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V. CONCLUSION

The technical note introduced a notion of linear i/o equivalence
transformation for the set of meromorphic nonlinear higher order
i/o difference equations. Then, it was proved that using the linear
i/o equivalence transformations, the set of nonlinear equations can
be transformed into the row-reduced form. Finally, the constructive
algorithm is given for finding the equivalence transformation which
extends the corresponding transformation for linear systems. The
future task is to find out under which additional assumptions the
concept of linear i/o equivalence coincides with the conventional i/o
equivalence definition based on the i/o pairs.

The problem of transforming the set of i/o difference equations into a
doubly-reduced (i.e., both row- and column-reduced) form is the topic
of the future paper. For that purpose the paper [5] addressing the trans-
formation the matrix over a skew polynomial ring into a doubly-re-
duced form, may be helpful. Note that the doubly-reduced form is in-
strumental in the solution of the realization problem of the i/o differ-
ence equations into the state space form.
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Local Agent Requirements for Stable
Emergent Group Distributions
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Abstract—This note introduces a model of a generic team formation
problem. We derive general conditions under which a group of scattered
decision-making agents converge to a particular distribution. The desired
distribution is achieved when the agents divide themselves into a fixed
number of sub-groups while consenting on “gains” which are associated
to every subgroup. The model allows us to quantify the impact of limited
sensing, motion, and communication capabilities on the rate at which
the distribution is achieved. Finally, we show how this theory is useful in
solving a cooperative surveillance problem.

Index Terms—Cooperative systems, distributed decision-making, team
formation.

I. INTRODUCTION

There is growing interest in designing and understanding multi-agent
systems composed of independent decision-makers. Some well-known
examples include cooperative groups of agents trying to accomplish a
common global objective like: (i) agreeing upon a particular variable
of interest (e.g., consensus problems [1], [2]); (ii) achieving collec-
tive group motion and formation patterns (e.g., [3], [4]); and (iii) al-
locating a group across spatially distributed tasks (e.g., [5]–[7]). While
each of these problems has unique features, common constraints in-
clude (i) motion dynamics; (ii) range-limited and inaccurate sensing;
or (iii) agent-to-agent limited and delayed communications.

In all of these multi-agent to multi-task studies there is a strong
agent-to-task assignment coupling that occurs through the shared set
of spatially distributed tasks that are to be accomplished by the group.
For instance, suppose that tasks lie in distinct spatially separated areas.
When a particular agent gets assigned to an area to perform tasks, the
benefit of assigning all other agents to this area decreases since the
same agent can usually perform several tasks in the same vicinity with
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little additional time. The challenge of how to untangle this compli-
cated space and time dependent multi-agent to multi-task coupling to
provide a desired cooperative group behavior – especially when the
agents’ motion, sensing, and communication constraints dominate the
problem – remains an open problem, and is the key challenge we will
address here.

Our work is closely related to [8]. There, the author introduces a
model that captures the dynamics of a group of agents interacting via
a network with time-dependent communication links. The general
framework finds application in a variety of fields including swarming
and consensus problems. Necessary and sufficient conditions are
provided that guarantee that the individual agents’ states (whose
interpretation depends upon the particular application of the model)
converge to a common value (actually, their results assume that for
each agent the updated state is a strict convex combination of its own
current state and the current states of the agents it connects to). As in
[8] the stability analysis of the model presented in this note is based
on upon a blend of graph and Lyapunov theory. However, as opposed
to the time-driven model introduced in [8], here we assume that the
evolution of the system is event-driven, and use a discrete event system
(DES) modeling methodology similar to the one in [9].

The model we introduce in this note is built on a time-invariant graph
with a finite number of nodes where agents may be located (i.e., a node
refers to a sub-group of agents). Each node is associated with a unique
“gain function” that characterizes the benefit of allocating a certain
amount of agents to that node. We consider a general class of node gain
functions which allows for diverse applications of the model, and focus
on the individual agents’ motion dynamics across the graph that lead
to a desired distribution where the group as a whole tries to equalize
the gains associated with any pair of nodes that are connected.

Our approach is inspired by techniques used in diffusion algorithms
for load balancing (where loads move from heavily loaded processors
to lightly loaded neighbor processors [10]–[12]). Although some ideas
underlying our analysis are similar to consensus algorithms (like the
one introduced in [8]), the convergence of diffusion algorithms cannot
be derived from the corresponding results for consensus algorithms.
In particular, diffusion algorithms do not require formation of convex
combinations of the current or past states of the system. In this context,
while the evolution inside a convex hull would allow consensus algo-
rithms to ensure that over time the minimum and maximum gain levels
of all nodes are monotonically increasing and decreasing, respectively,
the convergence of our algorithm does not require that the minimum
gain increases monotonically; and in fact this is not the case here. Our
results are likely to be of interest in the area of distributed computing
[13] since they extend the load balancing theory in [9], [12] to the con-
tinuous load case when the “virtual load” is a nonlinear function of the
state.

It is, however, the general idea behind the model and strategies for
achieving the desired distribution that is the most important contribu-
tion of this note. By achieving the desired distribution, we show a way
to untangle the multi-agent to multi-task assignment coupling to pro-
vide good cooperative behavior, even from poorly informed and con-
strained individual decision-making. Similar coupling issues arise in a
variety of allocation problems (i.e., where allocating a resource gen-
erally diminishes the benefit of allocating extra resources to that same
site). A preliminary version of this work has appeared as a conference
paper in [14].

II. THE MODEL

A common approach in modeling group behavior is to assume the
existence of a large number of agents so that the total number of agents
at a particular node can be adequately represented by a continuous vari-
able. Here, we assume that there are � � nodes and let �� � ,

�� � �� represent the amount of agents at node �, � � �� �� � � � � � ,
where �� � � is the minimum amount of agents allowed at any node.
Each node is characterized by an associated gain function, defined as
������. We assume that for all � � �� � � � � � , and all �� � ���� � 	 the
gain functions satisfy ������ � �; moreover, there exists two constants
	� � 
� � � such that

�	� �
������� ������

�� � ��
� �
� (1)

for any ��� �� � ���� � 	, �� �� ��. Equation (1) implies that the gain as-
sociated with each node decreases with an increasing amount of agents
at that node, and eliminates the possibility that a very small difference
in agents may result in an unbounded change in gain.

In order to model interconnections between nodes we will consider
an undirected graph topology. The nodes are represented by 
 �
��� � � � � �� and the interconnection of nodes is described by �
���,
where � � 
 	
 . If ��� �� � �, this represents that an agent at node
� can sense node � and can move from � to � (sensing node � means that
agents at node � know ������ and �� ). Let ���� � �� 
 ��� �� � ��
represent all neighboring nodes of node �.

Next, let �� � ����
� and � � � � �
�� 
 �

��� �� � �

be the simplex over which the �� dynamics evolve. Let � � � be
the set of states and ���� � ������� ������ � � � � �� ���	� � � be the
state vector, with ����� representing the amount of agents at node � at
time index � � �. We now want to define a set of states, such that
any state ���� that belongs to this set exhibits the following desired
characteristics:

— All neighboring nodes with more than �� agents have equal gains;
— Any node that does not have the same gain as its neighboring

nodes must have a lower gain and the minimum amount of agents
�� only.

Note that any distribution of agents such that the state belongs to the
set

�� � �� � � 
 �� � 
� ������ ������ � ������ �� � ����

�
�� ���� �� �� �� ��� ������ � ������ �� � ����

�
�� ���� �� � ��� �� �� � ��� (2)

possesses the desired characteristics. In particular, any distribution � �
�� is such that for any � � 
 either �� � ��, in which case node � has
the minimum amount of agents allowed at that node (referred to as a
truncated node); or if �� �� �� it must be the case that all neighboring
nodes � � ���� such that �� �� �� have the same gains as node �. The
remainder of this section discusses the requirements which will ensure
that (i) the set �� is invariant under local interaction rules, and (ii) the
group will converge to �� from any initial distribution ����.

First, to capture the agent’s dynamics at a particular node, let �������
����

denote an event of type �, which represents the movement of ����
agents from node � � 
 to neighboring nodes � � ����. The list
���� � ������� �� ���� � � � � �� ���� where � � �� � 
 
 
 � ��� and
�� ��� � � � � ��� � ���� is composed of elements �	��� that denote the
amount of agents that move from node � � 
 to node � � ���� (the
size of the list ���� is ������). For convenience, we will denote this list

by ���� � ������ 
 � � �����. Let �
������
���� denote the set of all

possible combinations of how agents can move between nodes (i.e.,
���� �

������
�
 , where �
 � ��� � 	). Let the set of events be de-

scribed by � � � �
������
���� � ��� (��
� denotes the power set).

An event ���� � � is defined as a set, with each element of ���� rep-
resenting the transition of possibly multiple agents among neighboring
nodes in the graph �
��� (i.e., multiple elements in ���� represent the
simultaneous movements of agents out of multiple nodes).
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Second, to define the agents’ sensing and motion conditions, we
define an “enable function,” � � � �� ���� � ���. In partic-
ular, if for a node � 	 � , ������ 
 ������ for all � 	 ����, then
�
������
���� 	 ��	� with 
��� � ��� � � � � �� is the only enabled event.

Hence, agents at a node with the highest gain relative to all neighboring
nodes do not move away from node �. On the other hand, if for node
� 	 � , ������ � ������ for some � such that � 	 ����, then the only
�
������
���� 	 ��	� are ones with 
��� � �
���� � � 	 ����� such that:

��� �� �
������


���� 
 
��

���� � � �� �� �
������


���� � �� ��� � 
� ����

�	
 �	�
 �� 	 �� � ������ 
 ������� � � 	 ������

����� �� ��� � 
� ���� � �� ��� �� ��� ��� ��� �� �������

�	
 �	�
 �� 	 �� � ������ 
 ������� � � 	 �����

where ��� 	 ��� �� for � 	 ���� is a constant that represents the pro-
portion of gain difference agents try to reduce by moving from node �
to node �. Condition (i) guarantees that at any node there are at least

� agents. It is required so that conditions (ii) and (iii) are well de-
fined at all times. To interpret conditions (ii) and (iii) it is useful to
note that reducing (increasing) the amount of agents at a node always
increases (decreases, respectively) the gain at that node. The two con-
ditions constrain how agents can move in terms of node gains. Condi-
tion (ii) implies that after agents move from node � to other nodes, the
gain of node � due to some agents leaving does not exceed at least one
of the neighboring nodes with the highest gain (before agents started
moving). Condition (ii) prevents there being too many agents moving
from node i, so many that node i deliberately obtains a higher gain than
all its neighbors. Without it, there could be a sustained movement os-
cillation between nodes. Condition (iii) implies that if the gain of node
� differs from any of its neighboring nodes, so that some agents may
move from node �, then some agents must move to the node with highest
gain. Without condition (iii) some high gain node could be ignored by
the agents and the desired distribution might not be achievable. Con-
dition (ii) together with condition (iii) guarantees that the highest gain
node is strictly monotone decreasing over time as we show in the next
section.

Third, we define a state transitions operator �� � � �� � , for
��	� 	 ����	��. In particular, if ��	� 	 ����	�� and �������

���� 	 ��	�,
then ��	 � �� � ��������	��, where ���	 � �� equals

���	��

��� ������� � ������


���� �

��� ������� � ������


�����

In other words, the amount of agents at node � at time 	��, ���	���,
is the amount of agents at node � at time 	, minus the total amount of
agents leaving node � at time 	, plus the total amount of agents reaching
node � at time 	.

Finally, to quantify the degree of asynchronism of the model, we
assume that there exists a constant � � �, such that in every substring
��	��� ��	����� ��	����� � � � � ��	�������� there is the occurrence
of every type of event (i.e., for every � 	 � , the event �������

���� 	 ��	�

for some 
��� that satisfies the above sensing and motion conditions
at some time index 	, 	� � 	 � 	� � � � �). This assumption is
met if agents try to move to neighboring nodes every certain number of
steps. It bounds the slowest possible movement rate across nodes, and
corresponds to the “partial asynchronism” assumption in [13].

III. STABILITY OF THE DESIRED DISTRIBUTION

We now restrict our mathematical analysis to the following scenario.

Assumption 1:
(a) The graph ����� is connected;
(b) The gain functions �� associated to each node � 	 � satisfy (1);
(c) The amount of agents leaving each node � 	 � satisfy conditions

(i) – (iii);
(d) The size of the group � 
 �	 where �	 � �
� �

������������ ���������
������������
����.
In general, there are many different agent distributions such that � 	

�	. Assumption 1 restricts our analysis to situations where there exists
only one distribution that belongs to�	 and it has no truncated nodes. It
requires that the size of the group exceeds a threshold �	 and minimal
restrictions on the graph ����� (the particular value of �	 depends on
the given set of gain functions; for a more detailed discussion about
the impact of group size on the desired distribution see [14]). Given
Assumption 1 it may be possible in some special cases to explicitly
find � 	 �	. Our main result below (Theorem 3.4), however, is not
dependent on knowing the explicit � 	 �	. To establish Theorem 3.4,
we present the following lemmas, the proofs of which are similar to the
results in [7] and can be found in the supplement to this paper1.

Lemma 3.1: Suppose a group of agents on a graph ����� satisfy
Assumption 1. Then, the set �	 is unique and invariant.

Since the set �	 is unique (i.e., 
�	
 � �), for any initial agent
distribution ���� there exists only one distribution that represents the
desired distribution. To study how the group of agents approach this
distribution, we build on the following two lemmas.

Lemma 3.2: Suppose a group of agents on a graph ����� satisfy
Assumption 1. Then, for all � 	 �

������	 � ���

� ���
�
�������	���� �����

�
�������	��� ������	��� (3)

where � � ����������.
Note that (3) applies to all � 	 � and in particular to some � such

that ������	�� 
 ������	�� for all � 	 � . Hence, �����������	���
(i.e., the highest gain in the entire the graph) is a nonincreasing function
of 	. We use Lemma 3.2 to bound the gain levels of the neighboring
nodes of any node � 	 � with more than 
� agents.

Lemma 3.3: Suppose a group of agents on a graph ����� satisfy
Assumption 1. Then, for all � 	 � and � 	 ���� such that ���	� �� 
�

������	
���

� ���
�
�������	���� �� ������

�
�������	���� ������	��� (4)

for all 	� 
 	 � ��.
Finally, we are ready to present our main result. The proof of the

following theorem is presented in the Appendix.
Theorem 3.4: Suppose a group of agents on a graph ����� satisfy

Assumption 1. Then, the invariant set �	 is exponentially stable in the
large.

Exponential stability of an invariant set means that all agents are
guaranteed to converge to �	 at a certain rate. Theorem 3.4 is an ex-
tension of the load balancing [13] theorems in [9], [12] to the case when
the “virtual load” is a nonlinear function of the state. In particular, the
virtual case in [12] represents the case when ������ � � �����, where
� � � ������� � � 	 �� is some positive constant that guarantees
that ������ � � for all ��. The authors in [12] consider load proces-
sors that may process load at different rates. It is then useful to scale
the physical load by assigning constants �� � � which are inversely
proportional to the processing rate of node �. Note that �� represents
a line with negative slope which passes through the origin. Faster pro-
cessing processors have a lower �� value, which corresponds to a line

1available at www.ece.osu.edu/~passino/kmp-pubs.html.
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Fig. 1. Gains for all four areas; greedy strategy (left), cooperative strategy
(right).

with a lower slope. If one then draws a horizontal line representing the
desired distribution, it would cross lines with steeper slopes closer to
the �-axis than lines with lower slopes. Thus, faster processors receive
more load than slower processors as expected.

IV. APPLICATION

Here, we assume that there are � � �� �����	
	 ��	

� which must
cover a region defined by a square area. We assume that the region is
divided into four equally sized areas. Every node � � � represents an
area. Let us assume that every four seconds a new pop up target ran-
domly appears anywhere in the region. We also assume that agents can
move from any area to any other area and consider therefore a complete
graph �����. Moreover, agents have complete information about the
region and may even share information with agents that are not nec-
essarily in the same area. In particular, we assume that the location of
targets which have appeared in the region is known to every agent (e.g.,
via satellite information). We let �� � � so that some areas may have
no agents in them at all. If an agent approaches a target within a area,
the target is considered to be “attended.” Once the target is reached, the
agent may perform tasks such as classification, engagement, or verifi-
cation of the target, and it is then ignored for the rest of the mission.
Gain functions for every area are defined as the overall rate of appear-
ance of unattended targets. In particular, the gain of node � is defined
as the number of targets present in that area that are not being or have
not been visited by any agent in a time window divided by the length
of that window (hence this is an approximation of the overall rate of
appearance of unattended targets). If an agent approaches a target lo-
cated in area �, this will decrease the gain in that area and increase the
overall target service rate. Our goal is to achieve similar overall target
service rates in all areas.

In order to evaluate different agent strategies, we define the mission
performance measure as the time needed for the difference between any
two gains to reach and settle within a given range (here 4%). Note that
since our simulations assume discrete agents, perfect consensus of all
gains cannot be achieved in general. We denote the settling time for a
given mission by ��. We will first compare the performance of the pro-
posed agent strategy to a “greedy” strategy, where every time agents
reach a target they successively decide to approach the area with the
highest gain. The left plot in Fig. 1 shows how gains change over time
during the first 200 s of a mission. It represents the case when agents
violate the proposed conditions (i) – (iii), and simply approach the area
with the highest rate of appearance of unattended targets. Note that the
gains do not converge to any particular value. On the other hand, the
right side plot in Fig. 1 represents the case when agents distribute them-
selves over the region while satisfying conditions (i) – (iii). Here, we
assume that 	�� � �
�� for all ��� �� � �. Note that the gains converge
and the settling time in this case is approximately �� � ��� �. More-

Fig. 2. Settling time for different cooperation levels. Every data point repre-
sents 60 simulation runs with varying target pop up locations. The error bars are
sample standard deviations for these runs.

over, for any time � � �� the overall rate of appearance of unattended
targets in all areas differs by less than 4%.

Next, we want to show the effect of different cooperation levels be-
tween agents and how increasing communication between them affects
the settling time of the system. Fig. 2 shows how the average settling
time decreases with the number of agents any agent may cooperate
with (i.e., by sharing information on where to go). Note that sharing
information between two agents on where to go only becomes useful
if it affects another agent’s perception about the gain of an area, and
consequently its decision on what target to pursue. Therefore, several
factors such as the total number of agents, the rate of appearance of tar-
gets, the agents’ speed, and the simulation step time shape the curve in
Fig. 2. For example, the more agents are present, the higher the proba-
bility that simultaneous decisions are made, and the more beneficial it
becomes to share information. Increasing the number of agents lowers
the settling time and the standard deviations of the runs.

V. CONCLUSION

We introduce a mathematical model that captures essential aspects
that arise due to the coupling between the assignment of spatially
distributed tasks to all cooperating agents. In particular, the proposed
model takes into account that when an agent is assigned to a particular
area to perform certain tasks, the benefit of assigning this area to all
other agents decreases, and suggests a way to untangle this space and
time dependent coupling and better exploit the benefits of cooperation.

While most of the current research on cooperative decision-making
focuses on groups of identical agents, developing formal frameworks
that allow us to consider heterogeneous agents remains a future re-
search direction. Such agent diversity is an essential feature that both
demands and exploits cooperation.

APPENDIX

PROOF OF THEOREM 3.4

Let �� � ����� � � � � �
�
� �� and choose


������ � �
�����
�
���� � �

�
�� � � � �� � �� � ��� (5)

� ��� � ���
�
�������� �

�

�
���

������
 (6)
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Note that for � � ��, � ��� � � since all nodes � � � have the same
gain.

To show that � ��� is underbounded by a class � function
���������, note that according to (1) for all �� � �	�� 
 � and all
� � � , it must be the case that for any � �� �� and �� � ��, there is
some node � � � such that �� �� ��� and two constants �� � � and

 � ��	��
�� such that

������� ����
�

��

�� � ���
� �
� � �
 � �




�
� ��� � �� (7)

Since (7) applies for any � � � such that �� �� ���, it must apply for
some node

� � 
���

���� � ���� � � � �� �� �� ����� (8)

Assume � is this value for the next part of the proof. Using the definition
of ������� and applying (7) to node � yields


������� � 
�

���� � ���� � � � �� �� �� ����

� 
��� � ��� � � �������� ����
�

���� (9)

Note that for any agent distribution � �� �� and �� � ��, one of
the following must be true: In the first case, if on the right side of (9)
������ � ����

�

�� � �, that is, if node � needs to gain some agents to
achieve the desired state, then there must exist some other node �� such
that

�� ��� �� �� ���� � � �� (10)

In other words, there must exist another node �� that needs to loose
some agents to achieve its desired state ��� (e.g., some node where
some of the agents needed at node � could come from). Hence, �� ��
	�.

Moreover, since there are no truncated nodes at the desired distribu-
tion, ��� �� 	�. Hence, �� ���� � � ����

�

��. Then according to (10),
����

�

�� � �� ��� �. Therefore

� �������� ����
�

�� � ������� �� ��� �

� �


�
�����������	

�
������� � �� �� 	���

In the second case for (9), if ������� ����
�

�� � �, that is, if node �
needs to loose some agents to achieve the desired state (so �� �� 	�),
then there must also exist some other node �� such that �� ��� � �
�� ���� � � �. In other words, there must exist another node �� that
needs to gain some agents to achieve its desired state ��� . Again, ��� ��
	� since there are no truncated nodes at the desired distribution, and so
�� ���� � � ����

�

��. Hence

� �����
�

��� ��������� ���� �� ��������� ��� �� ������

� �


�
�������� ���	

�
������� � �� �� 	���

Thus, (9) can be overbounded by �

������������	�������� � �� ��
	�� so that


������� � �


�
�������� ���	

�
������� � �� �� 	��

� �


�
�������� ���	

�
��������� (11)

From now on we do not necessarily assume that � is defined via (8).

Next, note that

� ���

	 �


�
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�
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Using (11) we get




�
������� �

�

�
�


�
�����������	

�
�������� � � ���� (12)

Thus, � ��� 	 ��������� for all � � � .
Next, we will show that there exists a constant �� such that � ��� �

������� � for all � � � . Let � � �

�����. Recall that for all � ��
�� and �� � ��, �

���� � ���� � � � �� � �. Note also that if
� � 
���

���������, then according to (1)

� �
�

��������� � ����

�

��

�

���� � ���� � � � ��
� � (13)

and similarly, if � � 
����	���������, then

� �
����������	���������

�

���� � ���� � � � ��
� �� (14)

By adding (13) and (14) get that

�� 	
��

��������� � ����

�

���� �����������	����������
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Note that ������� � ����
�

�� � �, since �� � �� and there are no
truncated nodes at the desired distribution. Thus

�

������������	���������

�

���� � ���� � � � ��
� ���

Moreover

� ��� � �


�
�������� �

�

�
�� ��	

�
���������

� �


�
�������� ���	

�
���������

Hence, if �� � ��, � ��� � �� �

���� � ���� � � � ��. This bound
applies to any �� � �� and � �� �� and according to the definition of
�������

� ������ �	���


�
������

�

�� � � � �� ������������������ (15)

Thus, � ��� � ��������� for all � � � .
Next, we show that the distance from the trajectories to the �� is

overbounded by an exponentially decreasing function of �. To do so,
we first extend the result presented in Lemma 3.3, that is, (4) to

�������
��� � �



�
�����������

���� ���� �


�
��������������������� ��� 
�� ��	����� (16)

where � is any node that is reachable from � by spanning � inter-node
connections (arcs ��� �� � �). Equation (4) establishes the validity of
(16) for � � �. We assume (16) is valid for a general � at a distance �
from �, such that exists some node � � ����, such that � is at a distance
��� from �. Equation (4), with � replaced by � � ��� and therefore
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�� � ��� �������, and applied to a neighboring node of node �,
� � ����, gives that for all �� � � � �� � ����

���	���
���

� ���
�
����	���� ������

�

��������� ���
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����	��������������	���������
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Substituting, based on our inductive hypothesis, it follows that for all
�� � � � �� � ����
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�
����	������� ���	����� �

Hence, (16) must be valid for all � � �.
Because every node in the graph can be reached from � by spanning

fewer than � arcs, (16) implies that

���	���
��� � ���

�
����	������

��
� ���� ���
�
����	������� ���	����� (17)

for all �� � � � ���, � � 
 . Because we have made no further
assumptions, (17) is valid for any � � 
 such that 	���� �� ��. Hence,
we can replace ���	����� with �	
�����	����� � 	���� �� ��� and
(17) becomes
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�
����	������

��
� ���� ���
�
����	��������	


�
����	����� � 	���� �����

for all �� � � � ���, � � 
 . It follows directly that for all �� �
� � ���
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�
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� �
� ���� ���
�
����	��������	


�
����	������	���� ����� �(18)

Choose �� � � ����. For every � � �, 	��� �� �	, since there are
no truncated nodes at the desired distribution, (11) and (18) imply that

���
�
����	����������

�
����	�����

�
����

� �
� ��� ���
�
����	��������	


�
����	������	���� �����

� 

� �

���	�����	��� (19)

Equation (19) together with the lower and upper bound on � �	����
satisfy sufficient conditions for exponential stability of the invariant
set �	 [9].
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