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Stability of a One-Dimensional Discrete-Time
Asynchronous Swarm

Veysel Gazi, Member, IEEE and Kevin M. Passino, Fellow, IEEE

Abstract—In this correspondence, we consider a discrete time one-
dimensional asynchronous swarm. First, we describe the mathematical
model for motions of the swarm members. Then, we analyze the stability
properties of that model. The stability concept that we consider, which
matches exactly with stability of equilibria in control theory, characterizes
stability of a particular position (relative arrangement) of the swarm
members. We call that position the comfortable position (with comfortable
intermember distances). Our swarm model and stability analysis are dif-
ferent from other asynchronous swarm models considered in the literature.
In particular, in our analysis we employ results on contractive mappings
from the parallel and distributed computation literature. The application
of these results to the swarm coordination problem is important by itself
since they might prove useful also in -dimensional swarms.

Index Terms—Aggregation, asynchronous motion, cooperative coordina-
tion and control, multiagent systems, swarms.

I. INTRODUCTION

Many social organizms aggregate in groups and have the ability to
perform cooperative and coordinated behavior as a group, such as so-
cially foraging for food or avoiding predators. It was shown by Grün-
baum in [1] that such cooperative and coordinated behavior, or simply
“swarming behavior,” may have evolved due to some survival advan-
tages it may provide. (See also other relevant work in [2].) The area
of modeling and analysis of swarming behavior is an active research
area that has become more important due to its potential use in many
areas including optimization [3] and robotics [4], among others. In par-
ticular, principles developed from studying swarms in nature could be
very useful in characterizing and analyzing mechanisms for coopera-
tive control for groups of autonomous robots.

In [5] Jin et al. studied the stability properties of one-dimensional
(1-D) and two-dimensional synchronized swarms. The stability of 1-D
swarms is similar to the concept of “platoon” stability in automated
highway systems and there has been a significant work in that area (e.g.,
see [6]–[9]).

In [10] and [11], we considered a biologically inspired n-dimen-
sional continuous time synchronous swarm model based on artificial
potentials and obtained results on cohesive swarm aggregation. In
[12], the model in [10] and [11] was augmented with a term repre-
senting the environment and convergence to (divergence from) more
favorable regions (unfavorable regions) was shown. In [13], we dis-
cussed a procedure based on the sliding mode control technique
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by TÜBİTAK (the Scientific and Technical Research Council of Turkey). This
paper was recommended by Editor F.-Y. Wang.

V. Gazi was with the Department of Electrical Engineering, The Ohio State
University, Columbus, OH 43210 USA. He is now with the Department of Elec-
trical and Electronics Engineering, TOBB University of Economics and Tech-
nology, 06530 Ankara, Turkey.

K. M. Passino is with the Department of Electrical and Computer En-
gineering, The Ohio State University, Columbus, OH 43210 USA (e-mail:
passino.1@osu.edu).

Digital Object Identifier 10.1109/TSMCB.2005.845393

which can be used to implement engineering aggregating swarms
which are moving according to models such as those considered in
[10]–[12]. However, the procedure considered in [13] is more gen-
eral and can be used in other contexts as well, including formation
control. Results based on artificial potentials and virtual leaders and
in nature similar to those in [10]–[12] were independently obtained
by Leonard et al. [14], [15] for agents with point mass dynamics. In
[15], they also considered sampling affects on the swarm motion and
gradient descent. Recently, Liu and Passino [16] obtained stability
results of social foraging swarms moving in a noisy environment.
They determined conditions under which the social foragers, modeled
as point mass particles, will stay cohesive despite the noise present
in the environment.

The above-mentioned articles mostly consider continuous time
and/or synchronous swarm models. Beni and Liang [17] is, to best
of our knowledge, one of the first stability results for asynchronous
methods. There the authors consider a “linear” swarm model and prove
sufficient conditions for the asynchronous convergence of the swarm
to a synchronously achievable configuration. Although their method
is asynchronous, they do not have time delays in the system. The
stability of totally asynchronous swarm models (i.e., asynchronous
swarm models with time delay) was, to best of our knowledge, first
considered by Liu et al. in [18] and [19]. In [18], the authors consider
1-D discrete time totally asynchronous models for both stationary
and mobile swarms and prove asymptotic convergence under total
asynchronism conditions and finite time convergence under partial
asynchronism conditions (i.e., total asynchronism with a bound on
the maximum possible time delay). For the mobile swarm case they
prove that cohesion will be preserved during motion under conditions
expressed as bounds on the maximum possible time delay. In [19],
the work in [18] has been extended to the multidimensional case by
imposing special constraints on the “leader” movements and using a
specific communication topology.

In this brief correspondence, we use the representation of a single
swarm member considered by Liu et al. [18]; however, we consider a
different mathematical model for the intermember interactions and mo-
tions in the swarm. In [18], the swarm members adjusted their position
based on a single neighbor. This resulted in the fact that all the mem-
bers must know the “comfortable interindividual distance” to which
they intend to converge. This is not biologically very realistic since
it requires agreement on that information between the members. In
this correspondence, each member adjusts its position based on both
of its neighbors and the “comfortable interindividual distance” is de-
cided by only one member (which is the last member). Moreover, in this
correspondence, we prove stability of the comfortable position for the
new model using different mathematical tools for analysis (compared
to these used in [18]). Namely, we use some earlier results developed
for parallel and distributed computation in [20]. First, we prove sta-
bility for case of synchronism with no delays. Then, we use this result
to prove stability under total asynchronism when there are also com-
munication or sensing delays. The application of the results in [20] to
the swarming problem is by itself important. This is because it might
be possible to use them in problems such as stability of n-dimensional
totally asynchronous swarms with time delays and for synchronization
in the n-dimensional space. An initial version of the current correspon-
dence appeared in [21].

1083-4419/$20.00 © 2005 IEEE
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Fig. 1. Single swarm member.

II. SWARM MODEL

In this section, we introduce the swarm model that we use in this cor-
respondence. First, we describe the model of a single swarm member.
Then, we present the 1-D swarm model (i.e., when many swarm mem-
bers are arranged next to each other on a line).

A. Single Swarm Member Model

The single swarm member model described in this section is taken
from [18]. We present it here for convenience. The single swarm
member model that we consider is shown in Fig. 1. As seen in the
figure, it has a driving device for performing the movements and a
neighbor position sensors for sensing the position of the adjacent (left
and right) neighbors. It is assumed that there is no restriction on the
range of these sensors. In other words, we assume that they can provide
the accurate position of the neighbor even if the neighbor is far away.
Each swarm member also has two proximity sensors on both sides
(left and right). These sensors have sensing range of � > 0 and can
sense instantaneously in this proximity. Therefore, if another swarm
member reaches an � distance from it, then this will be instantaneously
known by both of the members. However, if the neighbors of the
swarm member are out of the range of the proximity sensor, then it
will return an infinite value (i.e., �1 for the left sensor and +1 for
the right sensor) or some large number that will be ignored by the
swarm member. The use of this sensor is to avoid collisions with the
other members in the swarm.

In the next section, we describe the model of a swarm (i.e., a collec-
tion) of members described in this section arranged on a line.

B. One-Dimensional Swarm Model

Consider a discrete time 1-D swarm described by the model

x1(k + 1) = x1(k); 8k

xi(k + 1) = maxfxi�1(k) + �;minfpi(k); xi+1(k)� �gg

8k 2 Ki; i = 2; . . . ; N � 1

xN (k + 1) = maxfxN�1(k) + �; pN(k)g; 8k 2 KN (1)

where xi(k); i = 1; . . . ; N , represents the position of member i at
time k and Ki � K = f1; 2; . . .g is the set of time instants at which
member i updates its position. At the other time instants member i is
stationary. In other words, we have

xi(k + 1) = xi(k); 8k 62 Ki and i = 2; . . . ; N: (2)

The variables pi(k); i = 1; . . . ; N; represent the intended next posi-
tions of the members and are given by

pi(k) = xi(k)� g(xi(k)� ci(k)); i = 2; . . . ; N

where g( � ) is an attraction/repulsion function (to be discussed below).
If there are not collision situations, then individual iwill move to pi(k),
otherwise it will stop at the safe distance � form its neighbor. The quan-
tities ci(k) represent the perceived centers of the adjacent neighbors of
individual i. In other words, we have

ci(k) =
1

2
xi�1 �

i
i�1(k) + xi+1 �

i
i+1(k)

for i = 2; . . . ; N � 1, and

cN(k) = xN�1 �
N
N�1(k) + d

where the constant d represents the comfortable intermember distance.
The variable � ij (k); j = i�1; i+1; is used to represent the time index
at which member i obtained position information of its neighbor j. It
satisfies 0 � � ij (k) � k for k 2 Ki, where � ij (k) = 0 means that
member i did not obtain any position information about member j so
far (it still has the initial position information), whereas � ij (k) = k

means that it has the current position information of member j. The
difference (k � � ij (k)) � 0 can be viewed as a sensing delay or a
communication delay in obtaining the position information of agent j
by agent i.

Note that in the swarm model in (1) it is implicitly assumed that
xi+1(k)� xi�1(k) > 2�. Later we will show that this always will be
the case provided that xi+1(0)� xi�1(0) > 2� (which is satisfied by
assumption). Also, notice that the first member of the swarm is always
stationary at position x1(0). The other members (except member N ),
on the other hand, try to move to the position which their current infor-
mation tells them is the middle of their adjacent neighbors. Of course
due to the delays ci(k) may not be the midpoint between members
i� 1 and i+ 1 at time k. The last member (member N ), on the other
hand, tries to move to what it perceives to be a (comfortable) distance
d from its left neighbor. Note that, in contrast to the work in [18], only
the N th member of the swarm knows (or decides on) the value of d.
This is more advantageous since it does not require the achievement of
agreement between the individuals (by negotiation or other means) on
the same value of d. It is assumed that d � �, where the constant � is
the range of the proximity sensors as discussed in the preceding sec-
tion. In [18], the authors also considered moving swarms and proved
cohesiveness results assuming partial asynchronism and the existence
of a bound on the maximum step size. However, here we will limit our
analysis to the case of stationary swarms.

The elements ofK (and therefore ofKi) should be viewed as indices
of the sequence of physical times at which the updates occur (similar
to the times of events in discrete event systems), not as actual times. In
other words, they are integers that can be mapped to actual times. The
sets Ki are independent from each other for different i. However, it is
possible to have Ki \ Kj 6= ; for i 6= j (i.e., two or more members
may sometimes move simultaneously).

The function g( � ) describes the attractive and repelling relationships
between a swarm member and its adjacent neighbors. It determines the
step size that a member will take toward the middle of its neighbors (if
it is not already there). We assume that g( � ) is sector bounded

�y
2 � yg(y) � ��y2 (3)

where � and �� are two constants satisfying

0 < � < �� < 1:

Fig. 2 shows the plot of one such g( � ). In the figure we also plotted
�y(t) and ��y(t) for � = 0:1 and �� = 0:9.

Notice that the model in (1) is in a sense a discrete event model
which does not allow for collisions between the swarm members. This
is because if during movement member i suddenly finds itself within
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Fig. 2. Example g( � ) function together with 0:1y(t) and 0:9y(t).

an � range of one (or both) of its neighbors, it will restrain its movement
toward that neighbor according to (1).

We will use the notation x(k) = [x1(k); . . . ; xN(k)]> to represent
the position at time k of all the members of the swarm. Define the
swarm comfortable position as

xc = [x1(0); x1(0) + d; . . . ; x1(0) + (N � 1)d]>:

In this correspondence, we consider the stability of this position by con-
sidering the motions of the swarm members when they are initialized at
positions different from xc. We will consider two cases: synchronous
operation with no delays and totally asynchronous operation. These are
described in the following two assumptions.

Assumption 1 (Synchronism, no Delays): The setsKi and the times
� ij (k) satisfy Ki = K for all i and � ij (k) = k for all i and j =
i � 1; i + 1.

This assumption states that all the swarm members will move at the
same time instants. Moreover, every member will always have the cur-
rent position information of its adjacent neighbors.

The next assumption, on the other hand, allows the members to move
at totally independent time instants. Moreover, it allows the “delay”
between two measurements performed by an individual to become ar-
bitrarily large. However, it also states that there always will be a next
time when the member will perform a measurement.

Assumption 2 (Total Asynchronism): The sets Ki are infinite, and
if fk`g is a sequence of elements of Ki that tends to infinity, then
lim`!1 � ij (k`) = 1 for every j.

Below we state a preliminary result about the swarm described by
(1). We state it here, because it will be used in the next section.

Lemma 1: For the swarm described in (1) if Assumption 2 holds,
then given any x(0), there exists a constant �b = �b(x(0)) such that
xi(k) � �b, for all k and all i; 1 � i � N .

Proof: We prove this via contradiction. Assume that xi+1(k)!
1 for some i+1; 1 � i � N . This implies that xj(k)!1 for all j �
i+ 1. We will show that it must be the case that xi(k)!1. Assume
the contrary, i.e., assume that xi+1(k) ! 1, while xi(k) � b < 1
for some b and for all k. Then we have xi+1(k)�xi(k)!1, whereas
xi(k)� xi�1(k) < 2b1 for some b1 < b=2. Let b2 be a constant such
that (1 + (1=�))b < b2 <1. Note that b2 > b1. From Assumption 2
there is always a time ki1 2 K

i at which member i performs position

sensing of its neighbors and � ii�1(k) � ki1 and � ii+1(k) � ki1 for
k � ki1 and

xi(k)� xi�1 � ii�1(k) < 2b1

xi+1 � ii+1(k) � xi(k) > 2b2:

This implies that we have xi(k) � ci(k) < �(b2 � b1) < 0. There
exists also a time ki2 � ki1 at which member i moves to the right and
its new position satisfies

xi ki2 + 1 = xi ki2 � g xi ki2 � ci(k
i
2)

� xi(k
i
2)� � xi ki2 � ci ki2

> xi ki2 + �(b2 � b1)

> xi ki2 + b > b:

This contradicts the assumption that xi(k) � b for all k and implies
that xi(k) ! 1 as well. Repeating the argument for the other mem-
bers one obtains that xi(k) ! 1 for all i 6= 1.

Since x1 = x1(0) for all k the above implies that x2(k)�x1(k)!
1 as k !1. Moreover, it must be the case that xi(k)� xi�1(k)!
1 for all i = 2; . . . ; N . To see this assume thatxi(k)�xi�1(k)!1,
whereas xi+1(k) � xi(k) < b1 for some b1. There exist a time ki3 2
Ki at which member i performs position sensing of its neighbors and
� ii�1(k) � ki3 and � ii+1(k) � ki3 for k � ki3. Moreover, for k � ki3
we have

xi(k)� xi�1 � ii�1(k) > 2b2

xi+1 � ii+1(k) � xi(k) < 2b1

and xi(k) < b for some b > b2. This implies that we have xi(k) �
ci(k) > (b2 � b1) > 0. There exists also a time ki4 � ki3 at which
member i moves to the left and its new position satisfies

xi(k
i
4 + 1) = xi ki4 � g xi ki4 � ci ki4

� xi ki4 � � xi ki4 � ci ki4

< xi ki4 � �(b2 � b1)

< xi ki4 < b:

Note that as long as we have xi(k) � ci(k) > (b2 � b1) > 0 the
agent will be moving to the left and xi(k) will always be bounded by
b. Therefore, it cannot be the case that xi+1(k) � xi(k) < b1, while
xi(k) � xi�1(k) ! 1. Therefore, if xi(k) ! 1 for some i > 1,
then it must be the case that xi(k)! 1 and xi(k)� xi�1(k)! 1
for all i = 2; . . . ; N .

Take individual N . From above we know that there exists a
time kN5 such that xN (k) � xN�1(k) > d. However, there is
always a time kN6 > kN5 such that member N performs posi-
tion sensing and �NN�1(k) � kN6 for k � kN6 . Then, we have
xN (k) � xN�1(�

N
N�1(k)) > d and at some time kN7 > kN6 the

member moves and

xN kN7 + 1 = xN kN7 � g xN kN7

� cN kN7 < xN kN7

implying that it moves to the left. In fact, as long as we have xN (k)�
xN�1(�

N
N�1(k)) > d individual N moves to the left and it cannot

diverge far away from its neighbor. Assuming that at time kN6 we have
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xN (k) � xN�1(k) < b for some b > d, this implies that xN (k) �
xN�1(k) < b for all k > kN6 . Therefore, the N th individual cannot
diverge leading to a contradiction.

This result is important, because it basically says that for the given
swarm model both swarm member positions and intermember dis-
tances are bounded (implying that the swarm will not dissolve) despite
the asynchronism and the time delays. Therefore, the main question
to be answered is whether the swarm member positions x(k) will
converge to some constant, will have periodic solutions or will exhibit
chaotic behavior. In the next section we will analyze the system in
the case of synchronism with no delays. This will be used later in the
proof of our main result.

III. SYSTEM UNDER TOTAL SYNCHRONISM

In this section we will assume that Assumption 1 holds (i.e., all the
members move at the same time and they always have the current posi-
tion information of their neighbors) and analyze the stability properties
of the system.

First, we state the following preliminary result.
Lemma 2: For the system in (1) assume that Assumption 1 holds

(i.e., we have synchronism with no delays). If x(k) ! �x as k ! 1,
where �x is a constant vector, then �x = xc.

Proof: First of all, note that the intermember distances on all the
states that the system can converge to are such that �xi � �xi�1 > � for
all i (i.e., it is impossible for the states to converge to positions that are
very close to each other). To prove this, we assume that �xi� �xi�1 = �

for some i and �xj � �xj�1 > � for all j 6= i and seek to show a
contradiction. In that case, �xi+1 � �xi > � so

�xi � �ci = �xi �
�xi�1 + �xi+1

2
< 0

and we have from model constraints in (1) that

�xi�1 + � < �xi � g �xi �
�xi�1 + �xi+1

2
< �xi+1 � �:

From (1) this implies that at the next time instant ki 2 Ki member i
will move to the right toward member i+ 1. Therefore, it must be the
case that �xi+1��xi = � since otherwise �xi��xi�1 = � also cannot hold.
Continuing this way one can prove that all intermember distances must
be equal to �. However, in that case, since d� �, from last equality in
(1) we have

�xN � g(�� d) > �xN�1 + �

and this implies that on the next time instant kN 2 KN member N will
move to the right. Therefore, no intermember distance can converge to
�. For this reason, to find �x we can drop the min and max and consider
only the middle terms in (1).

Since x(k)! �x as t!1 it should be the case that ultimately

�x1 = �x1

�xi = �xi � g �xi �
�xi�1 + �xi+1

2
; i = 1; . . . ; N � 1

�xN = �xN � g(�xN � �xN�1 � d)

from which we obtain

�x1 = x
c
1

2�xi = �xi�1 + �xi+1; i = 1; . . . ; N � 1

�xN = �xN�1 + d: (4)

Solving the second equation for �xN�1 we have 2�xN�1 = �xN�2+ �xN
from which we obtain �xN�1 = �xN�2 + d. Continuing this way, we
obtain

�xi = �xi�1 + d

for all i = 1; . . . ; N � 1. Then since the first member is stationary we
have �x1 = x1(t) = x1(0) = xc1 and this proves the result.

The implication of this lemma is basically that xc is the unique fixed
point or equilibrium point of the system described by (1). In this cor-
respondence, we analyze the stability of this fixed point, which corre-
sponds to the arrangement with comfortable intermember distance.

Lemma 3: Assume that xi(0)� xi�1(0) > � for all i = 2; . . . ; N .
Moreover, assume that Assumption 1 holds (i.e., we have synchronism
with no delays). Then, xi(k)� xi�1(k) > � for all i = 2; . . . ; N , and
for all k.

Proof: We will prove this by induction. By assumption for k = 0
we have xi(0)� xi�1(0) > � for all i = 2; . . . ; N . Assume that for
some k we have xi(k)�xi�1(k) > � for all i = 2; . . . ; N . Then, with
a simple manipulation one can show that at that time k we have

xi�1(k) + � < xi(k) < xi+1(k)� �

xi�1(k) + � < ci(k) < xi+1(k)� � (5)

ci+1(k)� ci(k) > � (6)

for all i = 2; . . . ; N .
Noting that it is possible to write the g( � ) function as

g(y(k)) = �(k)y(k)

where 0 < � � �(k) � �� < 1, and using this in the swarm dynamics
equation we have

xi(k + 1) = xi(k)� �i(k)(xi(k)� ci(k))

= (1� �i(k))xi(k) + �i(k)ci(k):

Therefore, we have

xi(k) < ci(k)) xi(k) < xi(k + 1) < ci(k)

xi(k) > ci(k)) xi(k) > xi(k + 1) > ci(k):

These inequalities together with (5) and (6) imply that

xi(k + 1)� xi�1(k + 1) > �

and this completes the proof.
This lemma implies that for the synchronous case with no delays,

provided that initially the members are sufficiently apart from each
other, the proximity sensors will not be used and that we can drop the
min and max operations in (1) and the system can be represented as

x1(k + 1) = x1(k)

xi(k + 1) = xi(k)� g xi(k)�
xi�1(k) + xi+1(k)

2

xN (k + 1) = xN (k)� g(xN (k)� xN�1(k)� d):

Define the following change of coordinates

e1(k) = x1(k)� x
c
1

ei(k) = xi(k)� (xi�1(k) + d); i = 2; . . . ; N:

Then, one obtains the following representation of the system

e1(k+ 1) = e1(k) = 0

e2(k+ 1) = e2(k)� g
e2(k)� e3(k)

2
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ei(k + 1) = ei(k)� g
ei(k)� ei+1(k)

2

+ g
ei�1(k)� ei(k)

2
; i = 3; . . . ; N � 1

eN(k + 1) = eN(k)� g(eN(k)) + g
eN�1(k)� eN(k)

2
:

Using again the fact that g(y(k)) = �(k)y(k) for 0 < � < �(k) <
�� < 1 we can represent the system with

e2(k + 1) = 1�
�2(k)

2
e2(k) +

�2(k)

2
e3(k)

ei(k+ 1) = 1�
�i(k)

2
�

�i�1(k)

2
ei(k)

+
�i�1(k)

2
ei�1(k)

+
�i(k)

2
ei+1(k); i = 3; . . . ; N � 1

eN(k + 1) = 1� �N (k)�
�N�1(k)

2
eN(k)

+
�N�1(k)

2
eN�1(k)

where we dropped e1(k) since it is zero for all k. Defining e(k) =
[e2(k); . . . ; eN(k)]> it can be seen that our system is, in a sense, a
linear time varying system, which can be represented in a matrix form
as

e(k + 1) = A(k)e(k)

where A(k) is a symmetric tridiagonal matrix of the form

A(k) =

b1 c1 0 � � � 0

c1 b2 c2
. . .

...

0 c2
. . .

. . . 0
...

. . .
. . . bN�2 cN�2

0 � � � 0 cN�2 bN�1

with diagonal elements given by

fb1; . . . ; bN�1g

= 1�
�2(k)

2
; 1�

�3(k)

2
�

�2(k)

2
; . . . ;

1�
�N�1(k)

2
�

�N�2(k)

2

1� �N (k)�
�N�1(k)

2

and offdiagonal elements equal to

fc1; . . . ; cN�2g =
�2(k)

2
; . . . ;

�N�1(k)

2
:

First, we will investigate the properties of the matrix A(k) which will
be useful later in deriving our stability result. In particular, we will show
that all the eigenvalues of A(k) lie within the unit circle.

Lemma 4: The spectrum of the matrix A(k); �(A(k)) satisfies

�(A(k)) < 1

for all k. In other words, all the eigenvalues of A(k) lie within the unit
circle.

Proof: First, note that for the given A(k) we have

kA(k)k1 = kA(k)k1 = 1

for all k. On the other hand, for any given matrix A(k) it is well known
that the two norm satisfies

kA(k)k2 � kA(k)k1kA(k)k1:

Hence, since we have �(A(k)) = kA(k)k2, we obtain

�(A(k)) � 1

for all k. Now we must show that this holds with strict inequality. To
prove that let us first assume that

� � �i(k) = �i � ��

for all k and i = 2; . . . ; N (i.e., the �i’s in the matrix A are all
constants implying that the function g( � ) is linear). Note also that
A(k) is a symmetric matrix. Therefore, there exists a unitary trans-
formation T (i.e., T�1 = T>) such that �A = TAT>, where �A =
diagf�a2; . . . ; �aNg. For the sake of contradiction assume that �(A) =
1. Then, it must be the case that �ai = 1 for some i; 2 � i � N . Define
the transformation �e = Te. Then the system can be described as

�e(k+ 1) = �A�e(k):

Since �A is diagonal and �ai = 1 we have �ei(k) = �ei(0) for all k,
whereas �ej(k) ! 0 as k ! 1 for all j 6= i. This, on the other
hand, implies that e(k) ! Ti�ei(0) = ec as k ! 1, where Ti is
the ith column of T . Depending on the value of �ei(0), the value of ec

can be any number. However, this contradicts the result of Lemma 2.
Therefore, �ai < 1 for all i = 2; . . . ; N , and this implies that �(A) < 1.
Since � = [�2; . . . ; �N ]> was chosen arbitrary, the result holds for all
� such that � � �i � ��. Hence, we have

�(A(k)) < 1

for each k.
This lemma basically states that the eigenvalues of A(k) (which are

all real numbers since A(k) is symmetric) lie within the unit circle for
each k. Note that the A(k) matrices are irreducible, nonnegative, tridi-
agonal, and symmetric. Moreover, they have entries which are over-
bounded by the entries of corresponding stochastic matrices. There-
fore, the above result can be also proved using the Perron–Frobenious
theorem [22].

Before proceeding define

�� = sup
��� ���;i=2...N

f�(A)g:

Then, from the above result we have

�� < 1:

Using this, one can state the following result for the system under total
synchronism.

Theorem 1: For the N -member swarm modeled in (1) with g( � )
as given in (3), if Assumption 1 holds and xi+1(0) � xi(0) > �; i =
1; . . . ; N � 1, then we have e(k) ! 0 as k ! 1.

Proof: Directly follows from the above since

ke(k)k2 =kA(k � 1)A(k� 2) . . .A(0)e(0)k2

�kA(k � 1)k2kA(k� 2)k2 . . . kA(0)k2 ke(0)k2

���kke(0)k2 :

This theorem implies that the swarm member positions will asymp-
totically converge to the comfortable position xc. It is an important
result; however, it is not the main result of this correspondence. Our
objective is to prove that the same type of convergence will be achieved
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for the totally asynchronous case. We will investigate that case in the
following section and the result of Theorem 1 will be useful in its proof.

IV. MAIN RESULT

In this section we return to the totally asynchronous case. In other
words, we investigate the system under Assumption 2. To prove con-
vergence to the comfortable position xc we will use the result from the
synchronous case and a result from [20]. For convenience we present
this result here.

Consider the function f : X ! X , where X = X1 � � � � � Xn,
and x = [x1; . . . ; xn]

> with xi 2 Xi. The function f is composed of
functions fi : X ! Xi in the form f = [f1; . . . ; fn]

> for all x 2 X .
Consider the problem of finding the point x� such that

x
� = f(x�)

using an asynchronous algorithm. In other words, use an algorithm in
which

xi(k + 1) = fi x1 �
i
1(k) ; . . . ; xn �

i
n(k) ; 8k 2 Ki (7)

where � ij (k) are times satisfying 0 � � ij (k) � k; 8k 2 K. For all the
other times k 62 Ki; xi is left unchanged. In other words, we have

xi(k + 1) = xi(k); 8k 62 Ki
: (8)

Consider the following assumption.
Assumption 3: There is a sequence of nonempty sets fX(k)g with

� � � � X(k+ 1) � X(k) � � � � � X

satisfying the following two conditions:

1) Synchronous Convergence Condition (SCC): We have

f(x) 2 X(k+ 1); 8k and x 2 X(k):

Furthermore, if fyk j yk = f(yk�1)g is a sequence such that
yk 2 X(k) for every k, then every limit point of fykg is a fixed
point of f .

2) Box Condition (BC): For every k, there exist sets Xi(k) � Xi

such that

X(k) = X1(k)�X2(k)� . . .Xn(k):

The SCC condition implies that the limit points of the sequences gener-
ated by the synchronous iteration x(k+1) = f(x(k)) are fixed points
of f . The BC condition, on the other hand, implies that combining com-
ponents of vectors in X(k) results in a vector in X(k). In other words,
if x 2 X(k) and �x 2 X(k), then replacing ith component of x with
the ith component of �x results in a vector in X(k). An example when
BC holds is whenX(k) is sphere inRn with respect to some weighted
maximum norm.

Assumption 3 is about the convergence of the synchronous iteration
(i.e., iteration (7) under total synchronism). The result below shows
that if the synchronous algorithm is convergent, the asynchronous al-
gorithm will also converge provided that Assumption 2 is satisfied.

Theorem 2: Asynchronous Convergence Theorem [20]: If the Syn-
chronous Convergence Condition and Box Condition of Assumption 3
hold together with Assumption 2, and the initial solution estimate
x(0) = [x1(0); . . . ; xn(0)]

> belongs to the set X(0), then every limit
point of fx(k)g is a fixed point of f .

This is a powerful result that can be applied to many different prob-
lems. The main idea behind its proof is as follows. Assume there is
a time instant k1 such that xj(� ij (k1)) 2 Xj(k) for all j and all
i, which implies that the perceived x(k1) is in X(k). Then the SCC

condition in Assumption 3 together with the iteration in (7) guarantee
that x(k1 + 1) 2 X(k + 1), whereas the BC condition implies that
each xj(k1 + 1) 2 Xj(k + 1). Also it is guaranteed that we have
x(k) 2 X(k+ 1) for all k � k1. Then, due to the total asynchronism
assumption (Assumption 2) there will be always another time instant
k2 > k1 such that xj(� ij (k2)) 2 Xj(k+1) for all j and all i. Repeating
the above argument we have x(k2+1) 2 X(k+2) and this completes
the induction step since initially we have xj(� ij (0)) = xj(0) 2 Xj(0).

We will use the above theorem to prove our main result, which is as
follows.

Theorem 3: For the N -member swarm modeled in (1) with g( � )
as given in (3), if Assumption 2 holds and xi+1(0)� xi(0) > �; i =
1; . . . ; N � 1, then the swarm member positions will converge asymp-
totically to the comfortable position xc.

Proof: In order to prove this result we once again consider the
synchronous case. Recall that for this case the system can be described
by

e(k + 1) = A(k)e(k):

In the previous section it was shown that for the synchronous case we
have �(A(k)) � �� < 1 for all k and that e(k) ! 0 as k ! 1. This
implies that A(k) is a maximum norm contraction mapping for all k.
Define the sets

E(k) = fe 2 N�1 : kek1 � ��kke(0)k1g:

Then since A(k) is a maximum norm contraction mapping for all k we
have e(k) 2 E(k) for all k and

. . . � E(k+ 1) � E(k) � � � � � E = N�1
:

Moreover, each E(k) can be expressed as

E(k) = E2(k)�E3(k)� � � �EN(k)

where Ei(k) is such that ei(k) 2 Ei(k). Since the position with com-
fortable intermember distance e = 0 (i.e., x = xc) is the unique fixed
point of the system and the synchronous swarm converges to it, it is im-
plied that Assumption 3 above is satisfied. Applying the Asynchronous
Convergence Theorem we obtain the result.

This result is important because it states that the stability of the
system will be preserved (i.e., the system will converge to the com-
fortable distance) even though we have totally asynchronous motions
and imperfect information due to the time delays. Note that the fact
that in the asynchronous case in (1) the min and max operations are
preserved does not change the result in Theorem 3 since the stability
properties of the synchronous system is preserved even with them (i.e.,
the min and max operations) present in the model.

A relevant issue to mention here is the speed of convergence of the
algorithm. Theorem 3 does not provide any statement about the speed
of convergence. In fact, it can be seen from Assumption 2 that it is
not possible to establish a lower bound on the speed of convergence
due to the asynchronism and the possibility of unbounded time delays.
Therefore, the convergence speed may vary and sometimes may take
very long. If a faster convergence is desired a bound on the time delay
of the form 0 � � ij (k) � B for some B > 0 can be assumed and
with that assumption it might be possible to establish a stronger result
specifying an upper (lower) bound on the convergence time (speed).
Such an algorithm is called partially asynchronous.

Note also that the swarm equation in (1) is naturally distributed,
where each individual i performs the computation only of its next po-
sition xi(k+1) based on the perceived (measured or obtained by com-
munication) position of its two neighbors. Moreover, it performs this
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computation only at the times it is “awake” (i.e., only at k 2 Ki).
Therefore, the computational load of the individuals is minimal.

A direct consequence of Theorem 3 is the stability of a swarm in
which one member in the middle is stationary, whereas all the other
middle members try to move similar to the middle members in the
model in (1) and both of the edge members try to move to a distance d
from their neighbors. In other words, suppose the swarm is described
by

x1(k + 1) = minfp1(k); x2(k)� �g 8k 2 K1

xj(k + 1) = xj(k); 8k and for some j; 1 � j � N

xi(k + 1) = maxfxi�1(k) + �;minfpi(k); xi+1(k)� �gg

8k 2 Ki
; i = 2; . . . ; N � 1; i 6= j

xN (k + 1) = maxfxN�1(k) + �; pN(k)g; 8k 2 KN (9)

where pi(k)’s are as defined before and the perceived center for the
first member is

c1(k) = x2 �
1

2 (k) � d:

Here again it is implicitly assumed that xi+1(k) � xi�1(k) > 2�, as
was the case in the preceding section. Recall that this is always the
case provided that xi+1(0)� xi�1(0) > 2�. In this case we have the
following corollary as a direct consequence of Theorem 3.

Corollary 1: For the N -member swarm modeled in (9) with g( � )
as given in (3), if Assumption (2) holds and xi+1(0)� xi(0) > �; i =
1; . . . ; N � 1, then the swarm member positions will converge asymp-
totically to xc, where xc is defined such that xcj = xj(0) and xci =
xj(0) + (i � j)d, for all i 6= j.

The importance of this result is for systems in which the “leader”
of the swarm is not the first (or the last) member, but a member in
the middle. It is also worth mentioning here that if the first and the
last members employ two different desired interindividual distances
d1 and dN ; d1 6= dN , then these will be the intermember distances on
the corresponding sides of the stationary member j. This result is also
directly implied by Theorem 3 and can be stated as another corollary.
The proofs follow from considering each side of the stationary member
separately and applying Theorem 3.

V. SIMULATION RESULTS

In this section we provide numerical simulation examples. We chose
N = 6 members and d = 1 as the desired comfortable distance. As
an attraction/repulsion function we used the linear function g(y) = �y

with � = 0:9. To achieve asynchronism at each time step the swarm
members are set up to sense their neighbor positions and to update
their own position with some probability. In particular, we defined two
threshold probabilities 0 < �psense < 1 and 0 < �pmove < 1. Each time
instant k for each member i two random numbers 0 < pisense(k) < 1
and 0 < pimove(k) < 1 are generated with uniform probability den-
sity. If pisense(k) > �psense, then member i performs neighbor position
sensing (i.e., obtains the current position of its neighbors). Otherwise,
it keeps their old position information. Similarly, if pimove(k) > �pmove,
then member i updates its position according to (1). Otherwise, it keeps
its current position. In the simulations below we used �psense = 0:9 and
�pmove = 0:9.

Fig. 3 shows a simulation of a contracting swarm (i.e., a swarm in
which the members are far apart from each other initially). The mem-
bers move to the comfortable position (d = 1 apart from each other)
as time progresses, as expected.

Fig. 4 shows a simulation of an expanding swarm (i.e., a swarm in
which the members are close to each other initially). In this simulation

Fig. 3. Contracting swarm.

Fig. 4. Expanding swarm.

the results are also as the theory predicts and the swarm converges to
the desired comfortable relative position.

In the simulation by choosing the values of �psense and �pmove one can
change also the speed of convergence (of the implemented simulation
algorithm). In particular, decreasing �psense and �pmove leads to a faster
convergence, whereas increasing them leads to a slower convergence.
Here we presented simulation results of the model in (1). Simulation
of different swarm models can be found in [18] and [19] (and the ref-
erences therein).

VI. CONCLUDING REMARKS

In this correspondence, we present a 1-D asynchronous swarm
model and analyze its stability. The model can also include sensing or
communication delays and total asynchronism. We show that for our
model we have asymptotic convergence of the positions of the swarm
members to the comfortable position despite the presence of delays
and asynchronism. In our analysis we use tools from the parallel and
distributed computation literature. These tools are important since it
might be possible to use them for analysis of n-dimensional swarms
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as well as n-dimensional synchronization problems. Future research
can focus on these directions as well as on moving swarms.
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