that scout bee ¢ first discovers site j is

k}‘ and ifthe assessed quality of the site is above

the quality threshold, this bee returns to the
cluster and dances with a “strength” (number
of waggle runs, with each run communicating
the angle and radial distance to the nest site via
the angle the run makes relative to the sun and

the duration of the run) of (k) = 5" (k)
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waggle runs where 3 = 150; hence dance

strength is correlated with nest quality. The
dances recruit other bees to visit the site. After
dancing, this committed bee returns to the site,
and then back to the cluster, possibly making
several such round trips between the swarm
cluster and nest site; however, each time it
returns to the cluster it dances on average

« =15 fewer waggle runs than the previous

time. The sequence of waggle runs produced
by scout bee i over the whole process is L

and the total number of waggle runs produced
on the cluster for all sites at time step & is

L(k). Let Z L, denote the total number of

waggle runs over the entire process. A sequence
of dances by one scout bee for one site, from
the time of the initial dance to when the dance
strength decays to zero, is called a“dance decay
series.” A fteracommitted scout’s dance strength
has decayed to zero it rests and rejoins the
process (by seeking to observe a dance) at each

expedition withaprobability p = 0.25.Scout

bees that seek to observe a dance will end up

exploring instead with probability
LK)
p (k) = exp 5 where o = 1000,
g

representing that when there is not much danc-
ing on the cluster (small L (k), meaning few

good sites have been found), then there will be
more exploring, and vice versa. Thereare 3 (k)

resters. I3 (k) explorers, 3 (k) bees that seek
toobserve, B (k) = B (k) + B (k) uncommit-
ted bees, and B (k) committed bees. With

probability 1 — p (k) observerbees will observe

. Lk
dances, and with probability p (k) = - m( )
DLk
1%
they will be recruited by the i" dancing bee;

this means that recruits will be proportioned
across candidate sites based on the site’s relative
proportion of recruiters, with better sites
thereby getting more recruits. Bees recruited
to site j will visit and dance for it back at the

cluster according to their own assessment, as
described above.

Key parts of the whole process are occur-
ring simultaneously withthe scouts performing
andobserving dances on the cluster and sensing
at each candidate nest site the number of other
bees at the site. When the quorum threshold

4 = 20) is reached at one of the sites (the time

at which quorum achieved is called the “agree-
ment time” and it is denoted with T ), the bees

there return to the cluster and produce piping
signals thatelicit heating by the quiescent (non-
scout) bees in preparation for flight. Eventu-
ally, the entire swarm lifts off and flies to the
chosen site, guided by the scout bees. There is
significant time-pressure to complete the nest-
site selection process as fast as possible since
weather and energy losses pose significant
threats to an exposed colony. However, enough
time must be dedicated to ensure that many
bees can conduct independent evaluations of
the site and enough must agree that it is the best
site found. Hence, during nest-site selection the
swarm optimizes a balance between time
minimization and site quality choice maximiza-
tion (Passino & Seeley, 2006).

Each expedition by a scout bee is assumed
to take 30 min, and the maximum amount of
time for the swarm to make its choice is set at
32 hrs, so there are up to 64 time steps. Due to
the possibility of simultaneous quorumachieve-
ment at two or more sites there can be “split
decisions.” In this case, the process is restarted
by having the swarm lift off, fail to fly away,
and then reform the cluster. Also, the process
can fail to come to agreement before 64 time
steps are completed, which is called a “no-
decision failure.” These failures can arise if a
site of sufficient quality, one that will generate
arecruitmentrate that will assemble the required
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¢, bees at a nest site, is not discovered early

enough.

3. DISCRIMINATION AND
DISTRACTION PROPERTIES

Viewing the swarm as a cognitive unit, its
choice performance is evaluated in this and the
two following sections. Choice performance of
swarms is considered for several landscapes of
nest-site quality. For each landscape and each
choice test, 100 nest-site selection processes
that terminate with a single site chosen are
used. Then statistics are computed from the
resulting data.

3.1 Discrimination Amplification

Let all sites have zero quality, except sites 5
and 6, which both start out at a quality of

N® = N°® = 0.65 and differentially move to

0.4 and 0.9. When both sites are at a quality of
0.65 , the top-right plot of Figure 1 shows that
it is equally likely that each site is chosen. As
the two sites have increasingly different qual-
ity values, the swarm is increasingly better at
discriminating between them. When the site
quality difference is above 0.3 the swarm is

always correct in its choice of the best site.
Next, see the top- and bottom-left plots of
Figure 1. There is a slight decrease in the me-

dian value of T and mean value of ZLt

since in this case the quality of site 5 is much
lower so that it is not nearly as viable of a
candidate; hence, it is easier to choose the best
site (i.e., without as much deliberation that takes
time). The bottom-right plot of Figure 1 shows
that the number of bees not visiting sites goes
up slightly as differential quality increases. This
demonstrates that fewer bees are needed to join
the process of selection when there are clear
quality differences in the field of possible nest
site qualities.

The results in Figure | also show that dis-
crimination ability goes up relative to Figure 3

in Passino et al. (2008), indicated by increased
slope on the percentage of times the correct site
(site 6) is chosen as they move away from each
other (in the initial part of the top-right plot, the
slope is approximately (1-0.5)/0.3=5/3, com-
pared to 5/4 when the sites start at 0.75). Hence,
discrimination is better when site qualities are
lower since mistakes are more costly. Notice that
compared to Figure 3 in Passino et al. (2008)
there is more coupling in the process here due
to more bees abandoning the low quality site
and switching to the high quality site (here,
for some values of differential quality about
11/40=27.5% dance for two sites).

3.2 Effect of Number of
Distractors: Treisman
Feature Search Test

Let N* =1 and N® =0.55, then succes-
sively add sites 1, 2, 3, and 4 as additional
distractors of quality 0.55. So, there are a total
of 2, 3, 4, and § distractors. This is a Treisman
feature search test (Treisman and Gelade, 1980)
with one “target” (the best site) that should be
chosen, and a variable number of distractors.
The results in Figure 2 show that as more dis-
tractors of such a low quality are added there
is little effect on the percent of correct choices
(see top-right plot) relative to when there are
only two distractors; however, this comes at

the cost of an increased mean Z L, for the

swarm to try to resolve the differences (see
bottom-left plot). Treisman and others took this
as evidence of early parallel neural processing
of alternatives, early enough that it was not at
the level of consciousness. Clearly, the swarm
is processing the distractors in parallel also and
this test shows that this has a positive effect on
swarm choice performance.

The main result, however, comes from
comparing with the case where everything is
the same as in the previous test, but N° = 0,
that is, when the target is removed. In standard
feature search tests human subjects are asked
to decide if the target is there or not, something
that cannot be requested from the swarm. In-
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Figure 1. Amplified discrimination effect: Top-left: middle line in each box is the median
value of T, boxes with notches that do not overlap represent that the medians of the two
groups differ at the 5% significunce level (i.e., a pairwise statistical hypothesis test), whiskers
(dashed lines) represent 1.5 times the interquartile range, und outliers are designated with a
“ b Top-right: percentage of times each nest site is chosen (black lines), with site | desig-

nated by > (IR represents “triangle right”, a right-pointing triangle), site 2 by & ("tU”
represents “triangle up ), site 3 by 0 (“dia”), site 4 by U3 (“sq "), site 5 by °, and site 6 by

«. The gray lines with markers show the relative site qualities, N’ / Z N’ . Bottom-left:

1
left-vertical axis and the black lines show the mean Z L, (solid line, dots), und its stundard
deviation (dash-dot line, + marker), while gray lines and right-vertical axis show the number
of split decision ( x ) and no-decision (°) cases that occur for the 100 nest site selection pro-

cesses that terminate with a single choice. Bottom-right: left-vertical uxis and the black lines
show the mean number of bees out of the 100 total that visit 0 sites (designated with 1> ), 1

site (D), 2 sites (L7 ), 3 sites (1), 4 sites (°), 3 sites (), und 6 sites (<), and right-vertical
avis shows via the gray lines the mean number B of committed scouts ( ) and mean number
of explorers B (+ ) at the ugreement time T .
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Figure 2. Effect of number of distractors, with perfect site present (see Figure | caption for uxes

explanation)
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stead, the swarm comes to a decision for this
case and the results are compared to the last
case. The results in the top-right plot of Figure
3 show that as expected, with two distractors
each is chosen 50% of the time, 3 are each
chosen about 33% of the time, 4 are chosen
around 25% of the time, and 5 about 20% of

the time. The mean Z L, increases with more

distractors but the median T goes up, then

comes down since it becomes easier to make
the errors that occur with 5 distractors. Also,

comparing Figures 2 and 3, the median T

values are higher for the case when there is no
target compared to when the target is present.
An analogous result is obtained in tests for
humans, and Treisman hypothesized that hu-
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mans switched to a “sequential search mode”
where by a process of elimination they decided
that the target was not present (Treisman &
Gelade, 1980; Gazzaniga et al., 1998). For the
swarm such a mode switch is not possible. The
swarm simply takes longer to decide due to the
internal dynamics of the decision-making pro-
cess being slowed by amore lengthy evaluation
of the evidence gathered.

4. DISCRIMINATION-
DISTRACTION INTERACTIONS

The tests in the last section were designed to
illustrate isolated swarm discrimination abilities
and distractor effects. In other nest-site quality
landscapes, however, both effects are present
and interact with each other as shown next.
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Figure 3. Effect of number of distractors, without perfect site present (see Figure | caption for

axes explunation)
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4.1 A Distractor Can
Attenuate Discrimination

First, it is shown that distraction can attenuate
discrimination. Let all sites have zero quality,
except let site 4 have a quality of 0.5 and let
sites 5 and 6 both start out at a quality of 0.75
and differentially move to 0.5 and |. Site 4 is
considered to be a distractor since it should not
be chosen. Notice that in the top-right plot of
Figure 4 the region of “generalization” (i.e.,
quality range where the swarm treats qualities
as similar) (Gazzaniga et al., 1998) grows
relative to Figure 1 and Figure 3 in (Passino et
al., 2008) and the slope of the line representing
correct choices is about | (lower than in Figure
I and Figure 3 in (Passino et al.. 2008)) so that
discrimination is attenuated by the relatively
low quality distractor. This attenuation occurs
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while all other key variables (e.g., median T,

and mean Z L, )stay relatively constant. This

illustrates that the generalization effect is
solely coming from the etfect of site 4 as a
distractor.

4.2 Discrimination Tries to
Overcome Distraction

Let the quality of site 5 be 0.75, let the quality
of site 4 vary as N' = D € [0,1] and consider

site4 tobeadistractor fortherange D € [0,0.75]

since it should not be chosen for that range of
values, but it is the best site for D € (075.1]

when you can view site 5 as the distractor (this
is a case of nonlinearly decreasing differential
quality). Of course, you could view the basic
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Figure 4. Distraction can attenuate discrimination (see Figure | caption for axes explanation)
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task as one of discriminating between the two
sites. The results are in Figure 5. First, note that
discrimination level is asymmetric in the sense
that the swarm is better at discriminating when
D € [0,0.75] , butdiscrimination is not as good

for D e (075,1] (mistakes are not as costly in

that region). There is a small region of gener-
alization around 0.75. 1t is interesting that the

median T values are relatively high until the

quality of the sites approach each other, and
then the amount of dancing ZL' increases

in order to discriminate between the sites, but
then decreases as the sites move apart again.

Also, the median 71 value decreases in the
range D € {0.8,1] (since it is easier to make a

quick butincorrect decision) and note that there
are fewer outliers. There are many no-decision
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cases when site 4 has a low quality; this is due
to the difficulties of finding the single rela-
tively good site 5. Overall, this shows that
distraction tends to have an effect on choice
performance degradation that discrimination
tries to overcome (i.e., the “tension” between
choice performance enhancement via good
discrimination and choice performance degra-
dation via distraction is balanced).

4.3 Context Dependence:
Transitivity

A broad range of nest-site quality landscapes
were tested to see if the swarm would ever
misorder the percentages of choices for sites
in comparison to the order of relative nest-site
qualities. These tests included all the simula-
tion results shown in the discrimination and
distraction tests above, the general class of
landscapes described at the beginning of the
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Figure 5. Nonlinear differential quality (see Figure | caption for axes explanation)
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next section, the cases considered in (Passino &
Seeley, 2006), and many landscapes notreported
here. The tests were never able to “trick” the
swarm: the percentage choice order is always
given by the ordering of the relative qualities
of the nest sites (to see this, review all plots
of choice performance in this paper). Hence,
the swarm never violates “strong stochastic
transitivity” (Luce & Suppes, 1965) which can
lead to choice errrors.

5. ADAPTIVE TUNING
OF SWARM COGNITION
PROCESSES

To gain more insights into the mechanisms
of swarm decision making, their evolutionary
adaptation is studied. First, the adaptive tun-
ing of the parameters of the individual bees’
decision-making is studied. This helps to

further validate the model and serves to show
how speed accuracy trade-offs emerge from
the adaptive tuning of the swarm’s cognition
process. Second, the effect of the amount of
individual bee nest-site assessment noise on
the swarm’s choice performance and speed-
accuracy trade-off is studied.

To study the adaptive tuning of individual
bee-level behavioral parameters, their values
are changed (“pseudo-mutated”) from experi-
mentally-determined ones, and the average
time/energy costs and choice performance are
evaluated. Six sites with qualities uniformly

distributed on [e,1], where ¢, = 0.2 is the

threshold quality, are used. The randomly gen-
erated qualities are ordered so that site | is the
lowest quality, site 2 is the second worst one,
and so on, and this makes site 6 the best site.
Each nest-site quality landscape generated this
way is highly likely to produce interacting
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distraction and discrimination effects and hence
generally more challenging choice tests than
in (Passino & Seeley, 2006). Seven values of
each behavioral parameter are considered, and
for each of these, 1000 nest-site selection pro-
cesses are run (each for a randomly generated
landscape). Performance is characterized using
statistics of the 1000 runs for each parameter.

5.1 Effect of Quorum
Threshold Size

Figure 6 shows that small € values result in

fast decisions (top-left plot) and relatively few
dances (bottom-left plot), butrelatively frequent
errors (top-right plot) since only a few bees

evaluate the chosen site. High ¢ values result

in slower decisions, more dancing, and rela-
tively low error rates since many bees evaluate
the chosen site. The experimentally-determined
quorum threshold value (in the range of 10-20
(Seeley and Visscher, 2003)) is the adaptive
result of balancing the trade-off between keep-

ing the median T and mean ZLt values low

and the percent of correct choices high (Passi-
no & Seeley,2006). This range of ¢ alsokeeps

(bottom-right plot) enough bees involved in the
process by visiting sites and evaluating them,
enough explorers in the role of searching for
sites, yet relatively few bees that visit two sites
since that can lead to degraded performance in
some cases.

5.2 Effect of Initial Dance
Strength and Model Validation

For the effect of variation of v see Figure 7.

This shows that the value of 150 waggle runs
for the initial dance strength from an excellent
site found in experiments (Seeley, 2003) is the
result of a trade off between keeping the me-

dian I’ and mean ZLt values low (high y

values}) and the percent of correct choices high

{low ~ values), while at the same time avoid-

ing split and no-decision cases. This provides
a more complete verification that the values
used in (Passino & Seeley, 2006) (and here) are
in the range settled on by evolution since the
class of quality landscapes considered here is
considerably broader. Similar results are found

for ¢ and o . The results here also help to

verify the model in Passino and Seeley (2006)
since SRl and v (a parameter not studied

in Passino & Seeley, 2006) are the ones found
inexperiments (Seeley & Buhrman, 1999,2001;
Seeley, 2003; Seeley & Visscher, 2003, 2004a,
2004b).

Overall, from a swarm cognition perspec-
tive, the results here show that individual-
level bee behavioral parameters related to

“early” (v and ¢_)and “late” ( €, ) processing

(Gazzaniga et al., 1998) have values that are
the result of balancing a swarm-level choice
speed and accuracy trade-off.

5.3 Effects of Other
Behavioral Parameters

Results for considering the tendency to seek to
observé dances, p € [0.1] show that this

parameter has little effect on most variables.
Increasing it does, however, increase the num-
ber of split decisions and decrease the number
of no-decision cases since there is an increase
in coupling in the process that leads to build-up
for similar sites to be closer, and helps to ensure
that some site will have enough bees to reach
a quorum. If site qualities are generated on

[0.2.1] but ¢ € [0.0.4], there is little effect on

the choice performance since higher values of
¢, simply eliminate inferior altenatives that

the swarm is already quite capable of eliminat-
ing. Simulations show that all low values of p,

have no major impact on choice performance.
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Figure 6. Effect of €, (see Figure I caption for uxes explanation)
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5.4 Effect of Individual Bee
Assessment Noise Magnitude

The effect of varying the magnitude w of the
bee assessment noise w' € [~w,w] is shown

in Figure 8. If w increases, the choice error

rate does not degrade or improve much over
the case where w = 0.1, the value from

(Passino & Seeley, 2006). It is physiologically
impossible for the individual bees to have
w =0 and there is little choice performance

degradation when w increases to w = ().1.
For w > 0.1 the choice performance stays
nearly the same (and most importantly, does
not decrease a lot), but the swarm needs a
higher median value of T and mean ZL, to

reach agreement. This is due to a slowing of
the decision process due to resolving the dif-
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ferences due to noise. For increasing noise
magnitudes, the number of split decisions goes
down (since it becomes more unlikely there
will be simultaneous agreement) and the num-
ber of no-decision cases generally goes up (due
to too much confusion caused by the noise).
Also, an increasing noise magnitude results in
more cross-inhibition as seen in the mean
number of bees that visit two sites. This occurs
since the noise perturbs the system away from
a quick decision and thereby avoids “locking”
onto a low quality site. Noise results in more
deliberation so that on average better sites will
be found (i.e., deliberation allows more time
for search and consideration).

From aswarm cognition perspective, since
group memory is more accurate when more
bees are committed to a site (Passino et al.,
2008), and choices are made based on group
memory, the swarm effectively filters indi-
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Figure 7. Effect of ~ (see Figure I caption for axes explanation)
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vidual level assessment errors especially for
the chosen site (even for unrealistically large
quality assessment error magnitudes such as
w = (0.5 ). However, natural selection seems
to have favored a reduction in individual bee
site assessment noise magnitude because that
leads to shorter agreement times and less danc-
ing, without much degradation in choice ac-
curacy.

5.5 Effect of Individual Bee
Assessment Noise Magnitude
on Discrimination

Theresults in Section 5.4 for the effects of noise
magnitude are for a very general class of nest-
site quality landscapes. The effect can be ampli-
fied for specific and common landscapes. For
instance, it seems likely that the swarm will
often face discrimination problems for rela-
tively close quality sites. To study the effect of
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noise magnitude on discrimination, the case of
Figure 3 in (Passino et al., 2008) is modified
to have all site qualities be zero, except
N =076 and N = 0.74. a differential

quality of only 0.02 (which by the results in
Figure 3 in (Passino et al., 2008) results in
around 50% of the time the swarm choosing
each of the two sites). That is, the sites are in
the region of generalization and it is difficult
for the swarm to discriminate between the two
since their quality is so close. Figure 9 shows
that by increasing the amount of individual
assessment noise, choice performance for the
best site stays almost the same as the noise
magnitude increases. Notice that in this case
1000 simulations are performed for each pa-
rameter value so thatat w' = 0.1 there is about

a 5% difference in the choice rates for the two
sites. Inthe region above w > (.3 there is about

a 10% difference in the rates of choice for the
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Figure 8. Effect of w (see Figure 1 caption for axes explanation)
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two sites; hence, the noise has increased the
ability of the swarm discriminate between these
close-quality sites. This increase in performance
comes, however, at the expense of a higher

median 7 and mean ZL' , and an increased

number of no-decision cases. These results
further confirm the conclusions reached for the
general class of landscapes in the last subsec-
tion.

6. CONCLUSION

The swarm choice performance and adaptation
studies in this paper provide additional evidence
that bee-based swarms have a cognition process
that shares key features with neuron-based
brains. It was shown that the ability to discrimi-
nate depends not only on the differential quality,
but also on the absolute quality. In particular,
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discrimination performance improves for lower
quality sites. Next, it was shown that distractors
can attenuate the ability of the swarm todiscrimi-
nate and that discrimination mechanisms try to
overcome the negative impacts of distractors.
The Treisman feature search test showed that
choice performance only degrades slightly if
relatively low quality distractors are added tothe
task of finding the best quality site. The origi-
nal idea that this provides evidence of parallel
processing in the brain clearly also holds for the
swarm. Moreover, it was shown that ifthe high
quality site is removed, the swarm takes much
longer to decide which site to choose. It was
proposed that this was due toa switch inhumans
toasequential search mode. Here, however, the
delay is clearly induced by the dynamics of the
process that Jeads to deliberation. This provides
an alternative way to interpret the delays that
occur in reaction time tests, and this may be
useful toinfer mental dynamics and structure in
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Figure 9. Effect of w, N* = (.76 and N° = 0.74 case (see Figure | caption for axes explana-

tion)
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otherspecies. The existence of irrational choice
behavior commonly found in human decision
making in the presence of context-dependent
effects was studied. It was shown that for the
nest-site selection task, the swarm possesses
strong stochastic transitivity and the attraction
effect, which both provide evidence that the
swarm makes good choices on average. The
analysis ofthe adaptive “tuning” of the processes
underlying swarm cognition was a study of the
cognitive ecology of the honey bee swarm. It
was shown that several behavioral parameters
underlying swarm cognition have values evi-
dently shaped by natural selection to balance
speed and accuracy of choice. Moreover, it is
shown that swarm-level choice performance
is insensitive to bee-level assessment eITOorS,
There are anumber of directions for future
work. First, consideration ofthe work in (Shafir
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et al., 2002) on honey bees begs the question
if, for the same task and species, context-de-
pendenteffects are amplified or attenuated when
comparing cases of social and solitary choice.
Second, in this paper it was assumed that the
number of scouts is B = 100 . In nature, how-
ever, swarms come in different sizes, so that
the resulting number of scouts could be in the
range 75 < B < 1000. It is not known how

the size of B and particularly large values of
B affect the decision-making process as there

have not been experiments conducted to inves-
tigate this issue. In fact, it is very difficult to
perform such experiments: hence. the investiga-
tion of the size of B is likely best done in
simulation. This raises a number of questions,
For instance, will a larger swarm be more ef-
fective at discrimination between the quality
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of two sites? Will it more effectively eliminate
distractors from consideration? What will be
the effect on context-dependent decision-
making? How will the speed-accuracy trade-off
be affected? Will a larger size swarm use a
higher quorum threshold? Third, it would be
useful to conduct a full statistical analysis of
the results in this paper (using analysis of vari-
ance and the Tukey procedure for multiple
comparisons). All these questions await further
study.
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