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a b s t r a c t

We introduce a pair of compartment models for the honey bee nest-site selection process that lend

themselves to analytic methods. The first model represents a swarm of bees deciding whether a site is

viable, and the second characterizes its ability to select between two viable sites. We find that the one-

site assessment process has two equilibrium states: a disinterested equilibrium (DE) in which the bees

show no interest in the site and an interested equilibrium (IE) in which bees show interest. In analogy

with epidemic models, we define basic and absolute recruitment numbers (R0 and B0) as measures of the

swarm’s sensitivity to dancing by a single bee. If R0 is less than one then the DE is locally stable, and if

B0 is less than one then it is globally stable. IfR0 is greater than one then the DE is unstable and the IE is

stable under realistic conditions. In addition, there exists a critical site quality threshold Q� above which

the site can attract some interest (at equilibrium) and below which it cannot. We also find the existence

of a second critical site quality threshold Q�� above which the site can attract a quorum (at equilibrium)

and below which it cannot. The two-site discrimination process, in which we examine a swarm’s ability

to simultaneously consider two sites differing in both site quality and discovery time, has a stable DE if

and only if both sites’ individual basic recruitment numbers are less than one. Numerical experiments

are performed to study the influences of site quality on quorum time and the outcome of competition

between a lower quality site discovered first and a higher quality site discovered second.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Description of the honey bee nest-site selection process

In honey bee (Apis mellifera) nest-site selection (reviewed in
Seeley and Visscher, 2004; Seeley et al., 2006; Passino et al., 2008),
a cluster is formed by the colony splitting itself when the queen
and about half the old colony depart and assemble nearby,
typically on a tree branch. To find a new home, ‘‘scout’’ bees from
the swarm cluster begin to search a large area for a suitable new
nest-site, typically the hollow of a tree. Scouts assess the quality
of sites based on cavity volume, entrance height, entrance area,
and other attributes that are likely correlated with colony success.
Bees that find good sites return to the cluster and their initial
‘‘dance strength’’ (number of waggle runs, with each run
communicating the angle and radial distance to the nest-site) is
in proportion to the quality of the nest-site. Such bees will revisit
the site many times, but each time they return to the cluster their
dance strength decreases till they no longer dance. The number of
recruits to each nest-site is in proportion to the number of dances
ll rights reserved.

.

for each site on the cluster. ‘‘Unemployed’’ scouts either rest or
seek to observe dances. If they easily find a dancer they get
recruited to a relatively high quality site. If they must wait too
long to find a dancer, there are not many good nest-sites currently
being assessed so they explore the environment for more sites.
There is a quorum-sensing process at each nest-site, where once
there is a certain number of bees at the site, the bees from that
site ‘‘choose it’’ by returning to the cluster to prompt lift-off and
then they guide the swarm to its new home (Beekman et al., 2006;
Schultz et al., 2008). There is significant time–pressure to
complete the nest-site selection process as fast as possible since
weather and energy losses pose significant threats to an exposed
colony. However, enough time must be dedicated to ensure that
many bees can conduct independent evaluations of the site and
establish a quorum at one that is likely to be the best site that the
swarm has found. Hence, during nest-site selection the swarm
strikes a balance between time minimization and site quality
choice maximization.
1.2. Modeling approaches

The key experimental work in the area of honey bee nest-site
selection is in Seeley and Buhrman (1999), Camazine et al. (1999),

www.elsevier.com/locate/yjtbi
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Fig. 1. Illustration of the assessment process for consideration of a single site.

Table 1
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Seeley and Buhrman (2001), Seeley (2003), Seeley and Visscher
(2003), and Seeley and Visscher (2004). There have also been a
number of models published. First, the differential equation
models introduced in Britton et al. (2002) examine whether bees
need to make direct comparisons between the qualities of more
than one site in order to make a decision (they need not). A
discrete-time population matrix model introduced in Myerscough
(2003) studies the ability of a swarm to produce a unanimous
decision when dances reproduce and propagate according to a
Leslie matrix. A simulation model that was validated for a range of
experiments (those in Seeley and Buhrman, 1999; Camazine et al.,
1999; Seeley and Buhrman, 2001; Seeley, 2003; Seeley and
Visscher, 2003, 2004), and may be one of the most biologically
realistic of all existing models, is used in Passino and Seeley
(2006) to study the speed-accuracy trade-off in the choice
process. In Perdriau and Myerscough (2007) the authors introduce
a density-dependent Markov process model of honey bee nest-
site selection and study the effects of site quality, competition
between sites, and delays in site discovery. Next, the work in
Janson et al. (2007) introduces an individual-based model and
studies the swarm’s scouting behavior and the impact of distance
on choice. More recently, Marshall et al. (2009) compares models
of nest-site selection to models of decision-making in vertebrate
brains. Finally, we note that ant colonies performing nest-site
selection have some broad similarities to the bees’ nest-site
selection (e.g., a speed-accuracy trade-off), and corresponding
models and simulations have been developed (Mallon et al., 2001;
Pratt et al., 2002; Franks et al., 2003; Pratt, 2005; Pratt et al.,
2005).

The purpose of this paper is to develop a modeling approach
for the honey bee nest-site selection process which lends itself to
analytical methods. Our ordinary differential equation model still
captures the essential dynamics of the nest-site selection process
appearing in Britton et al. (2002) and the biologically realistic
model in Passino and Seeley (2006), but in a way that still renders
the model analytically tractable. Our model does not represent
additional features of the nest-site selection process not con-
sidered, for instance, in Passino and Seeley (2006) (e.g., the impact
of swarm size or distance of candidate nest-sites from the cluster).
Yet, our model permits us to connect equilibrium analysis to the
ability of a swarm to achieve quorum at a site in finite time. This
provides significant insights into the dynamics of nest-site
selection, the impact of site quality on quorum achievement,
and influences on the outcome of competition between a lower
quality site discovered first and a higher quality site discovered
second. As these issues have not been examined in the modeling
studies outlined above, we believe that our modeling approach
can provide new clues into the mystery surrounding the honey
bee nest-site selection process.

First, we introduce a pair of continuous-time compartment
models in Section 2. The main theoretical results are stated in
Section 3 and numerical results are presented in Sections 4 and 5.
In the concluding Discussion section we point out some ways in
which the models can be made more inclusive (biologically
realistic) and mention some open problems. Proofs for the
theoretical results appear in the Appendix.
Quantities associated with the assessment process.

Notation Meaning

R, O, E, A, D fraction of bees resting, observing, exploring, assessing,

and dancing

a, b, c, m, n rates at which bees cease resting, observing, exploring,

assessing, and dancing

pðDÞ; qðDÞ fraction of newly employed bees which become assessors

and explorers

v, w fraction of bees that retire and return to site after dancing
2. Description of models

Here we outline the basic structure of two models that we later
use to study the honey bee nest-site selection process. The first
model represents a swarm of bees deciding whether a site is viable
(when no other sites are under consideration), and the second
model characterizes a swarm selecting between two viable sites.
Since bees that are not scouts play no discernable role in selecting
a new home, we will make no distinction between bees and scouts

unless stated otherwise.
2.1. Assessment process for one site

The assessment process (see Fig. 1 and Table 1) models nest-site
selection dynamics after the one-time discovery of a single site by
one bee and comprises movement between five compartments:
resting (R), observation (O), exploration (E), assessment (A), and
dancing (D). We define bees in the first two compartments to be
unemployed and all others to be employed. Let the continuous state
variable XðtÞ represent the fraction of bees in compartment
XAfR;O; E;A;Dg at time tZ0. We remark that if bees exit a
compartment at rate a then 1=a represents the mean time spent
in that compartment.

Assumptions: We assume that resters become observers
ðR-OÞ at positive constant rate a, observers become employed
ðO-E;AÞ at positive constant rate b, explorers become observers
ðE-OÞ at positive constant rate c, site assessors become
dancers ðA-DÞ at positive constant rate m and dancers cease to
dance ðD-R;AÞ at positive constant rate n. Let pðDÞ ¼D=ðDþeÞ be
the fraction of newly employed bees which are successfully
recruited to assess the site ðO-AÞ when there are D bees dancing
for it, and let qðDÞ ¼ 1�pðDÞ represent the remaining fraction
ðO-EÞ. Here, the half-saturation constant e is assumed to be
positive. Also, a constant fraction 0ovr1 of bees that cease to
dance immediately retire ðD-RÞ, while the remaining fraction
w¼ 1�v return to the site to reassess it ðD-AÞ. All bees are
initially resters, observers, and explorers except for a single
assessor bee that has independently made a one-time discovery of



ARTICLE IN PRESS

Fig. 2. Illustration of the discrimination process for consideration of two sites.
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the site. These assumptions together imply that the governing
system of equations is ð _X ¼

def
dX=dtÞ

_R ¼�aRþvnD; Rð0Þ ¼ R0;

_O ¼ aR�bOþcE; Oð0Þ ¼O0;

_E ¼ qðDÞbO�cE; Eð0Þ ¼ E0;

_A ¼ pðDÞbO�mAþwnD; Að0Þ ¼ A0;

_D ¼mA�nD; Dð0Þ ¼ 0; ð2:1Þ

where R0þO0þE0þA0 ¼ 1 and 0oA051.
The influence of site quality: The description above does not

identify what the role of site quality is on the assessment process.
In nature, bees assess some sites to be of higher quality than
others. Consequently, they will dance longer for better sites and
return more often to them before retiring. We now indicate how
some parameters in the assessment process can depend on site
valuation (see Table 2). Suppose that every site can be assigned a
value Q Að0;1Þ representing its overall quality relative to other
sites, with Q-0 approaching an adverse site and Q-1
approaching a perfect site. We assume that site quality is
uniformly sensed by every bee that assesses it (i.e., all bees
judge the same site to have the same quality). Suppose that bees
spend time sMQ in the dancing compartment before they retire
or return to the site to reassess it. Here, the positive constant s
represents the time required for a dancing bee to complete one
waggle run and the positive constant M is the maximum number
of waggle runs performed by a bee dancing for a perfect site
ðQ ¼ 1Þ. It follows that the rate at which bees cease dancing is
nðQ Þ ¼ ðsMQ Þ�1. To represent the fact that bees dancing for better
sites are more likely to return to them before retiring, we assume
that vðQ Þ ¼ 1�Q and wðQ Þ ¼Q . Thus, dancing bees do not revisit
adverse sites ðQ-0Þ and always revisit perfect sites ðQ-1Þ. We
will purposely exclude the limiting values of Q ¼ 0 and 1 from our
analysis to ensure that nðQ Þ, vðQ Þ, and wðQ Þ are positive.

2.2. Discrimination between two sites

Let ðR3;O3; E3;A3;D3Þ represent the state of the assessment
process at time t340, and suppose that at this time a second site
is newly discovered. Then the assessment process gives way to a
two-site discrimination process whose corresponding equations are
(see Fig. 2)

_R ¼�aRþ/vknkDkS; Rðt3Þ ¼ R3;

_O ¼ aR�bOþcE; Oðt3Þ ¼O3;

_E ¼ qðD1þD2ÞbO�cE; Eðt3Þ ¼ E3�A0;

_A1 ¼ m1ðD1;D2ÞpðD1þD2ÞbO�mA1þw1n1D1; A1ðt
3Þ ¼ A3;

_D1 ¼mA1�n1D1; D1ðt
3Þ ¼D3;
Table 2
Parameters associated with the influence of site quality.

Notation Meaning

Q site quality

s time spent on each waggle run

M number of waggle runs performed by bee

dancing for perfect site

nðQ Þ rate at which bees cease dancing

vðQ Þ, wðQ Þ fraction of bees that retire and return to site

after dancing
_A2 ¼ m2ðD1;D2ÞpðD1þD2ÞbO�mA2þw2n2D2; A2ðt
3Þ ¼ A0;

_D2 ¼mA2�n2D2; D2ðt
3Þ ¼ 0:

Here, mkðD1;D2Þ ¼Dk=ðD1þD2Þ is the proportional fraction of
newly recruited bees reporting to site k¼ 1;2, the quantity
/vknkDkS¼ v1n1D1þv2n2D2 is the combined rate at which bees
dancing for both sites retire, and nk ¼ nðQkÞ, vk ¼ vðQkÞ, and
wk ¼wðQkÞ depend on site quality Qk as described earlier. We
remark that mkðD1;D2ÞpðD1þD2Þ ¼Dk=ðD1þD2þeÞ.
3. Statement of main results

Here we present our main analytical results. Proofs of the
theorems are supplied in the Appendix. Short and informal proofs
of their corollaries (what we call results) are given in the main
text.

3.1. Assessment model

Our first main result concerns the solution of (2.1).

Theorem 1 (Existence of solution). A solution of (2.1) exists for all

time. This solution is unique, nonnegative, and its components always

sum to one.

We say that an equilibrium ðR�;O�; E�;A�;D�Þ of (2.1) is feasible if
it is nonnegative and R�þO�þE�þA�þD� ¼ 1. Define an equili-
brium to be disinterested (DE) if A� ¼ 0 and interested (IE) if A�40.
Observe from the final equation of (2.1) that D� ¼ 0 in a DE and
D�40 in an IE. For a fixed constant quorum threshold AqA ð0;1Þ,
define an IE to be a partially interested equilibrium (PIE) if A�oAq

and a fully interested equilibrium (FIE) if A�ZAq. It is clear from
(2.1) that ð0;O; E;0;0Þ is a DE, where we define

O ¼
c

bþc
and E ¼

b

bþc
: ð3:1Þ

Next, observe from Fig. 1 that pðDÞbO represents the rate at which
observer bees are recruited to the site and vnD represents the rate
at which dancing bees retire. In view of this remark, define the
basic recruitment number to be the number of bees recruited by a
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single dancing bee in an otherwise disinterested equilibrium
before it retires:

R0 ¼
recruitment rate

resting rate

� �
DE

¼ lim
D-0

pðDÞbO

vnD
¼

p0ð0ÞbO

nv
¼

bO

env
:

Then

R0 ¼
1

env

1

b
þ

1

c

� ��1

: ð3:2Þ

It is clear that R0 is a harmonic function of the rates at which
observing bees become employed (b) and explorer bees return to
the swarm cluster (c) and a monotone decreasing function of the
recruitment constant (e), the rate at which bees cease dancing (n),
and the fraction of them which retire (v). The basic recruitment
number R0 is analogous to the basic reproduction number of a
disease model, in which resting bees, observing bees, and
exploring bees are susceptible (healthy), assessing bees are
infected but not infectious (latent), and dancing bees are both
infected and infectious (N. Britton, personal communication).
Define the absolute recruitment number to be the maximum
possible recruitment rate for a single dancing bee (i.e., when all
other bees are observers):

B0 ¼
recruitment rate

resting rate

� �
O ¼ 1

¼ lim
D-0

pðDÞb

vnD
¼

p0ð0Þb

nv
¼

b

env
:

Since Oo1, it follows that R0oB0. Indeed, we would expect such
an inequality to prevail because the recruitment rate is an
increasing function of the fraction of bees that observe. The next
result examines the feasibility and stability of the DE.

Theorem 2 (Disinterested equilibrium). A DE is always feasible and

unique, and it has the form ð0;O; E;0;0Þ. If R0o1 then the DE is

locally asymptotically stable, but if R041 then it is unstable.
Furthermore, if B0o1 then the DE is globally asymptotically stable.

Interestingly, the stability of the DE depends on neither the rate
at which resting bees begin to observe (a) nor the rate at which
assessing bees begin to dance (m). The next result concerns the
situation in which the DE is unstable.

Theorem 3 (Interested equilibrium). An IE is feasible if and only if

R041. When feasible, it is unique and it has the form

R� ¼
nv

a
D�; O� ¼

nv

b
ðD�þeÞ; E� ¼

env

c
; A� ¼

n

m
D�; ð3:3Þ

and

D� ¼

1

nv
�e

1

b
þ

1

c

� �
1

m
þ

1

n

� �
1

v
þ

1

a
þ

1

b

: ð3:4Þ

If, in addition, aZc or bþcZmaxfm;ng then the IE is locally

asymptotically stable.

First, it can be seen from (3.1), (3.2) with R041, and (3.3) that
an IE always possesses fewer explorers ðE�oEÞ than a DE. Also,
these equations and (3.4) together imply that an IE can possess
either fewer observers ðO�oOÞ or more observers ðO�4OÞ than a
DE depending on the relative values of 1=nv and 1=c�1=a�1=mv.
Second, it is not known in general whether the IE is stable when
aocomaxfm;ng�b. However, the inequality aZc will always be
satisfied in biologically realistic problems because it is reasonable
to assume that on average scouts should spend far less time
resting ð1=aÞ than exploring ð1=cÞ. Finally, since

A� ¼

1

mv
�e

1

b
þ

1

c

� �
n

m
1

m
þ

1

n

� �
1

v
þ

1

a
þ

1

b

ð3:5Þ
it is straightforward to determine whether an IE constitutes a PIE
ðA�oAqÞ or an FIE ðA�ZAqÞ for specific parameter values.

3.2. Influence of site quality

Recalling that nðQ Þ ¼ ðsMQ Þ�1 and vðQ Þ ¼ 1�Q , we observe
from (3.2) that the basic recruitment number R0 strictly increases
from 0 to1 as site quality (Q) increases from 0 to 1. It follows that
there exists a critical site quality threshold Q� below which
R0o1 and above which R041. This Q� satisfies R0ðQ

�Þ ¼ 1,
i.e.,

sMQ�

1�Q�
¼ e

1

b
þ

1

c

� �
¼)Q� ¼

e
1

b
þ

1

c

� �

e
1

b
þ

1

c

� �
þsM

: ð3:6Þ

It is clear that Q�Að0;1Þ and that Q� is a monotone increasing
function of e and a monotone decreasing function of b, c, s, and M.
As with the basic recruitment number, Q� depends on neither a

nor m. To summarize,

Result 1 (Influence of site quality on R0). There exists some
Q�Að0;1Þ such that R0o1 for Q oQ� and R041 for Q 4Q�.

The quantity Q� in Result 1 is a threshold below which a site
cannot attract any interest at equilibrium ðA� ¼ 0Þ and above
which it can ðA�40Þ. We now consider the Q-dependence of the
equilibrium state variables. It can be seen by inspection or
differentiation that E� in (3.3) and D� in (3.4) are monotone
functions of Q, and that R�, O�, and A� in (3.3) have more complex
Q-dependencies. To indicate that two quantities A and B share the
same sign for all parameter values, we will write A !B. The
influence of site quality on the IE is as follows.

Result 2 (Influence of site quality on IE). Let Q 4Q�, so that the IE
is feasible. Then
(a)
 dE�

dQ
o0 and

dD�

dQ
40;

dR�
 !e

1
þ

1
� �

ð1�Q Þ 2sMþ
1
�

1
�

1
� �

Qþ
1
þ

1
þ

1
� �
(b)

dQ b c m a b m a b

� sMþ
1

m

� �
sMQ2;

dO�
 !e

1
þ

1
� �

2sMþ
1
�

1
�

1
� �

Qþ
1
þ

1
þ

1
� �

ð1�Q Þ

�

(c)
dQ b c m a b m a b

� sM�
1

a
�

1

b

� �
Qþ

1

m
þ

1

a
þ

1

b

� �2
#
� sMþ

1

m

� �
sMQ2;

dA�
 !e

1
þ

1
� �

sMð2�Q ÞQþ
1
þ

1
� �

ð1�Q Þ2þ
1

� �

(d)
dQ b c a b m

þ
1

a
þ

1

b
�sM

� �
sMQ 2:
Two special cases of interest arise for the IE: one when the
swarm is considering a site which is minimally interesting
ðQ-Q�Þ and one when the site is close to perfect ðQ-1Þ.

Result 3 (IE for minimally interesting site). In the limit as Q-Q�,
(a)
 ðR
�;O�;E�;A�;D�Þ ¼ ð0;O; E;0;0Þ;

dR�
40;

dE�
o0;

dA�
40 and

dD�
40;
(b)
dQ dQ dQ dQ
dO�
 !

1
�

1
�

1
� �

sM�e
1
þ

1
� �

sMþ
1

� �
:
(c)
dQ c a m b c m
Thus, the IE approaches the DE as Q-Q� and, depending on
parameter values, the equilibrium fraction of observers can begin
to either increase or decrease as site quality increases beyond Q�.
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Result 4 (IE for perfect site). In the limit as Q-1,
(a)
 ðR�;O�; E�;A�;D�Þ ¼ 0;0;0;
1

1þmsM
;

msM

1þmsM

� �
;

dR�
o0;

dO�
o0;

dE�
o0 and

dD�
40;
(b)
dQ dQ dQ dQ
dA�
 !e

1
þ

1
� �

sMþ
1

� �
þ

1
þ

1
�sM

� �
sM:
(c)
dQ b c m a b
As the site approaches perfection, the IE approaches an
equilibrium in which all bees are either assessing the site or
dancing for it. Depending on parameter values, the equilibrium
fraction of assessors can begin to increase or decrease as site
quality decreases below one. It also follows from part (a) of Result
4 that an IE for a near perfect site ðQ-1Þ is an FIE if
Aqr ð1þmsMÞ�1 and it is a PIE otherwise. We now combine this
observation with the properties of A� in Results 2–4.

Result 5 (Distinction between PIE and FIE). Let Q 4Q�, so that the
IE is feasible, and suppose that sMo 1

a þ
1
b. If Aqrð1þmsMÞ�1

then there exists some Q��A ðQ�;1� such that the IE is a PIE for
Q oQ�� and an FIE for Q ZQ��. However, if Aq4ð1þmsMÞ�1 then
the IE is always a PIE.

The quantity Q�� in Result 5 is a threshold below which a site
cannot attract a quorum at equilibrium ðA�oAqÞ and above which
it can ðA�ZAqÞ. An explicit expression for Q�� can be obtained by
solving the equation A�ðQ��Þ ¼ Aq, where A� is as in (3.5). That is,
we wish to solve

1

mv
�e

1

b
þ

1

c

� �
n

m
¼

1

m
þ

1

n

� �
1

v
þ

1

a
þ

1

b

� �
Aq;

where n¼ nðQ��Þ and v¼ vðQ��Þ. We multiply both sides by v and
then substitute n¼ ðsMQ��Þ�1 and v¼ 1�Q�� to obtain

1

m
�e

1

b
þ

1

c

� �
1�Q��

msMQ��
¼

1

m
þ

1

n
þ

1

a
þ

1

b

� �
ð1�Q��Þ

� �
Aq:

Rearrangement produces a quadratic equation o2ðQ
��Þ

2
þ

o1Q��þo0 ¼ 0 with coefficients

o2 ¼ Aq
1

a
þ

1

b

� �
sM;

o1 ¼
1

m
sMþe

1

b
þ

1

c

� �� �
�Aq

1

a
þ

1

b
þ

1

m
þ

1

n

� �
sM;

o0 ¼�
e

m

1

b
þ

1

c

� �
:

Since the discriminant D¼o2
1�4o2o0 is always positive, there

are two real roots,

Q��7 ¼
�o17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

1�4o2o0

q
2o2

:

Furthermore, since D4o2
1, it follows that there is exactly one

positive root which we call Q��. Whether Q��r1 depends on
parameter values in a complicated manner.

3.3. Discrimination model

In the two-site discrimination model, there are four kinds of
equilibrium states: a disinterested equilibrium (DE) in which all
bees are either observing ðO� ¼ OÞ or exploring ðE� ¼ EÞ, two semi-
interested equilibria in which bees show interest for only one site,
and co-interested equilibrium states in which bees show interest
for both sites.
We treat here the stability of the DE only. As in the assessment
process, each site ðk¼ 1;2Þ has a basic recruitment number when
it is in isolation ðRk

0Þ. It is also possible to define a system-wide
basic recruitment number ðR�0Þ as a measure of the DE’s
sensitivity to dancing for either site. Following van den Driessche
and Watmough (2002), we write the discrimination process as
_x ¼ ðF�VÞðxÞ, where

x¼

R

O

A1

D1

A2

D2

0
BBBBBBBBB@

1
CCCCCCCCCA
; F ðxÞ ¼

0

0

m1ðD1;D2ÞpðD1þD2ÞbO

0

m2ðD1;D2ÞpðD1þD2ÞbO

0

0
BBBBBBBB@

1
CCCCCCCCA

and

VðxÞ ¼

aR�v1n1D1�v2n2D2

�aRþbO�cE

mA1�w1n1D1

�mA1þn1D1

mA2�w2n2D2

�mA2þn2D2

0
BBBBBBBBB@

1
CCCCCCCCCA
:

We do not include an equation for E on account of the relation
RþOþEþA1þD1þA2þD2 ¼ 1. The linearizations of F and V
evaluated at the DE, respectively, are block-triangular matrices

ðDF Þ� ¼
0 0

0 F

� �
and ðDVÞ� ¼

A B

0 V

� �
;

where

A¼
a 0

�aþc bþc

 !
; B¼

0 �v1n1 0 �v2n2

c c c c

� �
:

Since the eigenvalues of A are positive, it follows that the DE will
be locally stable if and only if the eigenvalues of the block-
diagonal matrix F�V have negative real part. According to van
den Driessche and Watmough (2002), this condition is equivalent
to the eigenvalues of FV�1 lying within the unit circle. A
straightforward calculation reveals that rðFV�1

Þ ¼maxfR1
0;R2

0g.
The following result summarizes these remarks.

Result 6 (Disinterested equilibrium). Let R�0 ¼maxfR1
0;R2

0g. If
R�0o1 then the DE is locally asymptotically stable, but if R�041
then it is unstable.

4. Numerical study of the assessment model

In this section we explore numerically the assessment process
and consider the role of site quality on quorum time.

4.1. Preliminaries

We say that a site is viable at equilibrium if Q ZQ�� because
then A�ZAq. But in nature, bees will only select a site capable of
attracting a quorum in finite time (Seeley and Visscher, 2004). In
view of this observation, define a site to be viable in finite time (or
simply viable) if it is able to attract a quorum in finite time,
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i.e., AðtÞ ¼ Aq for some t40. When a site is viable, define its
quorum time to be tq ¼minftZ0 : AðtÞ ¼ Aqg. If a site is not viable,
then its quorum time is undefined. Since bees in nature must also
balance the accuracy of their search with speed (Passino and
Seeley, 2006), we define a site to be viable in t hours if tq is defined
and tqrt. Finally, define the site viability threshold to be
Q 3 ¼ inffQ A ½0;1� : a site of quality Q is viableg and the related
quantity
Q 3ðtÞ ¼ inffQ A ½0;1� : a site of quality Q is viable in t hoursg.

Since it is not known in general whether AðtÞ is always
monotone, we recognize that a site may in principle be viable (in t
hours) even if it is not viable at equilibrium ðA�oAqÞ. Further-
more, a site viable at equilibrium ðA�ZAqÞ may not be viable in t
hours. The latter situation could occur, for example, if tq exists but
tq4t.

In the numerics below, we allow site quality Q to vary against a
background of otherwise fixed parameter values (see Table 3). We
also assume that the assessment process begins ‘‘one bee from the
DE’’, that is, ðR;O; E;A;DÞð0Þ ¼ ð0;O; E�A0;A0;0Þ with 0oA051.
We now argue that it is natural to implement this starting
condition. A swarm that has not yet discovered a site will consist
entirely of resters, observers, and explorers, say at time so0. It is
not hard to see from Fig. 1 that the DE is globally asymptotically
stable with respect to all such initial conditions, i.e., those
satisfying AðsÞ ¼DðsÞ ¼ 0. Consequently, moments before the first
site is discovered, the swarm will be close to the disinterested
equilibrium, and discovery of that site amounts to moving one
explorer bee ðA0Þ into the assessment compartment with the
distribution of the other bees being unchanged.
4.2. Behavior of the model

Illustrated in Fig. 3 are four simulations of the assessment
process for different choices of site quality Q. It can be seen that
when Q rQ� (upper left panel) then an IE does not exist and the
system quickly settles down to the DE. When Q A ðQ�;Q��Þ (upper
right panel) then the system approaches a PIE ð0oA�oAqÞ. When
Q ¼Q�� (lower left panel) than the system is attracted to a
minimal FIE ðA� ¼ AqÞ and if Q 4Q�� then the system approaches
an FIE with A�4Aq. Fig. 4 illustrates the same simulations but
portrays more clearly the behavior of AðtÞ. In particular, we see
Table 3
Parameter values used in all simulations. Composite parameters (those defined in term

Parameter Value Units

a 0.100 min-1

b 0.125 min-1

c 0.033 min-1

m 0.050 min-1

s 0.1 min

M 150 –

e 0.323 –

Q (0, 1) –

n 0:066=Q min-1

v 1-Q –

w Q –

A0 0.005 –

Aq 0.1 –

O 0.211 –

E 0.789 –

Q� 0.450 –

Q�� 0.500 –

t3 [0, 3000] min
that quorum time is essentially infinite when Q ¼Q�� (lower left
panel) and finite when Q 4Q�� (lower right panel).

4.3. Quorum time versus site quality

Fig. 5 illustrates the monotone relationship between quorum time
and site quality. Observe that the bifurcation curve is a decreasing
function of Q whose slope is increasing and that the critical site
quality threshold Q�� at which a site can attract a quorum at
equilibrium provides an excellent approximation to Q 3ð50Þ, the
Q-value at which the bifurcation curve intersects the horizontal line
tq ¼ 50. We conjecture that in general Q�� is equal to the site viability
threshold Q 3 (i.e., the vertical asymptote of the graph).
5. Numerical study of the two-site discrimination model

We now turn to the two-site discrimination process.

5.1. Preliminaries

When a swarm considers two sites simultaneously its atten-
tion is necessarily divided between them and thus the time to
quorum for either site is slowed. Obviously, if the two sites are
found at the same time, then the higher quality site will always be
chosen provided that there is sufficient time for it to attract a
quorum. However, if the higher quality site (say Q2) is found after

the site with lower quality ðQ1Þ, then the difference in discovery
times ðt3Þ plays a crucial role in determining which site is chosen.
Thus, we are interested in the outcome of ‘‘competition’’ between
two sites that differ in their discovery times ðt3Þ, their quality
ðDQ ¼Q2�Q1Þ, or both.

The possible outcomes of the discrimination process are as
follows: (i) no-decision or failure (quorum achieved at neither
site), (ii) site 1 chosen (quorum achieved at site 1 but not site 2 or

at site 1 before site 2), (iii) site 2 chosen (quorum achieved at site 2
but not site 1 or at site 2 before site 1), and (iv) split-decision

(quorum achieved at both sites simultaneously).
In the simulations which follow, parameter values are always

as in Table 3 and the initial condition is always the result of ‘‘one
bee from the DE’’ for the associated assessment process. That is,
ðR;O; E;A1;D1;A2;D2Þðt

3Þ ¼ ðR3;O3; E3�A0;A
3;D3;A0;0Þ where ðR3;O3;
s of other parameters) are also listed.

Rationale

10 min resting

8 min observing

30 min exploring

20 min assessing

consecutive waggle runs start 6 s apart

150 waggle runs for a perfect site Seeley and Buhrman (1999)

chosen so that Q� ¼ 0:450

varied between simulations

composite parameter

composite parameter

composite parameter

200 scout bees

20 assessing bees produce quorum Seeley and Visscher (2003, 2004)

composite parameter

composite parameter

composite parameter ðA� ¼ 0Þ

composite parameter ðA� ¼ AqÞ

varied between simulations
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Fig. 3. The assessment process for consideration of one site. In each panel, the quorum threshold is set to Aq ¼ 0:1 (horizontal dotted line), and the critical site thresholds

are Q� ¼ 0:450 ðA� ¼ 0Þ and Q�� ¼ 0:500 ðA� ¼ AqÞ. In the upper left panel Q ¼Q� (an IE does not exist), in the upper right panel Q AðQ�;Q��Þ (a PIE exists with A� ¼ 0:062), in

the lower left panel Q ¼Q�� (an FIE exists with A� ¼ Aq), and in the lower right panel Q 4Q�� (an FIE exists with A� ¼ 0:182). Parameter values are given in Table 3 and the

initial conditions are ‘‘one bee from the DE’’.
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E3;A3;D3Þ is the state of the assessment process at time t3 after
starting ‘‘one bee from the DE’’.

5.2. Behavior of the model

Figs. 6 and 7 illustrate the discrimination process in which a
lower quality site ðQ ¼ 0:6Þ is discovered before a higher quality
site ðQ ¼ 0:7Þ. According to Fig. 5, the lower quality site in
isolation can attract a quorum in about 6.2 h. However, it can be
seen from both figures that the lower quality site’s ability to
attract a quorum can be considerably slowed by the presence of
the higher quality site and that the difference in discovery times
strongly influences the identity of the chosen site. In Fig. 6 the
second site is discovered 2 h after the first site and the higher
quality site attracts a quorum first (6.658 h). In Fig. 7 the second
site is discovered 35 min later, enabling the lower quality site to
attract a quorum first (7.168 h).

5.3. Fixed difference in discovery times

The outcome of the discrimination process is illustrated in
Fig. 8 for two sites discovered simultaneously ðt3 ¼ 0Þ and at
different times ðt3 ¼ 1;2;3Þ. In each plot, neither site is viable in
the lower left quadrant ðQ1;Q2oQ 3Þ, only site 1 is viable in the
lower right quadrant (Q14Q 3 and Q2oQ 3), only site 2 is viable in
the upper left quadrant (Q1oQ 3 and Q24Q 3), and both sites are
viable in the upper right quadrant ðQ1;Q24Q 3Þ.

We consider first the case in which both sites are discovered
simultaneously ðt3 ¼ 0Þ. If neither site is viable, then neither will be
selected. If only one site is viable, then it will always be the one
selected. Finally, when both sites are viable, then the higher quality
site will always be selected and a split-decision line is clearly visible.

Next, suppose that the difference in site discovery times is
t3 ¼ 1 h. This time, when both sites are viable, the split-decision
curve bends sharply upward because site 1 has an advantage in
time over site 2. For larger differences in discovery times (t3 ¼ 2
and 3 h), the split-decision curve bends upward more steeply.

In the event that a site must be chosen within t hours (after
which the discrimination process terminates regardless of the
outcome), then distraction between sites can produce a band of
no-decision around the split-decision curve. The width of this no-
decision band increases as the urgency of the discrimination
process increases, where urgency is negatively related to the
quorum cut-off time t. For a 50 h time limit, the resulting band is
too narrow to be seen.
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Fig. 4. The same panels as in Fig. 3 but with the vertical axis scaled differently. Quorum is achieved in the lower right panel at tq ¼ 9:450 h.
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5.4. Fixed difference in site quality

Next, we consider the influence of site quality difference on the
outcome of the discrimination process.

Consider two sites with a fixed difference in site quality, say
DQ ¼ 0:2 as in Fig. 9 (lower left panel). In the leftmost region (to
the left of the leftmost vertical line) neither site is viable and so
neither site is chosen. In the middle region (between the vertical
lines) only site 2 is viable and it will always be the one to attract a
quorum. However, if the discrimination process is urgent, then
site 2 is viable within the resulting time limit only if it is
discovered sufficiently fast. Here, site 2 can attract a quorum in
50 h below the dotted curve but not above it. The dotted curve
rises as it extends to the rightmost vertical line, which is to be
expected because higher quality sites can attract quorums faster
(and are more likely to do so in 50 h) than lower quality sites. In
the rightmost region (to the right of the rightmost vertical line)
both sites are viable. Here, site 2 attracts a quorum first below the
split-decision curve and site 1 attracts a quorum first above it.
Larger differences in site quality ðDQ Þ increase (1) the width of the
middle region, (2) the asymptotic value of t3 in the middle region
and (3) the area in the rightmost region within which site 2 can be
chosen.

Again, a band of no-decision exists around the split-decision
curve when the process is urgent. However, this band is too
narrow to be seen for a 50 h time limit.
6. Discussion

We now make some concluding remarks concerning the one-
site assessment process and two-site discrimination process,
including the statement of some open problems. We also mention
some of the many ways in which the two models can be made
more realistic from a biological standpoint.
6.1. One-site assessment process

Our numerical simulations of the assessment model suggest
that when the DE is locally stable ðR0o1Þ, then it is always
globally attracting. Since our Theorem 2 establishes the latter
result only when B0o1, it remains to extend the result to a global
one when R0o1.

Although the force of recruitment pðDÞ ¼D=ðDþeÞwas selected
to have a saturating form, no hard data exists to support this
specific form, or indeed any form. To analyze the sensitivity of the
model to the choice of the recruitment function, we suggest that
its results be compared to one implementing frequency-depen-
dence, say pðDÞ ¼D=ðDþOþRÞ. We suspect that for the latter
function, the stability results obtained for the DE may become
global, but at a significant cost — in that the analysis of the IE will
be much more difficult.
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It is likely that the IE is stable whenever it is feasible ðR041Þ.
However, we only established the local stability of the IE for cases
in which aZc or bþcZmaxfm;ng. The former condition almost
certainly holds for biologically realistic situations because bees
spend less time resting ð1=aÞ than exploring ð1=cÞ.1 However, the
second inequality presents no ready reason for it to hold. Indeed,
we allow it to hold only so that x0 is nonnegative in the proof of
Theorem 3. Although an IE can never be globally asymptotically
stable, it can in principle attract all initial conditions different
from the DE. Our numerical simulations suggest that this is
indeed the case whenever the IE is feasible, yet a proof of this
result has remained elusive.
6.2. Two-site discrimination process

The discrimination model characterizes a swarm whose
attention is divided between two competing sites. Although the
linear stability of the disinterested equilibrium is known from
Result 6, it is not known what parameter conditions would lead to
the semi- and co-equilibrium states being stable. Furthermore,
when they are stable, it would be desirable to know how large
their regions of attractions are.

As mentioned earlier, a band of indecision exists around the
split-decision curve, and this band increases in width as the
urgency of the decision process increases. It remains to quantify
this relationship in some rigorous manner, i.e., to determine the
width of the band as a function of the quorum cut-off time t.
Although establishing such a relationship analytically may be
difficult, perhaps it can be done so numerically.
1 Experiments have not been conducted to show that this is the case;

however, this conclusion is made based on personal observations of KMP for three

swarms conducting nest-site selection.
As in other nest-site selection models (Britton et al., 2002;
Passino and Seeley, 2006), bees recruited to one site cannot be
recruited to another until they have completed their assessment
and dancing for the first site. Consequently, when bees dance for a
small number of observers, then very few bees will ultimately be
recruited. However, unlike other models (e.g., Passino and Seeley,
2006), our discrimination process is not subject to the effects of a
finite pool size (in which no observer may be present at times)
because no state variable can ever become zero in finite time.
Nevertheless, the state variable representing observers can
become so small that it represents less than one (discrete) bee,
in which case it has effectively become zero.

6.3. Biological realism

In order to obtain a mathematically tractable model, it was
necessary to ignore a number of features of the nest-site selection
process and to produce modeling approximations for others. First,
in nature the process is driven by discrete bees that make
individual decisions in an asynchronous fashion (e.g., bees arrive
and depart at the cluster and nest-sites at random times) (Seeley
and Buhrman, 1999; Camazine et al., 1999; Seeley and Buhrman,
2001; Seeley, 2003; Seeley and Visscher, 2003, 2004). Here,
however, there is no randomness in the occurrence of arrival/
departure events over time, and the number of bees is
represented by a continuous variable (as in, e.g., Britton et al.,
2002). Individual decisions are represented by the functional
relationships developed for the differential equations (unlike the
model in Passino and Seeley, 2006). Our consideration of a pair of
related models (assessment and discrimination) is a consequence
of the fact that bees in nature discover sites asynchronously, and
so newly discovered sites must compete for the bees’ attention
with sites already under consideration. This requires careful
attention be paid to the initial condition of the assessment model,
and allowing its state at some future time to form the initial
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condition of the discrimination model (save for the location of one
explorer bee). The nest-site selection process typically occurs on
the time scale of about one to three days (Seeley and Buhrman,
1999; Camazine et al., 1999; Seeley and Buhrman, 2001; Seeley,
2003; Seeley and Visscher, 2003, 2004), yet we ignore changes
associated with deaths of scouts that occurs at random times. The
model in Passino and Seeley (2006) included the effects of deaths,
which is mainly a slow ‘‘leakage’’ of bees out of the process that
has no effect on discrimination as it seems that deaths occur
independent of the quality of a nest-site.

Next, dancing induces a distributed nonlinear feedback where-
by observer bees become recruited to different sites (Passino and
Seeley, 2006). Since waggle runs are performed in pairs (or figure-

eights) followed by a frantic run to another part of the cluster
(Seeley and Buhrman, 1999; Camazine et al., 1999; Seeley and
Buhrman, 2001; Seeley, 2003; Seeley and Visscher, 2003, 2004),
the parameter s must account for both of these times. The
number of dances in a ‘‘bout,’’ which represents the number of
times that a bee will dance for a potential nest-site before resting,
is really an integer determined by site quality. Also, the number of
waggle runs performed in each dance decreases in a linear
manner independent of site quality (Seeley, 2003). Here, we
model recruitment via a process that has the number of dances
decrease exponentially. A full model of the dance-recruitment
process (e.g., as in Passino and Seeley, 2006) results in an
explosion in the number of states (states are needed to represent
the first, second, etc. times of visits to each candidate nest-site)
and a resulting loss of analytical tractability.

In nature, the distance of a site from the swarm cluster may
affect both its discovery time and quorum time. For instance, the
decision process may favor a site of reasonably good quality which
is very close, to a better site which is much farther away (there are,
however, no existing experimental studies on the effect of the
distance to candidate nest-sites on the dynamics of the nest-site
selection process). Currently, the discrimination process accounts
for site distance only through the difference in discovery times,
and does not account for any additional time required by recruits
in visiting sites that are farther away. No other models cited in the
Introduction consider explicitly the effects of distance either.

Finally, since the assessment model is deterministic, every bee
must necessarily sense the same value of Q for a fixed site (as in
Britton et al., 2002). The model can be made more realistic by
allowing bees to sample site quality from a distribution with fixed
mean and variance (as in Passino and Seeley, 2006). In such a
stochastic model, it would be interesting to see how the mean and
variance of site quality influence a swarm’s decision to select a
site in finite time—something not yet studied in the modeling and
analysis literature.

In a future work, we hope to use our model to address related
and important (yet unsolved) problems in the area of honey bee
nest-site selection, including: how well do colonies deal with
asynchronous discovery, how might they quantitatively tune their
behavior to adjust the speed/accuracy tradeoff, and how might
they adjust their behavior to avoid deadlock when no nest-site is
particularly good.
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Appendix A. Proofs of theorems

A.1. Proof of theorem 1—existence of solution

First, we observe from (2.1) that dðRþOþEþAþDÞ=dt ¼ 0, and
since ðRþOþEþAþDÞð0Þ ¼ 1, we conclude that ðRþOþEþ

AþDÞðtÞ ¼ 1 for as long as the solution exists.
Next, we show that there exists some T40 such that XðtÞ40

for XAfR;O; E;A;Dg and 0otoT . To begin, recall that Xð0ÞZ0 for
XAfR;O; Eg, Að0Þ40, Dð0Þ ¼ 0, and D0ð0Þ ¼mAð0Þ�nDð0Þ ¼
mAð0Þ40. Thus, there exists e140 such that AðtÞ40 and
DðtÞ40 for 0otoe1. If Rð0Þ40, then it is clear that there exists
e2oe1 such that RðtÞ40 for 0otoe2. On the other hand, if
Rð0Þ ¼ 0, then R0ð0Þ ¼ �aRð0ÞþvnDð0Þ ¼ 0 and R00ð0Þ ¼�aR0ð0Þþ
vnD0ð0Þ40. Again, there exists e2oe1 such that RðtÞ40 for
0otoe2. Next, if Oð0Þ40, then obviously there exists e3oe2

such that OðtÞ40 for 0otoe3. However, if Oð0Þ ¼ 0, then
O0ð0Þ ¼ aRð0Þ�bOð0ÞþcEð0Þ ¼ aRð0ÞþcEð0ÞZ0. Since Rð0ÞþEð0Þþ
Að0Þ ¼ 1 and Að0Þ51, it must be that either Rð0Þ40 or Eð0Þ40.
In either case, O0ð0Þ40 and there exists e3oe2 such that OðtÞ40
for 0otoe3. Finally, if Eð0Þ40, then we may find e4oe3 such
that EðtÞ40 for 0otoe4. But, if Eð0Þ ¼ 0, then E0ð0Þ ¼
qðDð0ÞÞbOð0Þ�cEð0Þ ¼ bOð0ÞZ0. If E0ð0Þ40, then there exists
e4oe3 such that EðtÞ40 for 0otoe4. Suppose now that
E0ð0Þ ¼ 0. Then Oð0Þ ¼ 0 and as argued above O0ð0Þ40. Moreover,
E00ð0Þ ¼ q0ðDð0ÞÞD0ð0ÞbOð0ÞþqðDð0ÞÞbO0ð0Þ�cE0ð0Þ ¼ bO0ð0Þ40. Again,
there exists e4oe3 such that EðtÞ40 for 0otoe4. We conclude
that XðtÞ40 for XAfR;O; E;A;Dg and 0otoT , where T is taken to
be e4.

Now, we show that 0rXðtÞr1 for XAfR;O; E;A;Dg and tZ0,
with equality possible only when t¼ 0. We may assume that e1,
e2, e3, and e4 are chosen to be maximal above, and therefore that T

is also maximal. Since XðtÞ40 for XAfR;O; E;A;Dg and 0otoT

and ðRþOþEþAþDÞðtÞ ¼ 1 for 0otoT, it must be that XðtÞo1
for XAfR;O; E;A;Dg and 0otoT . Let XAfR;O;E;A;Dg and
a¼maxfa;b; c;m;ng. Since X0ðtÞ4�aX for 0otoT , it must be
that 0oXðTÞr1. Since this inequality holds for every X, it cannot
be that XðTÞ ¼ 1. That is, 0oXðTÞo1. Since X is bounded, the
maximality of T implies that T ¼1. Thus, 0oXðtÞo1 for t40.
Since 0rXð0Þr1, we conclude that 0rXðtÞr1 for tZ0, with
equality possible only when t¼ 0.

It remains only to establish uniqueness of the solution. Since
the five state variables always sum to one, we may eliminate the
equation for one variable (say E) to obtain the reduced
inhomogeneous system:

d

dt

R

O

A

D

0
BBB@

1
CCCA¼

�a 0 0 nv

a�c �b�c �c �c

0 0 �m nw

0 0 m �n

0
BBB@

1
CCCA

R

O

A

D

0
BBB@

1
CCCAþ

0

c

pðDÞbO

0

0
BBB@

1
CCCA:

ðA:1Þ

Let B be the square matrix in the equation above, x¼ ðR;O;A;DÞt ,
and hðxÞ ¼ ð0; c;pðDÞbO;0Þt . It suffices to show that FðxÞ ¼ BxþhðxÞ

is bounded and Lipschitz on O¼ fxAR4 : xZ0 and JxJ1r1g,
where JxJ1 ¼ RþOþAþD. The boundedness of F on O is
immediate. To distinguish between the components of x and y,
let us write x¼ ðRx;Ox;Ax;DxÞ

t and y¼ ðRy;Oy;Ay;DyÞ
t . In the

Euclidean norm, JFðxÞ�FðyÞJrJBðx�yÞJþJhðxÞ�hðyÞJr
JBJJx�yJþbjpðDxÞOx�pðDyÞOyj. It follows that JFðxÞ�FðyÞJr
JBJJx�yJþ bpðDxÞjOx�OyjþbjpðDxÞ�pðDyÞjOy. Since pðDÞ ¼D=ðDþ

eÞ and Oy are upper bounded by unity on O and the former has
Lipschitz constant 1=e, we conclude that JFðxÞ�FðyÞJrJBJJx�yJþ

bjOx�Oyjþ ðb=eÞjDx�Dyj. Thus, JFðxÞ�FðyÞJr ½JBJþbþðb=eÞ�Jx�yJ

and F is Lipschitz on O. This completes the proof. &
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A.2. Proof of theorem 2—the disinterested equilibrium

Since pð0Þ ¼ 0 and qð0Þ ¼ 1, it is straightforward to verify that
ð0;O; E;0;0Þ is always a feasible DE and that it is unique. To
determine its local stability, it is helpful to write system (2.1) as
the reduced system (A.1) in the proof of Theorem 1. Linearizing
around the DE results in the Jacobian matrix

Here, we used the fact that pð0Þ ¼ 0 and p0ð0Þ ¼ 1=e. A simple
calculation shows that the upper block-triangular matrix J� has
eigenvalues

lðJ�Þ ¼�a;�b�c;
�m�n7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�2mnþn2þ4mðnwþbO=eÞ

q
2

:

These eigenvalues all have negative real part if and only if
nwþbO=eon. Recalling that vþw¼ 1, we see that the DE is
locally asymptotically stable if bOoenv (i.e., R0o1) and it is
unstable if the inequality is reversed.

To prove global stability of the DE, suppose that B0o1 and
recall that XðtÞAð0;1Þ for XAfR;O;E;A;Dg and t40. Define a
partial ordering on R2 by ðs; tÞrðŝ; t̂Þ if srŝ and tr t̂.

First, we show that RðtÞ;AðtÞ;DðtÞ-0 as t-1. Define the
functions xðtÞ, yðtÞ, and zðtÞ by the linear system

_x ¼ f ðx; y; zÞ ¼
def
�axþvnz;

_y ¼ gðx; y; zÞ ¼
def
ðb=eÞz�myþwnz;

_z ¼ hðx; y; zÞ ¼
def

my�nz: ðA:2Þ

Assume that xð0Þ ¼ Rð0Þ, yð0Þ ¼ Að0Þ, and zð0Þ ¼Dð0Þ. The origin is
locally asymptotically stable in (A.2) if the Jacobian matrix

J� ¼

�a 0 vn

0 �m ðb=eÞþwn

0 m �n

0
B@

1
CA

is stable. The characteristic equation of J� is

ðlþaÞ½ðl2
þðmþnÞlþmðn�ðb=eÞ�wnÞ� ¼ 0;

and since a quadratic polynomial l2
þrlþs is stable if and only if r

and s are both positive, it follows that J� is stable if and only if

n�wn4b=e () vn4b=e () boenv () B0o1:

Here, we used the fact that vþw¼ 1. Since we assumed that
B0o1, it must be that the origin is locally asymptotically stable in
(A.2). As (A.2) is a linear system, the origin is in fact globally
asymptotically stable in (A.2). Finally, it is easily checked from
(2.1) and (A.2) that
1.
 _R ¼ f ðR;A;DÞ, _ArgðR;A;DÞ, and _D ¼ hðR;A;DÞ.

2.
 if ðx; yÞrðx̂; ŷÞ then f ðZ;x; yÞr f ðZ; x̂; ŷÞ.

3.
 if ðZ; yÞrðẐ; ŷÞ then gðZ; x;yÞrgðẐ; x; ŷÞ.

4.
 if ðZ; xÞrðẐ; x̂Þ then hðZ; x; yÞrhðẐ; x̂; yÞ.
We conclude from Theorem B1 in Smith and Waltman (1995)
that RðtÞrxðtÞ, AðtÞryðtÞ, and DðtÞrzðtÞ for tZ0. Since
xðtÞ; yðtÞ; zðtÞ-0 as t-1, it must be that RðtÞ;AðtÞ;DðtÞ-0 as t-1.
We now show that OðtÞ-O and EðtÞ-E as t-1. For eZ0,
consider the forced linear system

_xe ¼ feðxe; yeÞ ¼
def

ae�bxeþcye;

_ye ¼ geðxe; yeÞ ¼
def

qðeÞbxe�cye: ðA:3Þ

Recall that qðeÞ ¼ 1�pðeÞ ¼ e=ðeþeÞ. If e¼ 0 then let d40 and set
x0ðdÞ ¼ OðdÞ40 and y0ðdÞ ¼ EðdÞ40. For e40 there exists Te40
such that RðtÞ;DðtÞAð0; eÞ for tZTe. In this case, set xeðTeÞ ¼

OðTeÞ40 and yeðTeÞ ¼ EðTeÞ40. Let us write (A.3) as

_ze ¼ Aezeþue; ðA:4Þ

where we define

ze ¼
xe

ye

 !
; Ae ¼

�b c

qðeÞb �c

 !
and ue ¼

ae
0

� �
:

Suppose first that e40. Then

z�e ¼�A�1
e ue ¼

aðeþeÞ=b

ae=c

 !

is an equilibrium of (A.4) and it is unique. Since Ae is stable, we
have that z�e is globally asymptotically stable in (A.4) (to see this,
let ye ¼ ze�z�e and consider the resulting equation _ye ¼ Aeye). Thus,
xeðtÞ-aðeþeÞ=b and yeðtÞ-ae=c as t-1. Moreover, there exists
~T eZTe such that yeðtÞ40 for tZ ~T e. For the case e¼ 0, we have
_x0 ¼�bx0þcy0 and _y0 ¼ bx0�cy0. Since _x0þ _y0 ¼ 0, we let
r¼ x0ðdÞþy0ðdÞ to obtain _x0 ¼�bx0þcðr�x0Þ ¼�ðbþcÞx0þcr.
This equation possesses a unique and explicit solution

x0ðtÞ ¼
crþððbþcÞx0ðdÞ�crÞexpð�ðbþcÞðt�dÞÞ

bþc
:

Also, y0ðtÞ ¼ r�x0ðtÞ and therefore x0ðtÞ-cr=ðbþcÞ and
y0ðtÞ-br=ðbþcÞ as t-1. Next, it is easily checked from (2.1)
and (A.3) that
1.
 f0ðO;EÞr _Or feðO; EÞ for tZTe.

2.
 g0ðO; EÞZ _EZgeðO; EÞ for tZTe.

3.
 if xr x̂ then feðZ;xÞr feðZ; x̂Þ.

4.
 if Zr Ẑ then geðZ;xÞrgeðẐ; xÞ.
Again, we conclude from Theorem B1 in Smith and Waltman
(1995) that x0ðtÞrOðtÞrxeðtÞ and y0ðtÞZEðtÞZyeðtÞ for
tZmaxfd; Teg. It follows then that x0ðtÞ=y0ðtÞrOðtÞ=EðtÞr
xeðtÞ=yeðtÞ for tZmaxfd; ~T eg. Since x0ðtÞ=y0ðtÞ-c=b and xeðtÞ=

yeðtÞ-cðeþeÞ=be as t-1, it must be that c=br lim inf t-1OðtÞ=

EðtÞr lim supt-1OðtÞ=EðtÞrcðeþeÞ=be. Letting e-0, it follows
that OðtÞ=EðtÞ-c=b as t-1. Since ðRþOþEþAþDÞðtÞ � 1 and
RðtÞ;AðtÞ;DðtÞ-0, we find that OðtÞþEðtÞ-1 as t-1. Thus,
OðtÞ-c=ðbþcÞ ¼O and EðtÞ-b=ðbþcÞ ¼ E as t-1 and the
theorem is proved. &

A.3. Proof of theorem 3—the interested equilibrium

We first show that an IE exists if and only if R041. The
equilibrium equations are obtained from (2.1) by setting the time
derivatives equal to zero,

0¼�aR�þvnD�;

0¼ aR��bO�þcE�;

0¼ qðD�ÞbO��cE�;

0¼ pðD�ÞbO��mA�þwnD�;

0¼mA��nD�: ðA:5Þ
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It is immediately clear from the first and last equations that
R� ¼ ðnv=aÞD� and A� ¼ ðn=mÞD�, and from the third equation that
cE� ¼ qðD�ÞbO�. Substituting these results into the second equation
and rearranging produces

bO� ¼ nv�
D�

pðD�Þ
: ðA:6Þ

Since pðD�Þ ¼D�=ðD�þeÞ, we obtain O� ¼ ðnv=bÞðD�þeÞ. It follows
from substituting this result back into the equation for cE� that
E� ¼ env=c. To determine D�, we take advantage of the fact that
R�þO�þE�þA�þD� ¼ 1. Thus,

nv

a
þ

nv

b
þ

n

m
þ1

	 

D�þenv

1

b
þ

1

c

� �
¼ 1;

and upon rearrangement,

D� ¼

1

nv
�e

1

b
þ

1

c

� �
1

m
þ

1

n

� �
1

v
þ

1

a
þ

1

b

: ðA:7Þ

It is clear from the argument above that the equilibrium is feasible
(i.e., nonnegative and sums to unity) and constitutes an IE (i.e.,
A�40) if and only if D�40, and by inspection we see that this
latter inequality holds precisely when R041. Thus, an IE is
feasible if and only if R041. Since D� must be of the form (A.7),
and the other states are defined uniquely in terms of D�, this
argument also establishes that when the IE is feasible then it is
unique.

For the remainder of this proof we assume that R041, so that
the IE is feasible. Before we prove the stability of the IE, we first
derive several useful identities and inequalities involving D�.
Again, we start with the relation R�þO�þE�þA�þD� ¼ 1, but this
time, we use the generic forms of pðD�Þ and qðD�Þ to obtain

nv

a
þ

n

m
þ1

	 

D�þnv

1

b
þ

qðD�Þ

c

� �
D�

pðD�Þ
¼ 1:

We multiply both sides by pðD�Þ=nv and rearrange to get

1

a
�

1

c
þ

1

m
þ

1

n

� �
1

v

� �
pðD�ÞD�þ

1

b
þ

1

c

� �
D� ¼

pðD�Þ

nv
:

In view of this equation, define

a¼ 1

b
þ

1

c
; b¼

1

c
�

1

a
�

1

m
þ

1

n

� �
1

v
and g¼ 1

nv
: ðA:8Þ

Then �bpðD�ÞD�þaD� ¼ gpðD�Þ which implies that pðD�Þ ¼ aD�=

ðbD�þgÞ. That is,

pðD�Þ ¼ uðD�Þ; ðA:9Þ

where

uðDÞ ¼
def aD

bDþg : ðA:10Þ

Again, recall that pðDÞ ¼D=ðDþeÞ. We observe that (i)
pð0Þ ¼ uð0Þ ¼ 0, (ii) p0ð0Þ ¼ 1=e4a=g¼ u0ð0Þ (because R041), (iii)
pð1Þo1, (iv) the equation uðDÞ ¼ 1 has a unique solution given by
D3 ¼ g=ða�bÞ, and (v) D3Að0;1Þ. Two cases arise. If bZ0, then
uðDÞ40 for D40, which implies that pðDÞ‘uðDÞ for 0aDxD�.
We conclude that p0ðD�Þou0ðD�Þ. Suppose now that bo0 and let
Dþ ¼�g=bAðD3;1Þ. Then uðDÞ40 for DAð0;Dþ Þ and uðDÞo0 for
D4Dþ . In this case, pðDÞ‘uðDÞ for ð0;Dþ Þ 3 DxD�. Again, we
conclude that p0ðD�Þou0ðD�Þ. Thus, in either situation we have

p0ðD�Þou0ðD�Þ: ðA:11Þ

Finally, it is clear from the form of pðDÞ ¼D=ðDþeÞ that

p0ðD�Þo
pðD�Þ

D�
: ðA:12Þ
This inequality, (A.6), and the condition R041 together imply
that

p0ðD�ÞbO�onvop0ð0ÞbO: ðA:13Þ

Suppose now that aZc or bþcZmaxfm;ng. To examine the
stability of the IE, we linearize system (2.1) around the IE to
produce the Jacobian matrix

J� ¼

�a 0 0 0 vn

a �b c 0 0

0 0 �c 0 0

0 0 0 �m wn

0 0 0 m �n

0
BBBBBB@

1
CCCCCCA
þ

0 0 0 0 0

0 0 0 0 0

0 qðD�Þb 0 0 q0ðD�ÞbO�

0 pðD�Þb 0 0 p0ðD�ÞbO�

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
:

This time, it is not helpful to express the complicated eigenvalues of
the matrix J� explicitly. However, according to the Gershgorin circle
theorem (Varga, 2004), the eigenvalues of J� lie within the region of
the complex plane defined by the union of the closed disks Dð�a; aÞ,
Dð�b; bÞ, Dð�c; cÞ, Dð�m;mÞ, and Dð�n;nþ2p0ðD�ÞbO�Þ. Unfortu-
nately, the final disk intrudes somewhat upon the right-half plane
and so we cannot rule out the possibility that some eigenvalues of J�

may reside there. (In fact, J� has a simple zero eigenvalue, but this is
to be expected because we are only interested in perturbations
satisfying RþOþEþAþD¼ 1.)

Although this particular approach has provided some insight into
the possible location of eigenvalues, let us abandon it and instead
write system (2.1) as the reduced system (A.1) in the proof of
Theorem 1. Linearizing around the IE results in the Jacobian matrix

The eigenvalues of K� are still complicated, and now the Gershgorin
circle theorem provides less information about their locations in the
complex plane. But, it can be noted that the characteristic
polynomial sðlÞ of K� divides the characteristic polynomial of J�

with quotient �l (two different computer algebra packages confirm
this result). Thus, the nonzero eigenvalues of J� are exactly the
eigenvalues of K�.

We now show that the IE is locally asymptotically stable by
establishing that the characteristic polynomial of K� is stable (i.e.,
its zeros have negative real parts). The polynomial sðlÞ ¼ l4

þo1l
3
þo2l

2
þo3lþo4 is given by

sðlÞ ¼ detðlI�K�Þ ¼

lþa 0 0 �nv

c�a lþbþc c c

0 �pðD�Þb lþm �nw�p0ðD�ÞbO�

0 0 �m lþn

���������

���������
:

Expanding the determinant along the first row, we obtain

sðlÞ ¼ ðlþaÞðlþbþcÞ½ðlþmÞðlþnÞ�mðnwþp0ðD�ÞbO�Þ�

þðlþaÞðlþmþnÞpðD�Þbcþðc�aÞmnvpðD�Þb:

Consequently, the coefficients of sðlÞ are

o1 ¼ aþbþcþmþn;

o2 ¼ aðbþcþmþnÞþðbþcÞðmþnÞþbcpðD�Þþmðnv�p0ðD�ÞbO�Þ;

o3 ¼ aðbþcÞðmþnÞþðaþmþnÞbcpðD�ÞþðaþbþcÞmðnv�p0ðD�ÞbO�Þ;

o4 ¼ ðacðmþnÞþðc�aÞmnvÞbpðD�ÞþaðbþcÞmðnv�p0ðD�ÞbO�Þ:

ðA:14Þ
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Observe from the positivity of pðD�Þ and (A.13) that o1, o2, and
o3 are all positive. As for o4, we in turn employ (A.8), (A.6), (A.9),
(A.11) and (A.10) to compute

o4 ¼ abcmnv �bpðD�Þþa 1�p0ðD�Þ
D�

pðD�Þ

� �� �

4abcmnv �buðD�Þþa 1�u0ðD�Þ
D�

uðD�Þ

� �� �

¼ abcmnv �
baD�

bD�þg þa 1�
g

bD�þg

� �� �
¼ 0:

Thus, o440. Since sðlÞ has positive coefficients, it has no
nonnegative real zeros. We now show that no zero of sðlÞ (either
real or complex) has nonnegative real part. We use the fact that
the polynomial sðlÞ is stable if and only if the Routh–Hurwitz
determinants

D1 ¼ jo1j; D2 ¼
o1 o3

1 o2

�����
�����; D3 ¼

o1 o3 0

1 o2 o4

0 o1 o3

�������
�������; and

D4 ¼

o1 o3 0 0

1 o2 o4 0

0 o1 o3 0

0 1 o2 o4

���������

���������
are all positive (Gantmacher, 1960). Clearly, D1 ¼ aþbþcþmþn

is positive and by (A.13),

D2 ¼ ðaþbþcÞðaþmþnÞðbþcþmþnÞþðbþcÞbcpðD�Þ

þmðmþnÞðnv�p0ðD�ÞbO�Þ

is also positive. Since D4 ¼o4D3, it remains only to show that
D3 ¼o3D2�o4o2

1 is positive. In view of (A.14) and the form of D2

above, it is helpful to write

D3 ¼
X

j;kA f0;1;2g with jþkA f0;1;2g

yj;k½bpðD�Þ�j½mðnv�p0ðD�ÞbO�Þ�k;

where the bracketed quantities are both positive and

y0;0 ¼ aðaþbþcÞðaþmþnÞðbþcÞðbþcþmþnÞðmþnÞ;

y1;0 ¼ cðaþbþcÞðaþmþnÞ2ðbþcþmþnÞþacðbþcÞ2ðmþnÞ

�acðaþbþcþmþnÞ2ðmþnÞþmnvðaþbþcþmþnÞ2ða�cÞ;

y0;1 ¼ ðaþbþcÞ2ðaþmþnÞðbþcþmþnÞþaðbþcÞðmþnÞ2

�aðaþbþcþmþnÞ2ðbþcÞ;

y2;0 ¼ c2ðaþmþnÞðbþcÞ;

y1;1 ¼ cðaþbþcÞðbþcÞþcðaþmþnÞðmþnÞ;

y0;2 ¼ ðaþbþcÞðmþnÞ:

We remark that y0;0, y2;0, y1;1, and y0;2 are clearly positive.
Furthermore, since we can write

y0;1 ¼ ½a
2þaðmþnÞþðbþcÞðbþcþmþnÞ�ðaþbþcÞðmþnÞ

we also find that y0;1 is positive. Lastly, we decompose
y1;0 ¼ yþ1;0þy

�

1;0, where

yþ1;0 ¼ ½a
2þaðbþcÞþðbþcþmþnÞðmþnÞ�cðaþmþnÞðbþcÞ;

y�1;0 ¼mnvðaþbþcþmþnÞ2ða�cÞ:

It is clear that yþ1;040. If aZc, then we also obtain y�1;0Z0, and
therefore that y1;040. It now follows by inspection that D3 is
positive, as desired. Suppose however that aoc. Then by
assumption bþcZmaxfm;ng. In this case,

D34y0;0þy1;0bpðD�Þ ¼ y0;0þðy
þ

1;0þy
�

1;0ÞbpðD�Þ

Z ðy0;0vþyþ1;0vbþy�1;0bÞpðD�Þ:

It suffices to show that y0;0vþyþ1;0vbþy�1;0bZ0. According to
Mathematica 6.0, this quantity can be expressed as a cubic
polynomial cðaÞ ¼ x0þx1aþx2a2þx3a3 with

x0 ¼ bcvðbþcþmþnÞððbþcÞðm2þmnþn2Þ�ðmþnÞmnÞ

and x1, x2, and x3 being positive by inspection. Since
bþcZmaxfm;ng, we conclude that cðaÞZ0 and hence that D3

is positive. This completes the proof. &
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