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Stable Cooperative Vehicle
Distributions for Surveillance
A mathematical model for the study of the behavior of a spatially distributed group of
heterogeneous vehicles is introduced. We present a way to untangle the coupling between
the assignment of any vehicle’s position and the assignment of all other vehicle positions
by defining general sensing and moving conditions that guarantee that even when the
vehicles’ motion and sensing are highly constrained, they ultimately achieve a stable
emergent distribution. The achieved distribution is optimal in the sense that the propor-
tion of vehicles allocated over each area matches the relative importance of being as-
signed to that area. Based on these conditions, we design a cooperative control scheme
for a multivehicle surveillance problem and show how the vehicles’ maneuvering and
sensing abilities, and the spatial characteristics of the region under surveillance, affect
the desired distribution and the rate at which it is achieved. �DOI: 10.1115/1.2767656�
Introduction
Examples of cooperative control scenarios include the distrib-

ted decision-making systems for a network of autonomous ve-
icles tasked with a search and rescue operation, a surveillance
nd attack mission, or a flexible manufacturing system. Resource
llocation concepts lie at the heart of the significant technological
dvances in the design, understanding, and operation of such co-
perative control systems. In particular, resource allocation strat-
gies have been used to solve constrained optimization problems
here a group of vehicles must distribute themselves among sev-

ral areas of interest so that a predefined cost function is opti-
ized �e.g., to maximize the probability of finding a target or to
inimize the expected waiting time to service tasks/targets�. One

f the main challenges in developing allocation models for coop-
rative control problems is to capture the time-varying, distrib-
ted, and spatially coupled properties, which are inherent to the
roup of vehicles and the region being considered. In particular,
he spatially distributed nature of cooperative control problems
mplies that allocation algorithms must be distributed across mul-
iple moving vehicles, and even though these vehicles may only
ense local information about their immediate surroundings, they
ust still cooperate in order to accomplish as a group a global

ommon objective �1�. Furthermore, the presence of uncertainty in
he vehicles’ sensing abilities implies that the information driving
heir actions may be inaccurate and perhaps outdated as well. A
ehicle may know the results of its own local actions but may not
now what actions other vehicles should perform. In particular,
hen a vehicle gets assigned to an area to perform tasks, the
enefit of assigning all other vehicles to this area generally de-
reases since the same vehicle may usually perform several tasks
n the same vicinity and with relatively little additional cost �i.e.,
enerally, the utility of a group of vehicles in an area decreases
ith an increasing number of agents�. Despite recent progress, the

hallenge of how to untangle this space and time dependent “mul-
ivehicle to multiarea �-task�” coupling to provide a high perfor-

ance cooperative behavior, especially in the presence of only
ocal inaccurate information about the surroundings �e.g., when
he effects of uncertainty noticeably affect the underlying vehicle
ynamics and trajectories�, remains an open and important prob-
em in cooperative control. This is the problem we study here.

Recent studies trying to overcome the effects of uncertainty in
ooperative control scenarios include work on �i� the synchroni-
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zation of information shared between vehicles �2�, �ii� the problem
of dynamic reassignment of tasks among vehicles that communi-
cate their information asynchronously and with random finite de-
lays �3�, �iii� the problem of assignment of mobile vehicles to
stationary targets in the presence of communication imperfections
�4�, �iv� task load balancing approaches to control a group of
vehicles when there are network delays �5�, �v� the “persistent
area denial �PAD�” problem where vehicles use both actual and
predicted information about pop-up targets in order to decide
where to move �6,7�, and �vi� surveillance problems where ve-
hicles must provide “patrol” coverage for an area significantly
larger than their communication radius �8�. Like in Refs. �6–8�,
vehicle allocation models, which allow for spatial uncertainties,
usually assume that different targets may appear in a predefined
region of interest, but at unpredictable locations and random in-
stants of time. They may then remain stationary, move around, or
disappear again after some time. While vehicle allocation models
need to explicitly capture the effects of such uncertainties, coop-
erative control strategies must provide the vehicles with the ability
to appropriately adjust their actions so that they can still exploit
some benefit from cooperation.

Here, we develop vehicle allocation strategies for cooperative
control systems where spatial uncertainties dominate the problem
�e.g., when target pop-up locations cannot be predicted because
they may not depend on past events or where vehicles may have
some prior knowledge about the terrain, but not in a detailed form
as the classical search-theoretic rate of return �ROR� map �9� or
other such maps used in map-based approaches�. In particular, we
develop scalable allocation strategies for surveillance, which guar-
antee that despite the effects of uncertainty, a desired vehicle dis-
tribution among several predefined areas of interest is still
achieved �e.g., so that a global common objective can be met�,
without significantly constraining the individual decision-making
abilities of the vehicles �e.g., so that vehicle route planing �10�
and receding horizon �11�, map-based �12�, or other coordination
schemes may still be used by vehicles located within the same
area to benefit from their spatial proximity�.

Our approach is inspired by how some animals seem to opti-
mally distribute and reallocate themselves in nature. In particular,
we use a concept from ecology known as the “ideal free distribu-
tion” �IFD� �13� to capture the multivehicle to multiarea coupling
described above. The word “ideal” refers to the assumption that
animals have perfect sensing abilities for simultaneously deter-
mining area “suitability” �assumed to be a correlate of Darwinian
fitness� for all areas and that each animal will move to maximize
its fitness. “Free” indicates that animals can move at no cost and

instantaneously to any area regardless of their current location. If
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n animal perceives one area as more suitable, it moves to this
rea in order to increase its own fitness. This movement will,
owever, reduce the new area’s suitability, both to itself and other
nimals in that area. The IFD is an animal distribution �an optimal
quilibrium point� where no animal can increase its fitness by
nilateral deviation from one area to another �i.e., when the IFD is
chieved, all areas achieve equal suitability levels�. Here, we use
he IFD concept to describe a desired vehicle distribution where
he proportioning of the vehicles allocated to each area matches
he importance of being assigned to that area.

For cooperative surveillance scenarios, achieving the IFD im-
lies that vehicles monitor a set of areas so that all areas are
overed uniformly according to their priorities. We let every ve-
icle have a certain “capacity,” which is assumed to be a correlate
f its “competitive” strength capabilities, its sensing ability �e.g., a
ehicle may have noisy sensors�, its maneuvering ability �e.g., its
peed or turn radius�, or other vehicular characteristics that affect
he coverage of an area. We allow vehicles to differ in their ca-
acity and study how differences in their capacities affect the
esired distribution. A description of our earlier work in this area
s provided in Ref. �14�.

The main contributions of this paper are as follows. In Sec. 2,
e describe a cooperative surveillance problem and a particular

urveillance scenario where vehicles must distribute themselves
mong several predefined areas of interest. In Sec. 3, we develop
discrete model that captures individual motion dynamics of a

roup of vehicles across the different regions. We untangle the
ultivehicle to multiarea coupling by establishing a wide class of

ooperative control strategies that will lead to an emergent behav-
or of the group that is a “type of IFD” �which later, for simplicity,
e will refer to as an IFD�. By this, we mean one of many pos-

ible IFD realizations that are, in some sense, close to an IFD that
s achieved under the original assumptions in Ref. �13�. Here, we

ust consider a wide class of distributions since the sensing noise
nd discretization that quantify the agent capacity both generally
ake it impossible to achieve perfect suitability equalization,
hich is demanded by the original IFD concept. We show how an

invariant set� of spatially distributed discrete vehicles can repre-
ent the IFD and use a Lyapunov stability analysis of this set to
llustrate that there is a wide class of resulting vehicle movement
rajectories across the areas that still achieve a desirable distribu-
ion. By achieving the desired distribution, we show a way to
ntangle the multiagent to multitask assignment coupling to pro-
ide a good cooperative behavior, even when agents are highly
onstrained on what to sense, may only sense noisy quantities, and
iffer in their individual capacities �this is the most important and
ovel contribution of this paper�. Finally, in Sec. 4, we design an
FD-based cooperative surveillance strategy and present simula-
ion results that illustrate the performance of such a strategy and
he impact of embedded cooperative sensing strategies on achiev-
ng the IFD. As we show for the cooperative surveillance problem,
nd unlike in Ref. �15�, here, we design individual control laws
hat are, in fact, suitable for real implementation in a group of
iscrete vehicles that share information over a common commu-
ication network.

Cooperative Surveillance Problem
Given a group of networked autonomous vehicles, one of the
ain challenges of multivehicle surveillance problems is to ensure

hat even when the vehicles’ sensing and maneuvering abilities are
ighly constrained, they can nonetheless cooperatively monitor
nd track the state of some region they try to cover. Such surveil-
ance missions include, for instance, deploying autonomous ve-
icles to monitor forest fires, patrol border lines, or suppress ad-
ersary targets. They usually require that vehicles persistently
isit different locations in a predefined region of interest and per-
orm one or several tasks, once a location is reached �e.g., on a
arget located there�. While performing these tasks, vehicles may

etect critical changes within their surroundings and must coop-
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eratively adjust their actions to counteract such changes. We now
describe the particular surveillance scenario we consider here.

First, we assume that vehicles may not be able to follow
straight-line trajectories between targets, either because these tra-
jectories are not feasible �e.g., flying or water vehicles usually
require a minimum turn radius� or because they must reach their
targets at certain approach angles �e.g., to obtain sufficient confi-
dence about the successful completion of a task�. In particular,
assume that the ith vehicle obeys a Dubins model given by ẋ1

i

=v cos��i�, ẋ2
i =v sin��i�, and �̇i=�ui, where x1

i is its horizontal
position, x2

i is its vertical position, v is its �constant� velocity, �i is
its orientation, � is its maximum angular velocity, and −1�ui

�1 is the steering input. Then, the minimum turn radius imposed
by the dynamics of this model is T=v /�. We assume that vehicles
will either travel on the minimum turning radius or on straight
lines.

Second, we assume that the region under surveillance can be
partitioned into smaller nonoverlapping areas. In particular, we
assume that the region can be divided into N equal-size square
��� areas. For example, a fully connected region represents a
region where vehicles can sense and travel to any other area re-
gardless of their current location; a ring is one where the connect-
edness of the areas is characterized by a closed loop �e.g., the
perimeter of a central area�; and a line represents a region where
vehicles can sense and move to adjacent neighboring areas but
with limits on each end �e.g., the border of some area�. Moreover,
we assume that new targets continually pop up at different points
throughout the entire region to be covered according to some sto-
chastic process. We let Ri characterize the �average� rate of ap-
pearance of pop-up targets in area i, and assume it is constant but
unknown to the vehicles. We assume that pop-up target locations
in area i are known only to vehicles currently in i and that they
stay exposed until they are visited by some vehicle. When a ve-
hicle starts approaching a target, the target is considered to be
“attended,” and a vehicle may visit a new target only after the
target being approached has been reached. While a vehicle ap-
proaches a target located in a particular area, it is considered to be
monitoring that area. Once the target is reached, the vehicle may
perform various tasks such as classification, engagement, or veri-
fication of the target, and it is then ignored for the rest of the
mission.

We define the “suitability level” of an area as the �average� rate
of appearance of unattended targets �i.e., targets that have ap-
peared but are not being or have not been attended by any ve-
hicle�. Assume that each area can be characterized by a suitability
function and that the suitability function of area i strongly de-
pends on the number of vehicles xi monitoring that area. Figure 1
shows simulation results for two classes of suitability functions
for different intra-area vehicle coordination strategies and target
pop-up rates Ri. The left plot assumes that vehicles monitoring the
same area coordinate in order to decide which targets within that
area to attend to �i.e., after a target is reached, a vehicle ap-
proaches the closest target that is not being approached by any
other vehicle�. The right plot assumes that vehicles monitoring the
same region do not coordinate and they randomly approach any
target located within the area they are monitoring. Note that an
intra-area coordination strategy leads to a higher rate of targets
being attended by the vehicles and, consequently, to a faster de-
crease in suitability level as the number of vehicles monitoring
that area increases. However, note that coordination gains per ad-
ditional vehicle decrease as the number of vehicles monitoring the
area increases.

Finally, we assume that the goal of a surveillance mission is to
make the proportion of vehicles visiting a set of predefined areas
match the relative importance of monitoring each area. In particu-
lar, a successful surveillance strategy must concentrate more ve-
hicles at areas with higher suitability levels so that vehicles

achieve an emergent distribution across these areas that results in

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a
a
a
c
h
d
t
t
l
r
v
a
t
p
t
t
s
s
t

3

t
v
t
c
t
s
e
b
a
v
t
a

J

Downloa
ll areas attaining similar suitabilities �i.e., similar rates of appear-
nce of unattended targets�. This vehicle distribution goal must be
chieved in spite of vehicle sensing, communication, and motion
onstraints �the combination of which requires a decentralized ve-
icle guidance strategy, with each vehicle making independent
ecisions�. In particular, note that due to the stochastic nature of
he problem �for instance, the randomness in the location where
argets appear or in the time instants they are found�, and regard-
ess of other possible sensing and moving constraints �whether the
egion is modeled as a fully connected region, a ring, or a line�, no
ehicle can perfectly know the value of the suitability level of any
rea, including the ones it is monitoring �e.g., since Ri is unknown
o the vehicles for all i=1, . . . ,N�. The vehicles only have noisy
erceptions about the suitability levels of the area they are moni-
oring and its adjacent areas. We now develop a model that cap-
ures the dynamics of a group of vehicles deployed in the de-
cribed scenario. We then use this model to define a class of
trategies that guarantees the achievement of the surveillance dis-
ribution goal.

Model, Strategy, and Analysis
The model we introduce here is built on a directed graph, so

hat the graph topology defines the interconnections between the
arious areas within some region of interest �e.g., to characterize
he different types of regions a group of vehicles may try to
over�. Thus, in what follows we refer to areas as “nodes.” The
erm “agent” is associated with entities capable of physical motion
uch as vehicles, robots, or aircrafts. A common approach in mod-
ling a group behavior is to assume the existence of a large num-
er of agents. Under such an assumption, the total number of
gents at a node can be adequately represented by a continuous
ariable. Such an approach was used in Ref. �15�. Here, we extend
he model in Ref. �15� to allow for a finite number of discrete

Fig. 1 Suitability functions for an area with �=2.5 km and veh
intra-area coordination strategies. Each data point represent
error bars are sample standard deviations from the mean.
gents. As in Ref. �15�, we assume that agents may move and

ournal of Dynamic Systems, Measurement, and Control
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distribute themselves over N available nodes and let H
= �1, . . . ,N�. Moreover, we define the suitability of node i�H as
si�xi�, where xi represents the state of node i. However, we do not
require the existence of a large number of agents, and we assume
instead that xi is described with a discrete variable. This allows us
to capture individual agent characteristics by taking into account,
for example, different agent capacities. Hence, here, we assume
that xi�R+= �0,�� represents the total agent capacity at node i,
which results from multiple discrete agents being present at that
node. The total agent capacity employed in a mission stays con-
stant, so that C=�i=1

N xi is fixed. Let �c�R+ be the minimum agent
capacity required to be present at any node i�H �i.e., either so
that all suitability functions are well defined at any state or as an
additional constraint on the state of a node�. We assume that C
�N�c so that the total agent capacity employed in a mission is
strictly larger than the combined minimum agent capacity of all
nodes. Note that the precise value of �c will depend on the lowest
agent capacity of any agent and the minimum number of agents
allowed at any node. In fact, we assume that the total agent ca-
pacity can be partitioned into discrete blocks. Each block repre-
sents a particular agent, and its size is assumed to be a correlate of
its capacity. We assume that the largest capacity of any agent is
given by a constant x̄�0, and the smallest capacity of any agent is
given by a constant x� , so that x̄�x� �0. In particular, if x̄=x� =1
then all agents have equal capacities and xi represents, e.g., the
total number of agents monitoring node i as in the surveillance
scenario described in Sec. 2. In general, we assume the following.

• Node suitability changes relate to total node agent capacity
changes. We assume that for all si�xi�, i�H, there exist
constants c� i , c̄i�R, c� i , c̄i�0, such that

s at speed v=15 m/s; T=100 m with „left… and without „right…
0 simulation runs with varying target pop-up locations. The
icle
s 6
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− c� i �
si�yi� − si�zi�

yi − zi
� − c̄i �1�

for any yi ,zi� ��c ,C�, yi�zi. Thus, si�xi� is a strictly mono-
tonically decreasing function in its argument xi� ��c ,C�, so
that as the total agent capacity in node i increases, the suit-
ability of the node decreases. Moreover, we assume that
limxi→�si�xi�=0 for all i�H.

• Strictly positive suitability. We assume that the functions
si�xi��0 for all i=1, . . . ,N, and all xi� ��c ,C�. For this con-
dition to hold, the suitability functions can typically be
shifted vertically if necessary so that the suitability levels
remain strictly positive for any agent capacity. Hence, we
think of suitabilities as relative suitabilities.

3.1 Environmental Constraints on Agent Sensing and
otion. The interconnection of nodes is described by a directed

raph, �H ,A�, where A�H�H. If �i , j��A, this represents that
n agent at node i can sense its neighboring node j and can move
rom i to j. If �i , j��A, agents at node i can sense the total agent
apacity at node j, xj. However, unlike in Ref. �15�, we do not
ssume that agents have perfect sensor capabilities to measure its
wn suitability level or the suitability levels of its neighboring
odes. In particular, for agents at node i, where �i , j��A, “sensing
ode j” implies that agents at node i know sj�xj�+w, where w is
he “sensing noise” that can change over time randomly, but −w�

w� w̄ for known constants w� , w̄�0. Let sj
i�xj�=sj�xj�+w de-

ote the perception �i.e., the noisy measured value� by agents at
ode i of the suitability level of node j with total agent capacity xj.
n some cases, one might want to assume that w depends on xi.
or instance, sj

i�xj�=sj�xj�+w�xi� with w� = w̄, and �w�xi���
�w�xi����0 for xi��xi� represents sensing conditions where a

arger agent capacity at node i results in a better suitability per-
eption of its neighboring node j �e.g., due to better sensing ca-
acities of the individual agents, agreement strategies among dif-
erent agents at the same node that improve their individual
ensing abilities, or averaging strategies which compensate for the
rror present in individual suitability assessments�. Other sensing
onditions may require that sj

i�xj�=sj�xj�+wij, where wij is the
ensing noise present when agents at node i measure the suitabil-
ty level of node j in order to represent that different nodes may be
easured with different accuracies. Here, we simply assume that

f w�k� is the sensing noise present in an agent’s perception at time
, then it may be the case that w�k1��w�k2� for k1�k2, which
roduces a general framework to represent that the sensing capa-
ilities of the agents may change over time �e.g., as agents dis-
over their surroundings, their ability to assess the suitability lev-
ls of neighboring nodes may change�.

Note that an agent’s perception about the suitability level of a
eighboring node may differ from its actual value by at most
ax�w� , w̄�. Also, note that given a node ��H, and two neighbor-

ng nodes i , j such that �� , i��A and �� , j��A with si�xi�
sj�xj�, if si�xi�−sj�xj��2 max�w� , w̄�, then the measured values

f the suitability levels of nodes i and j by agents at node � are
uch that si

��xi��sj
��xj�, regardless of the sensing noise w present

uring the measurements. In other words, if si�xi�−sj�xj�
2 max�w� , w̄�, then the two sets of all possible measured values

f the suitability levels of the corresponding nodes i and j, given
i�xi� and sj�xj�, do not overlap. Conversely, note that these sets
ay only overlap if 0	si�xi�−sj�xj��2 max�w� , w̄�. Moreover, if

j , i��A, then �si
j�xi�−si�xi���max�w� , w̄� and, therefore, �si

j�xi�
sj�xj���3 max�w� , w̄�. Finally, since �sj

j�xj�−sj�xj���max�w� , w̄�,
e obtain �si

j�xi�−sj
j�xj���4 max�w� , w̄�, regardless of the noise w

resent during the measurement. Let us define W=4 max�w� , w̄� as
he maximum difference between the measured suitability value

f a neighboring node and the perception of the suitability level of

00 / Vol. 129, SEPTEMBER 2007
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the node where the sensing agents are located, given that the
actual suitability levels of both nodes i and j are close enough
�i.e., they do not differ by more than 2 max�w� , w̄��.

We assume that for every i�H, there must exist some j�H,
i� j, such that �i , j��A, and there must exist a path between any
two nodes in order to ensure that every node is connected to the
graph. We also assume that if �i , j��A, then �j , i��A, so that if an
agent is at i and can move to j �sense the suitability at j�, agents at
j can also move from j to i �sense the suitability at i�. An agent at
node i can only directly move to node j if �i , j��A. However, if
�i , j��A, it may in some situations be possible for an agent to
�indirectly� move to j by passing through a series of other nodes.
If �i , j��A, then i� j; however, agents at i know the value of
si

i�xi�, are assumed to know xi, and are already at i so they do not
need to move to get to it.

Let R�c
= ��c ,�� and X= �x�R�c

N :�i=1
N xi=C� be the simplex

over which the xi dynamics evolve. Let x�k�
= �x1�k� ,x2�k� , . . . ,xN�k��T�X be the state vector, where xi�k�
represents the total agent capacity at node i at time index k�0.
Constraints on our model below will ensure that x�k��X for all
k�0. Let I�x�= �i�H :xi��c ,x�X� represent the set of nodes at
state x, such that each node i� I�x� is occupied by a certain num-
ber of agents, which results in the total agent capacity at node i
exceeding the value of �c. Similarly, let U�x�=H− I�x� represent
the set of nodes at state x whose total agent capacity equals the
minimum agent capacity �c. The size of the set I�x� is denoted by
NI. Let

M = max
i

�si�xi� − si�xi + x̄�: for all xi � ��c,C�� �2�

for all i�H. In other words, M is the maximum change in suit-
ability that could occur by having an agent of maximum capacity
leave any node. Figure 2 shows an example of a system with N
=3 nodes and perfect sensing capabilities so that w� = w̄=0. Note
that a horizontal band of width M �0 crossing at least one si
curve represents an IFD state for some total agent capacity C. As
the total agent capacity C increases, the band moves toward the x
axis, representing that the average suitability of all nodes at the
IFD state decreases with increasing total agent capacity.

For a general graph topology, the best we can generally hope to
do with local information only and a distributed decision-making
strategy is to distribute agent capacities in such a way that the
suitability levels between any two connected nodes remain within
M. In particular, we can guarantee that �si�xi�−sj�xj���M for all
�i , j��A such that i , j� I�x� at the desired distribution. Note that
the value of M depends on the particular shape of all the suitabil-
ity functions �i.e., the suitability function of any node is bounded
by Eq. �1��, the total agent capacity C, and the largest capacity of
any agent x̄. In particular, note that since Eq. �1� applies for all
i�H and any yi ,zi� ��c ,C�, if we let yi=xi and zi=xi+ x̄, we can
bound M by x̄ mini�c̄i��M � x̄ maxi�c� i�. Similarly, let m
=mini�si�xi�−si�xi+x�� : for all xi� ��c ,C�� for all i�H. Note that
Eq. �1� guarantees that M ,m�0.

3.2 Agent Sensing, Coordination, and Motion
Requirements. Let E be a set of events and let e
�i,k�

i,p�i� represent the

event that one or more agents move from node i�H to neighbor-
ing nodes �� p�i� at time k, where p�i�= �j : �i , j��A�. Note that
the movement of agents from node i to neighboring nodes de-
creases xi since node i reduces its total agent capacity and conse-
quently increases si�xi�. Let 
��i ,k� denote the total agent capacity
of the agents that move from node i�H to node �� p�i� at time k.
Let the list 
�i ,k�= �
 j�i ,k� ,
 j��i ,k� , . . . ,
 j��i ,k�� such that j
	 j�	 ¯ 	 j� and j , j� , . . . , j�� p�i� and 
 j �0 for all j� p�i�
represent the total agent capacity of the agents that move to all

neighboring nodes of node i; the size of the list 
�i ,k� is �p�i�� and
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emains constant for all time k�0 for all i�H since the topology
f the graph �H ,A� is assumed to be time invariant �i.e., 
�i ,k�
RC

�p�i�� for all k, where RC= �0,C��. Let �e
�i,k�
i,p�i� � represent the set

f all possible combinations of how agents can move from node i
o its neighboring nodes for all k. Let the set of events be de-
cribed by E=P��e
�i,k�

i,p�i� ��− ��� �P�·� denotes the power set�. No-

ice that each event e�k��E is defined as a set, with each element
f e�k� representing the transition of possibly multiple agents
mong neighboring nodes in the graph. Multiple elements in e�k�
epresent the simultaneous movements of agents, i.e., migrations
ut of multiple nodes.

An event e�k� may only occur if it is in the set defined by an
enable function,” g :X→P�E�− ���. State transitions are defined
y the operators fe :X→X, where e�E. We now specify g and fe
or e�k��g�x�k��, which define the agents’ sensing and motion.

If for a node i�H, sj
i�xj�−si

i�xi��M for all �i , j��A, then


�i,k�
i,p�i� �e�k� such that 
�i ,k�= �0, . . . ,0� is the only enabled event.

ence, agents at the most suitable node that they know of do not
ove. Note also that this does not then allow for a “swap” of

qual numbers of agents between two nodes i and j, �i , j��A such
hat sj

i�xj�−si
i�xi��M. The reason that such swaps are not possible

or allowed� is that the agents do not necessarily share information
e.g., via communications� that would allow them to achieve an
qual number of agents switching between nodes without chang-
ng the corresponding suitability levels. In other words, we do not
ssume that there is coordination between individuals at different

ig. 2 Suitability functions si„xi… for three fully connected nod
onditions, the IFD distribution is reached when all agents are
hat i« I„x… have suitability levels that do not differ by more th
etween nodes. For the example shown in the plot, while agent
inimum agent capacity �c at the desired distribution. Node i=

o be chosen by any agent. Note also that there may exist diff
eighboring suitability levels of nodes i« I„x… differing by at
istributions of agent capacity for which the IFD pattern is ach
escribe it mathematically in Sec. 3.3. The dark-colored vertic
esultant suitability levels satisfy the IFD pattern „note that x�= †
hat satisfy the IFD pattern….
odes.
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Moreover, if for node i�H, sj
i�xj�−si

i�xi��M for some j such

that �i , j��A, then the only e
�i,k�
i,p�i� �e�k� are the ones with


�i ,k�= �
 j�i ,k� : j� p�i�� such that

�i� xi�k�−���p�i�
��i ,k���c

�ii� si
i�xi�k�−���p�i�
��i ,k��	max

j

�sj
i�xj�k�� : j� p�i��−W

�iii� if 
 j�i ,k��0 for some j� p�i�, then 
 j*�i ,k��x� for some
j*� �j :sj

i�xj�k���s�
i �x��k��∀�� p�i��

�iv� 
 j�i ,k�=0 for any j� p�i� such that si
i�xi�k���sj

i�xj�k��
and xj�k�=�c

Condition �i� guarantees that at any node there is at least a �c
agent capacity. It is required so that conditions �ii� and �iii� are
well defined at all times. To interpret conditions �ii� and �iii�, it is
useful to note that reducing �increasing� the total agent capacity at
a node always increases �decreases� the suitability at that node.
The two conditions constrain how agents can move based on their
capacities and in terms of node suitabilities. Note that agents may
also move from higher suitability nodes to lower suitability nodes
as long as all conditions are satisfied. Condition �ii� states that
after agents move from node i to other nodes, the perception of
the suitability level of node i due to some agents leaving is strictly
less than the highest perception among neighboring nodes minus
W before agents started moving. This prevents there being many
agents moving from node i that stationary agents in node i try to
achieve higher suitability than all its neighbors �of course, addi-

with x̄=x� =1, w� =w̄=0, �c=7, and C=36. Under perfect sensing
ributed in such a way that at state x neighboring nodes i such
M. After the IFD is reached, there is no movement of agents

istribute themselves over nodes 1 and 2, node 3 remains at the
called a truncated node. The suitability level s3„�c… is too low

nt distributions of the total agent capacity that correspond to
st M. The light-colored vertical bands represent all possible
ed. We denote the set of all such distributions by Xd and will
bars illustrate a particular distribution x�= †7,12,17‡T, and its
1,18‡T and x�= †7,10,19‡T would also result in suitability levels
es
dist
an

s d
3 is
ere
mo
iev
al
7,1
tional agents could move to the highest suitability node reducing
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ts suitability far enough, so that node i actually becomes the
ighest suitability node at time k+1�. Without condition �ii�, there
ould be a sustained oscillation of agent movements between
odes. Condition �iii� implies that if the perception of the suitabil-
ty of node i differs by more than M with the perception of some
f its neighboring nodes, and at some point in time some agents
ove to neighboring nodes, then at least one agent must move to

he neighboring node perceived with the highest suitability. With-
ut condition �iii�, some high suitability node could be ignored by
he agents and the IFD distribution might not be achievable. As
e will show below, condition �ii�, together with condition �iii�,
uarantees that the highest suitability node strictly monotonically
ecreases over time. Condition �iv� states that if agents at node i
erceive a less suitable neighboring node to have only the mini-
um agent capacity, they do not move to that node. Without con-

ition �iv�, some agents would still be free to move to nodes with
ower suitability levels, which in an optimal distribution ought to
nly have the minimum agent capacity required, �c. Consequently,
he desired distribution would not be maintained.

Finally, if e�k��g�x�k��, e
�i,k�
i,p�i� �e�k�, then x�k+1�= fe�k��x�k��,

here xi�k+1� equals xi�k� plus

�
�j:i�p�j�,e
�j,k�

j,p�j� �e�k��


i�j,k� − �
�j:j�p�i�,e
�i,k�

i,p�i� �e�k��


 j�i,k�

ote that if x�0��X ,x�k��X ,k�0 �i.e., X is invariant�.
Next, let EN denote the set of all infinite sequences of events in

. Let Ev�EN be the set of valid event trajectories for the model
i.e., the ones that are physically possible�. Event e�k��g�x�k�� is
omposed of a set of what we will call “partial events.” Define a
artial event of type i to represent the movement of 
�i ,k� agents
rom node i�H to its neighbors p�i� so that conditions �i�–�iv� are
atisfied at time k. A partial event of type i will be denoted by
i,p�i� and the occurrence of ei,p�i� indicates that some agents lo-
ated at node i�H move to other nodes. Partial events must occur
ccording to the “allowed” event trajectories. The allowed event
rajectories define the degree of asynchronicity of the model at the
ode level. We define two possibilities for the allowed event tra-
ectories.

�i� For allowed event trajectories Ei�Ev, assume that each
type of partial event occurs infinitely often on each event
trajectory E�Ei. The assumption is met if at each node all
agents do not ever stop trying to move �e.g., if each agent
persistently tries to move to neighboring nodes�. This cor-
responds to assuming “total asynchronism” �16�.

�ii� For allowed event trajectories EB�Ev, assume that there
exists B�0, such that for every event trajectory E�EB, in
every substring e�k�� ,e�k�+1� ,e�k�+2� , . . . ,e�k�+ �B−1��
of E, there is the occurrence of every type of partial event
�i.e., for every i�H, the partial event ei,p�i��e�k�, for
some k ,k��k�k�+B−1�. This corresponds to assuming
“partial asynchronism” �16�.

Let Ek denote the sequence of events e�0� ,e�1� , . . . ,e�k−1�,
nd let the value of the function X�x�0� ,Ek ,k� denote the state
eached at time k from the initial state x�0� by application of the
vent sequence Ek.

3.3 Emergent Agent Distribution. The set

Xd = �x � X: ∀ i � H either�si�xi� − sj�xj�� � M + W ∀ j

� p�i�:xj � �c and si�xi� � sj�xj� ∀ j � p�i�:xj = �c or xi = �c�
�3�

s an invariant set that represents all possible distributions of the
otal agent capacity C at the IFD since �si�xi�−sj�xj���M +W for
�Xd for all i , j� I�x� such that �i , j��A. Note that Xd is invari-

nt since for any x�Xd any node i� I�x�, one of two cases must

02 / Vol. 129, SEPTEMBER 2007
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be true. If node i� I�x� has no neighboring nodes j� p�i� such
that xj =�c, then it differs in suitability from its neighboring nodes
by at most M +W. Therefore, according to the definition of the
enable function g, there is no agent movement between nodes
i , j� I�x�, which differ in suitability by at most M +W �
 j�i ,k�
=0 for all k�0 for all i , j� I�x� when x�Xd�. If for node i
� I�x�, there exist neighboring nodes j� p�i� such that xj =�c, then
condition �iv� guarantees that 
 j�i ,k�=0 for all k�0 for all j
�U�x� when x�Xd. Therefore, at state x�Xd, there is no move-
ment from agents from nodes i�H such that xi��c to nodes at
the minimum agent capacity. Hence, it is always true that 
�i ,k�
= �0, . . . ,0� for all i� I�x�k�� when x�k��Xd. Furthermore, any
node i�U�x�k�� when x�k��Xd has the minimum agent capacity,
so that condition �i� does not allow agents to move and change the
distribution x�Xd. Hence, 
�i ,k�= �0, . . . ,0� for all i�H when
x�k��Xd. Recall, however, that there exist many different agent
distributions that belong to Xd. Any agent distribution, such that
the distribution of the total agent capacities x�Xd, is called an
IFD realization. Note that according to the definition of M, a set of
suitability functions where c̄i�0 for all i�H represents a region
where the migration of agents to any node has a large effect on its
suitability level. Furthermore, note that for this set of suitability
functions, a large value of x̄ means that at the IFD, the difference
in suitability levels between any two neighboring nodes may be
large. Moreover, if c̄i increases for larger values of the argument
of si�xi�, an increase in the total agent capacity �e.g., due to a
larger number of agents, or agents with better capabilities� implies
steeper suitability curves, which in turn results in an increase in
the value of M. Larger values of M imply, in general, a larger set
of possible IFD realizations.

Note that according to the definition of Xd, it is possible for
unconnected nodes �i.e., ones such that �i , j��A� in the set I�x� to
have suitabilities that differ by more than M when the distribution
is achieved. This could happen if two nodes i , j such that i , j
� I�x� with high suitability levels when x�Xd are separated by a
node with a minimum agent capacity �e.g., in a region represented
by a line topology of the graph �H ,A��. However, any two nodes
that are linked according to the graph �H ,A� �i.e., ones such that
�i , j��A� and belong to the set I�x� must have suitability levels
that differ at most by M +W at the desired distribution. Hence,
depending on the graph’s connectivity, there could be isolated
groups of nodes where only nodes belonging to the same group
have suitability levels that differ by at most M +W �i.e., dividing
the region of different groups�. Moreover, note that the formation
of group nodes depends on the total agent capacity employed in
the mission, the initial distribution x�0�, and the random agent
migration between nodes.

THEOREM 1 (Stability for a fully connected region, any total
agent capacity). Given a fully connected graph �H ,A�, �c�0, any
number of agents with total agent capacity C, and agent motion
conditions �i�–�iv�, the invariant set Xd is asymptotically stable in
the large with respect to Ei and exponentially stable in the large
with respect to EB.

Note that asymptotic/exponential stability in the large implies
that for any initial distribution of agents, the invariant set will be
achieved. This result provides general sufficient conditions on
when a distribution satisfying the IFD pattern is achieved. How-
ever, the size of Xd is not necessarily 1, since there are many
possible IFD realizations that may be achieved. Theorem 1 guar-
antees that under the above stated sensing and motion conditions,
one of them will be reached.

Moreover, notice that Theorem 1 requires �c�0 because if �c
=0 at a truncated node i, then si�xi� equals infinity for certain
suitability functions �e.g., si�xi�=ai /xi�. The proof of Theorem 1
considers the emergence of different node groups when the region

is modeled by a fully connected topology. Node groups emerge as
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gents distribute themselves over the nodes if the total agent ca-
acity is small enough. The dynamic emergence of node groups is
onsidered in the proof of Theorem 1.

Exponential stability of the invariant set Xd means that all
gents are guaranteed to converge to Xd at a certain rate. Define

��x,Xd� = min�max��x1 − x1��, . . . , �xN − xN� ��:x� � Xd� �4�

otice that max��x1−x1�� , . . . , �xN−xN� � :x��Xd� measures the
aximum difference among all nodes between the current total

gent capacity at a node and the total agent capacity it ought to
ave to achieve the IFD pattern. Hence, ��x ,Xd� measures the
aximum difference in agent capacity between the current agent

apacity distribution and a particular IFD distribution that mini-
izes the maximum difference. Exponential stability implies that
otions can be overbounded by an exponential function, so that

��X�x�0�,Ek,k�,Xd� � 
e−
k��x�0�,Xd� �5�

or some 
�0 and some 
�0 for all Ek and k�0 such that
kE�EB. The parameter 
 affects the rate at which the IFD is
chieved. If the initial distribution of the total agent capacity x�0�
s further away from Xd, Eq. �5� shows that it can take longer to
chieve the IFD. Note also that it sets a bound for all possible
rajectories of x, regardless of the particular IFD realization that is
chieved.

Finally, note that unlike in Ref. �15�, here, we are able to quan-
ify the rate at which agents abandon nonworthy nodes in order to
chieve an IFD realization. Moreover, here, we are able to guar-
ntee that such a realization is achieved even though agents pos-
ess only noisy assessments of the state of their immediate
urroundings.

THEOREM 2 (Stability for a not fully connected region, but suf-
cient total agent capacity). Given any �H ,A�, �c�0, and agent
otion conditions �i�–�iv�, there exists a constant C�N�c such

hat if the total agent capacity employed in the mission is at least
, then the invariant set Xd is asymptotically stable in the large
ith respect to Ei. and exponentially stable in the large with re-

pect to EB.
Note that Theorem 2 considers a general interconnection topol-

gy, which allows us to consider less restrictive agent sensing and
otion abilities.
Note also that the model we introduce here may be viewed as a

ual representation of the one introduced in Ref. �5�, where each
gent is associated with a “load function.” There, the load level of
n agent depends on the location of that agent and that of the
argets it plans to visit. The results in Ref. �5� are an extension of
he load balancing �16� theorems in Refs. �17 and 18� to the “dis-
rete nonvirtual load” case with sensing and travel delays. Theo-
em 2 is an extension to the case when the “discrete virtual load”
s a nonlinear function of the state with no delays.

Application
Suppose that we wish to design a multi-vehicle guidance strat-

gy to enable a group of vehicles to perform surveillance of some
egion, the problem described in Sec. 2. As we mentioned in Sec.

our goal is to make the proportion of vehicles visiting a set of
redefined areas match the relative importance of monitoring each
rea. Note that both classes of suitability functions in Fig. 1 are
dmissible for the theoretical development in Sec. 3 �i.e., both
atisfy Eq. �1��. However, since our focus is on the relative pro-
ortioning of area monitoring and not intra-area coordination, we
se the no intra-area coordination approach in the remainder of
he paper. Note that conceptually similar results to those below are
btained for specific intra-area coordination strategies.

To define the perception by any vehicle about the suitability
evel of a particular area, we use a system identification approach
o determine a parametrized model of the expected suitability
unction of that area, ŝi�xi�. In particular, for the no intra-area

oordination approach and, according to Fig. 1, for a fixed turn
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radius T, the expected suitability functions are of the form

ŝi�xi� = R̂i − r̂�v,��xi �6�

for all i�H, where R̂i is the expected target pop-up rate for area i
�targets/s� and r̂�v ,�� is the expected rate of targets being attended
by each vehicle moving at speed v in an area of size ��� �targets/
s/vehicle�. Here, we will assume that for any vehicle monitoring
area i, xi and xj for all j� p�i� are known �i.e., the total agent
capacity monitoring areas i and j are known�. Note that knowing
the value of xi in Eq. �6� is a reasonable assumption, particularly
when vehicles can rely on sensing information about the status of
other vehicles monitoring the same and neighboring areas �e.g.,
via individual limited-range communication networks/radars�. A
vehicle’s perception about the suitability level of an area will de-
pend on how the different parameters in Eq. �6� are affected by its
limited sensing and maneuvering capabilities.

First, note that for a vehicle traveling in straight-line trajectories
between targets, r̂�v ,�� is directly proportional to its speed and
inversely proportional to the size of the area. In fact, it can be
shown that such a vehicle reaches uniformly distributed targets at
a rate r̂�v ,��	1.9179v /�. As � increases, a vehicle will on aver-
age need more time to reach a target, and as v increases, it will on
average need less. When more complex vehicle dynamics and
trajectories are taken into account �e.g., when vehicles obey a
Dubins model�, although the simple mathematical relationship be-
tween r̂�v ,�� and v and � does not generally hold, the same quali-
tative behavior can be expected. In particular, simulation results
show that while maneuvering constraints on the vehicles �i.e., an
increasing minimum turn radius� may diminish the expected rate
r̂�v ,�� for all vehicles in an area, the expected suitability function
shape stays the same as in Eq. �6�.

Furthermore, note that knowing the value of R̂i in Eq. �6� usu-
ally requires that vehicles estimate the number of targets that have
appeared in that area in a time window divided by the length of

that window; thus, note that to estimate R̂i vehicles may have to
sense area i over a long period of time in order to obtain an

accurate estimation. In particular, the error induced in assessing R̂i
depends largely on the length of the estimation window being
used and the rate at which targets appear in area i, Ri. Here, we
assume that vehicles have good sensing capabilities and use a
large enough window in estimating the rate of appearance of tar-
gets �e.g., so that vehicles monitoring area i can ultimately obtain

R̂i and R̂j for all j� p�i� within 10% of Ri and Rj, respectively�.
We validated via simulations that this is possible.

We define the perception by a vehicle located over area i about
the suitability level of a neighboring area j as sj

i�xj�= ŝ j�xj�, and
this will be used in the movement rules defined in Sec. 3.2. To
consider the error being induced by a vehicle’s perception about
the suitability level of an area �i.e., its sensing noise�, we assume

that variations in R̂j are independent of variations r̂�v ,��. We also
assume that such deviations are bounded within one standard de-
viation so that for some constants w� , w̄�0, �sj

i�xj�−sj�xj��
= �ŝ j�xj�−sj�xj���max�w� , w̄�, and W is defined as in Sec. 3.1. As
the mission progresses, vehicles decide to move from one area to
another only if conditions �i�–�iv� are satisfied �i.e., when a ve-
hicle reaches a target, it verifies the conditions and tries to move
to the neighboring area with the highest suitability level�.

Figure 3 shows two typical different achieved IFD realizations
for 20 vehicles in a region divided into four areas and where a line
topology is used. While the plots illustrate that good vehicle sur-
veillance distributions are achieved, different IFD realizations can
emerge due to the discrete nature of vehicle capabilities �compare
left and right plots�.

Next, using ideas from Ref. �16�, we define two cooperative
sensing strategies to try to reduce the effects of the sensing noise

w on the mission performance. In particular, we assume that every
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ehicle that is able to measure the suitability level of an area will
ooperate with other vehicles within their area and the areas it is
onnected to by sharing with them its own perception about that
rea. We first implement a synchronous averaging strategy, where
t any time k, all vehicles in an area and its connected areas may
xchange their current perceptions about neighboring areas, and
ny vehicle evaluating conditions �i�–�iv� uses the average value
f all sensing vehicles in order to define its current perception
bout an area. Note that such an approach generally requires a fast
nd synchronized communication network. Hence, if communica-
ion delays between the vehicles are too long or not all sensing
ehicles update their perceptions about neighboring areas at the
ame time or rate, a synchronous algorithm is not desirable.
ence, we define an asynchronous agreement algorithm, where

hose vehicles able to measure the suitability of area i try to reach
common value by exchanging their perceptions and combining

hem by forming convex combinations. In other words, a vehicle’s
erception about a neighboring area i is influenced to different
xtents by all vehicles that can sense that area �e.g., depending on
ow outdated the received information might be�. Note that ve-
icles may actually exchange perceptions several times until they
ventually agree on a common estimate �an agreed upon value�
hat is guaranteed to lie between the maximum and the minimum
erception of all sensing vehicles �16�. Figure 4 shows an ex-
mple of the typical different IFD realizations for these two strat-
gies and the no-coordination case �i.e., where vehicles just use
heir own perception to evaluate conditions �i�–�iv��. Note that the
ltimate distribution has less variation when cooperative sensing
s used. Finally, the Monte Carlo runs in Fig. 5 show that when the
ltimate distribution has less variation, vehicles require more time
o achieve it. More time is required since the distribution that can
e achieved is more even.

Concluding Remarks
We introduce an asynchronous formulation of a multiagent sys-

Fig. 3 Two possible IFD realizations for vehicles traveling a
divided into four areas with �=2.5 km and connected by a lin
em, which captures the essential characteristics of a group of
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agents and a predefined set of spatially distributed areas, including
the interconnections between areas �via the topology of a graph�
and the agents’ maneuvering and sensing abilities �via the state of
the nodes of a graph�. In particular, we study how the differences
in individual abilities affect the optimal distribution of the agents
across these areas. Using a Lyapunov approach, we derive stabil-
ity conditions under which an IFD realization is achieved, even
when the agents’ motion and sensing abilities are highly con-
strained. By considering the presence of sensing noise, we remove
the requirements �as in Ref. �15�� that agents must perfectly assess
the suitability levels of their immediate surroundings. We show
that although the presence of sensing noise may increase the dif-
ference in suitability levels among neighboring nodes at the de-
sired distribution, a global distribution pattern will still emerge in
a fully connected topology, regardless of the total abilities of the
agents. However, since fully connected topologies are rarely ap-
plicable, we present similar results that show that under stronger
conditions on the total abilities of the agents, an IFD realization
can still be achieved for a general topology under only minimal
restrictions on the graph topology.

Finally, we show how the theory presented here is useful in
designing cooperative control strategies for multiagent surveil-
lance problems. Via simulations, we show how the abilities of the
agents affect the achievement of the IFD. In particular, we show
the impact of sensing noise on the difference in suitability levels
among neighboring nodes at the IFD. Via Monte Carlo runs, we
show that distributed sensing strategies offer the potential to miti-
gate the effects of noise but increase the time at which the IFD
distribution is achieved. Taking into account how agent sensing
and travel delays affect achievable distributions and their stability
properties remains a future research direction, as is the implemen-
tation of the proposed strategies in a cooperative robotics experi-
mental testbed.
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ppendix A: Proof of Theorem 1
Due to space constraints, we present a compact version of the

roofs. For further details, the reader is directed to the authors’
ebsites where an extended version can be found.1

Let x�= �x1� , . . . ,xN� � and choose ��x ,Xd� as in Eq. �4�. Also,

V�x� = 
maxi�si�xi�� − 1/N�
j�H

sj�xj� + 1/N �
j�U�x�

sj��c� x � Xd

0 x � Xd
�

�A1�

ote that the definition of V�x� allows us to consider truncated
odes at the IFD. Since U�x� is not known a priori, we do not
xplicitly know V�x�. However, we do not need to know its ex-
licit form. We only need to know that it satisfies certain math-
matical conditions. It can be shown that for the choices of
�x ,Xd� and V�x�, there exist two constants c1�0 and c2�0 such
hat

c1��x,Xd� � V�x� � c2��x,Xd� �A2�

for details see the extended version of this appendix� Now, in
rder to show that Xd is asymptotically stable in the large with
espect to Ei, we must show that for all x�0��Xd and all Ek, such
hat EkE�Ei�x�0��, V�X�x�0� ,Ek ,k��→0 as k→� �i.e., V→0
long all possible motions of the system�. If x�k��Xd, then there
ust exist some node with the highest suitability among all nodes

there might actually be more than 1�. In a fully connected graph
H ,A�, there must also exist another node i such that �i , j*��A,

i�k���c, and sj*�xj*�k��−si�xi�k���M +W, and node j* has the
ighest suitability level among all nodes. Moreover, since

sj*
i��xj*�k��−sj*�xj*�k����max�w� , w̄� for all i��H such that j*

p�i��, it applies to node i, and since si
i�xi�k���si�xi�k��

max�w� , w̄�, we know that if sj*
i �xj*�k���sj*�xj*�k��, then

1

Fig. 4 Effects of implementing a synchr
methods to try to reduce the effects of the
with 20 vehicles at constant speed v=15
„left…, agreement strategy „middle…, averagi
www.ece.osu.edu/�passino/kmp-pubs.html
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sj*
i �xj*�k��−si

i�xi�k���sj*�xj*�k��−si
i�xi�k���sj*�xj*�k��− �si�xi�k��

+max�w� , w̄���M +W−max�w� , w̄��M since W=4 max�w� , w̄�. If
sj*

i �xj*�k��	sj*�xj*�k��, then since sj*
i �xj*�k���sj*�xj*�k��

−max�w� , w̄��0, and si
i�xi�k���si�xi�k��+max�w� , w̄�, we know

that sj*
i �xj*�k��−si

i�xi�k��� �sj*�xj*�k��−max�w� , w̄��−si
i�xi�k��

� (sj*�xj*�k��− �si�xi�k��+max�w� , w̄��)−max�w� , w̄�� �M +W�
−2 max�w� , w̄��M since W=4 max�w� , w̄�. Hence, it must be true
that the perception of agents at node i about the suitability of node
j* is such that sj*

i �xj*�k��−si
i�xi�k���M. In other words, agents at

Fig. 5 Effects of implementing a synchronous and partially
asynchronous iterative methods on reaching an IFD realiza-
tion; no cooperative sensing „square…, agreement strategy
„circle…, averaging strategy „triangle…. Each data point repre-
sent 50 simulation runs with varying target pop-up locations.

ous and partially asynchronous iterative
sing noise w on the mission performance
s and T=800 m; no cooperative sensing
strategy „right…
on
sen
m/
ng
The error bars are sample standard deviations from the mean.
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ode i perceive the suitability of node j* to be higher than the
erception of their own suitability by more than M. However, note
hat they might still perceive a different node to have even higher
uitability than node j*. Hence, we consider two possible cases:
ither one of the highest suitability nodes j* is perceived as being
he highest neighboring node by agents at some node i with

i�k���c and sj*
i �xj*�k��−si

i�xi�k���M or not.

Case 1. If one of the highest suitability nodes j*� �j :sj
i�xj�k��

s�
i �x��k��� for all �� p�i� because of the restrictions imposed by

i, we know that all the partial events are guaranteed to occur
nfinitely often, and according to condition �iii� on e�k��g�x�k��,
ach time partial event ei,p�i� occurs, the suitability of node j* is
uaranteed to decrease by at least m. Moreover, according to con-
ition �ii� on e�k��g�x�k��, si

i�xi�k+1��	sj*
i �xj*�k��−W

sj*�xj*�k��. Therefore, si�xi�k+1���si
i�xi�k+1��+max�w� , w̄�

�sj*
i �xj*�k��−4 max�w� , w̄��+max�w� , w̄��sj*�xj*�k�� since

j*�xj*�k���sj*
i �xj*�k��−max�w� , w̄�. In fact, because the system is

omposted of a finite number of agents, each with a constant agent
apacity, we know that there is a constant �1�0 such that
i�xi�k+1���sj*�xj*�k��−�1. Hence, if node i would become the
ighest suitability node at time k+1, its suitability level would
till have decreased by �1 compared to the highest suitability level
t time k.

Case 2. Next, note that if j*� �j :sj
i�xj�k���s�

i �x��k��� for all
� p�i�, that is, if node j* is not perceived as being one out of
ossibly few nodes with the highest suitability, then the restric-
ions imposed by Ei, together with condition �iii� on e�k�

g�x�k��, do not guarantee that each time partial event ei,p�i� oc-
urs, 
 j*�i ,k��x� . However, there must exist a node j�
�j :sj

i�xj�k���s�
i �x��k��� for all �� p�i�, which is perceived as

eing the one with the highest suitability. Notice that if j� is per-
eived by agents at node i as being the node with the highest
uitability, then it must be the case that sj*�xj*�k��−sj��xj��k��

2 max�w� , w̄�. Moreover, since j*� p�j�� in a fully connected

opology, then �sj*
j��xj*�k��−sj*�xj*�k����max�w� , w̄�, so we know

j*
j��xj*�k��−sj��xj��k���3 max�w� , w̄� and sj*

j��xj*�k��−sj�
j��xj��k��

W. Notice that the restrictions imposed by Ei, together with
ondition �ii� on e�k��g�x�k��, guarantee that there is no agent
ovement from node j� to j*, so the suitability level of node j�

annot increase. Furthermore, condition �iii� on e�k��g�x�k��
uarantees that each time partial event ei,p�i� occurs, 
 j��i ,k��x� .
herefore, eventually, the suitability level of node j� decreases so

hat sj*�xj*�k��−sj��xj��k���2 max�w� , w̄� and, therefore,

j*
i �xj*�k���sj�

i �xj��k��. Note that even when node j* is not per-
eived as being the highest suitability node so that condition �iii�
nly guarantees that 
 j��i ,k��x� , condition �ii� on e�k��g�x�k��
till guarantees that si�xi�k+1��	sj�

i �xj��k��−3 max�w� , w̄�
sj��xj��k��	sj*�xj*�k��.
Since there are only a finite number of nodes that may be mis-

akenly perceived by agents at node i as having the highest suit-
bility level �i.e., Case 2 can only apply a finite number of times�,
ventually j*� �j :sj

i�xj�k���s�
i �x��k��� for all �� p�i�, and at least

ne of the highest suitability nodes will be perceived properly
i.e., Case 1 applies�. Moreover, as long as sj*�xj*�k��−si�xi�k��

M +W for some �i , j*��A, the agents at node i will be

j*
i �xj*�k��−si

i�xi�k���M and, eventually, j*� �j :sj
i�xj�k��

s�
i �x��k��� for all �� p�i�. Therefore, regardless of how many

ighest suitability nodes there are, sooner or later some agents
ill move one of the highest suitability nodes. Hence, it is inevi-

able that eventually the overall highest suitability level will de-
rease �i.e., Case 1 can only occur a finite number of times with-
ut the overall highest suitability level decreasing�. Hence, for

very k�0, there exits k��k such that V�k���V�k�+1� as long
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as x�k���Xd. Hence, Xd is asymptotically stable in the large with
respect to Ei.

We now assume that the allowed event trajectories are EB, and
we show that Xd is exponentially stable in the large with respect
to EB. We first specify the constant ��0, which quantifies the
decrease in the highest suitability value of any neighboring node
of node i �or its own, if it would become the highest suitability
node of all its neighbors�. Note that for a fully connected graph
�H ,A�, the highest suitability value of any neighboring node of
node i corresponds to the highest suitability level of all nodes
�except the node with the highest suitability itself�. However, in
specifying �, we consider a general graph topology �H ,A� since
its definition is also used in the proof of Theorem 2.

For a given set of suitability functions and a set of agents, if
e
�i,k�

i,p�i� �e�k� and 
 j�i ,k��0 for some j� p�i�, then according to

condition �iii�, aj*�i ,k��x� for some node j*� �j :sj
i�xj�k��

�s�
i �x��k�� for all �� p�i��. Therefore, according to the definition

of m, sj*�xj*�k+1���sj*�xj*�k��−m if no agent would leave node
j* at time k �note that if j* is the highest suitability node in the
graph, then according to condition �ii� ���p�j*�
��j* ,k�=0 at time
k�. Therefore, considering m in the definition of � takes into ac-
count the case when the highest suitability node of all neighboring
nodes of node i may remain the same, but its suitability level
sj*�xj*�k�� decreases in value.

Next, there also exists a constant �1�0, such that if e
�i,k�
i,p�i�

�e�k� and 
 j�i ,k��0 for some j� p�i�, then si�xi�k+1��
�sj*�xj*�k��−�1, where j*� p�i� and sj*

i �xj*�k���sj
i�xj�k�� for all

j� p�i�. In other words, if agents at node i decide to move to some
node j, the suitability at node i at time k+1 is less than the highest
perception of the suitability levels of all neighboring nodes of
node i at time k by at least �1. In particular, note that according to
the definition of fe�k��x�k��, we know that whether agents arrive at
node i at time k+1 or not si�xi�k+1���si�xi�k�
−����p�i�,e


�i,k�
i,p�i� �e�k��
��i ,k�� since si is a strictly monotonically de-

creasing function and xi�k+1��xi�k�−����p�i�,e

�i,k�
i,p�i� �e�k��
��i ,k�.

Moreover, according to condition �ii�, we also know that for all
e
�i,k�

i,p�i� �e�k�, si
i�xi�k�−���p�i�
��i ,k��	maxj�sj�xj�k�� : j� p�i��

−W. Hence, if j*�maxj�sj
i�xj�k�� : j� p�i�� and 
 j*�i ,k��x� , then

since W=4 max�w� , w̄� and sj*�xj*�k���sj*
i �xj*�k��−max�w� , w̄�,

si�xi�k+1���si
i�xi�k+1��+max�w� , w̄�	sj*

i �xj*�k��−W+max�w� , w̄�
�sj*�xj*�k�� so that �1�0 for any agent movement. Note that
defining �1 considers the case when agents moving away from
node i may cause its suitability to become the highest suitability
of all its neighboring nodes.

Finally, there is also a constant �2�0, such that if �i , j��A and
si�xi�k���sj�xj�k��, then �si�xi�k��−sj�xj�k�����2 for all k�0. The
value of �2 depends on the particular set of suitability functions
and a given set of agents. Defining �2 takes into account the case
when agents moving from node i to the neighboring node among
the highest suitability �together with other possible agent migra-
tions from other nodes� cause another node that did not necessar-
ily receive any agents to become the highest suitability node of
node i at time k+1.

Let �=min�m ,�1 ,�2�. Next, fix a time k�0. If x�k��Xd, we
know there must exist at least one pair of nodes i , j�H such that
�i , j��A, sj�xj�k��−si�xi�k���M +W, and xi�k���c. Let Hi

*�k�
= �j :sj�xj�k���sj��xj��k�� , j , j�� p�i���H be the set of neighbor-
ing nodes of node i with the highest suitability levels. Since
sj�xj�k��−si�xi�k���M +W, note that for any j��Hi

*�k�,
sj��xj��k��−si�xi�k���M +W, so that sj�

i �xj��k��−si
i�xi�k���M.

Hence, according to the restrictions imposed by EB, there is some
i,p�i�
time k1, k�k1	k+B such that e
�i,k1��e�k1�. In other words,
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Downloa
gents at the node with lower suitability, but not the least agent
apacity �c, must try to move to other nodes at least once every B
ime steps. Note also that there are only a finite number of nodes
hat may mistakenly be perceived as having the highest suitability
evel and that condition �ii� on those nodes guarantees that no
gents may move away from such nodes since its actual suitability
evel must differ from the highest suitability level of all neighbor-
ng nodes of node i by less than 2 max�w� , w̄� �in fact, agents do
ot leave any node whose perception of its own suitability level
oes not drop below the highest neighboring suitability perception
y at least W�. Hence, if we let �·� denote the ceiling function
which gives the smallest integer greater than or equal to its argu-
ent� and agents move to but do not leave any particular node
istakenly perceived as having the highest suitability level, then

fter B max���2/m�max�w� , w̄�� ,1� time steps we can guarantee
hat it will no longer be perceived as being the highest suitability
ode by any agents at node i, unless it has actually become 1.
ence, for a fully connected topology, conditions �ii� and �iii� on

�k��g�x�k��, along with the definition of �, imply that there exist
time k2, k�k2	B max�N�W /2m� ,1�, such that �a� �Hi

*�k2+1��
�Hi

*�k2��−1 and sq�xq�k2+1��=sj�xj�k2�� for all q�Hi
*�k2+1�

nd all j�Hi
*�k2� or �b� sq�xq�k2+1���sj�xj�k2��−� for all q

Hi
*�k2+1� and all j�Hi

*�k2� since condition �ii� guarantees that
ll neighboring nodes that are properly perceived as having the
ighest suitability level do not increase in suitability value. In
ther words, after B max�N�W /2m� ,1� time steps, either the num-
er of best neighboring nodes decreases by 1 �e.g., the number of
odes j�Hi

*�k� with the highest suitability� or the suitability level
f the best neighboring node decreases by at least �. Since there
ight be at most N−1 nodes with the highest suitability, and for a

ully connected topology the suitability level of the best neighbor-
ng node of node i corresponds to the highest suitability in the
ntire graph, we conclude that as long as x�Xd, the highest suit-
bility in the entire graph decreases by at least � every
B max�N�W /2m� ,1� steps, so we obtain that the highest suitabil-

ty in the entire graph is guaranteed to decrease according to
axi�si�xi�k���−maxi�si�xi�k+NB max�N�W /2m� ,1������.
Finally, note that according to Eq. �A1�, V�x�k�� equals the

ifference between the maximum suitability level among all nodes
nd the average suitability level of all nodes with more than the
inimum agent capacity. Therefore, since the maximum suitabil-

ty level among all nodes overbounds V�x�k��, guaranteeing that
he maximum suitability level decreases at least by ��0 together
ith the bounds on V�x�k�� satisfies sufficient conditions for ex-
onential stability to the invariant set Xd �17�.

ppendix B: Proof of Theorem 2
In the proof of Theorem 2, we do no longer assume a fully

onnected topology of the graph �H ,A�. Instead, we assume a
eneral graph topology, and we only require that every node is
onnected to some other node in the graph. Notice that the proof
f Theorem 1 made no assumption on the total agent capacity C,
o that some of the previous results will be used in this section.
e focus on how topological characteristics of the region of in-

erest affect the rate of convergence to the desired distribution. In
articular, we show that Xd is still exponentially stable with re-
pect to EB, even when we do not assume a fully connected to-
ology.

It can be shown that for a large enough agent capacity C, for Xd
o be invariant, it requires that U�x�=� for all x�Xd. Moreover if

e choose ��x ,Xd� as defined in Eq. �4� and let
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V�x� = 
maxi�si�xi�� − �1/N��
j�H

sj�xj� x � Xd

0 x � Xd
�

it can also be shown that the bounds in Eq. �A2� still hold for this
particular definition of V�x� �again, for details see the extended
version of this appendix�. For similar reasons as in the proof of
Theorem 1, we can also establish asymptotic stability of Xd with
respect to Ei. In particular, as long as x�Xd, we know that there
must exist a pair of nodes �i , j��A, where j has the highest suit-
ability level of all neighboring nodes of node i and xi��c, such
that sj�xj�k��−si�xi�k���M +W and hence sj

i�xj�k��−si
i�xi�k���M.

Note that for a general graph �H ,A�, at time k, node j�Hi
*�k� may

not be the node with the highest overall suitability level in the
entire graph. However, as in the proof of Theorem 1, because of
the restrictions imposed by Ei, we know that all the partial events
are guaranteed to occur infinitely often, and according to condi-
tion �iii� on e�k��g�x�k��, if no agents move away from node j
�for example, if node j is actually the highest suitability node in
the entire graph�, its suitability level is guaranteed to eventually
decrease by at least m �since Case 2 in the proof of Theorem 1 can
only occur a finite number of times and, eventually, node j must
be perceived as having the highest suitability level of all neigh-
boring nodes of node i, so that 
 j�i ,k��x��. Note that if there
exists another node j�, such that j�� p�j�, j�� p�i�, and
sj�

j �xj��k��−sj
j�xj�k���M, then the suitability level of the neigh-

boring node j� p�i� may actually increase, given that agents from
node j may move to j� as long as conditions �i–iv� on node j are
satisfied. In particular, condition �ii� on node j guarantees that
even if agents actually move away from node j, its suitability
level is strictly less than the highest suitability level of all its
neighboring nodes. Since every node is connected to some other
node in the graph, there must exist a path from node i to any of
the possibly few highest suitability nodes in the entire graph. Con-
dition �ii� on an overall highest suitability node j* guarantees that
agents do not move away from that node because even if agents
located at that node perceive another neighboring node as having
a higher suitability level �due to the sensing noise w�, the differ-
ence in suitability perceptions is less than W. Hence, condition �ii�
on any of the highest suitability nodes in the graph �which ensures
that no agents move away from such a node at time k� and con-
dition �ii� on any of its neighboring nodes �which ensures that the
suitability level of such nodes at time k+1 remains strictly less
than the maximum suitability at time k� guarantee that
max�si�xi�k��� is nonincreasing. Therefore, since the overall suit-
ability level is nonincreasing, the suitability level of node j re-
mains strictly below the highest suitability level of the entire
graph. In particular, if agents move away from node j, eventually,
either node j becomes the highest suitability node of the entire
graph or agents stop moving away from node j �because its suit-
ability level differs by at most M from all its neighboring nodes�.
Either way, the suitability level of node j eventually decreases.

Finally, since the highest neighboring suitability level eventu-
ally decreases in value, and there are a finite number of highest
neighboring nodes, then, eventually, either the highest suitability
node of the entire graph decreases or the maximum path length
between a pair of nodes �i , j��A such that sj

i�xj�k��−si
i�xi�k��

�M and xi��c, to a maximum suitability node in the entire
graph, decreases. Since there can only be a finite number of over-
all highest suitability nodes, and there are at most �N−1� links
between any two nodes, eventually, the overall highest suitability
level must decrease. Hence, for every k�0, there exists k��k
such that V�k���V�k�+1� as long as x�k���Xd. Hence, Xd is
asymptotically stable in the large with respect to Ei.

To establish exponential stability of Xd with respect to EB for
Theorem 2, we take into account how the topology of a general

graph �H ,A� affects the rate of convergence to the desired state.
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gain, as long as x�Xd, we know that there must exist a pair of
odes �i , j��A, where j has the highest suitability level of all
eighboring nodes of node i and xi��c, such that sj

i�xj�k��
si

i�xi�k���M. Note that there might be several such pairs, and let
s refer to node i as the closest one to some highest suitability in
he entire graph. Fix a time k and let H*�k��H to be the set of
odes such that H*�k�= �i :si�xi�k���sj�xj�k�� , j�H�. In other
ords, the set H*�k� holds all nodes with the highest suitability in

he entire graph. Let L�k� represent the maximum number of links
etween node i and any node j*�H*�k�.

For x�Xd, if there exists some node j� such that �j� , j*��A,

j���c, and sj*
j��xj*�−sj�

j��xj���M for all j*�H*�k� �e.g., in a fully
onnected topology considered in Theorem 1�, then according to
he restrictions imposed by EB, agents try to move to neighboring
odes at least once every B time steps, and conditions �ii� and �iii�
n e�k��g�x�k�� guarantee that after NB max�N�W /2m� ,1� time
teps the maximum suitability in the entire graph decreases by at
east �. Note that node j� must not be unique for all j*�H*�k�.
owever, for a general graph topology, it could be that some
odes connecting to any of the highest suitability nodes j*

H*�k� have local suitability perceptions that differ by at most M
rom their perception of sj*�xj*�k��, so that the restrictions im-
osed by EB together with condition �iii� do not guarantee that at
east some agents located at neighboring nodes of j*�H*�k� move
o the highest suitability node in the entire graph. Consequently,
he maximum suitability in the entire graph is not guaranteed to
ecrease after NB max�N�W /2m� ,1� steps �i.e., since there is no
irect neighbor where agents are guaranteed to come from�. The
estrictions on EB along with conditions �ii� and �iii� only guaran-
ee that all best neighboring nodes of node i decrease by at least �
fter NB max�N�W /2m� ,1� steps, provided that there is no agent
igration from neighboring nodes of node i to other nodes. More-

ver, note that even if agents move away from node j, its suitabil-
ty sj�xj�k�� cannot increase by more than NM since node i is the
losest node to j*�H*�k�, which differs in suitability level by
ore than M +W from its neighboring node. However, after

�2NM /��NB max�N�W /2m� ,1�� we know that all neighboring
odes of node i have to decrease its suitability by more than 2M
nd/or there must exist a pair of nodes �i� , j�� such that �i� , j��
A and sj�

i��xj��k���−si��xi�
i��k����M such that the maximum path

ength L�k���L�k�−1 for k��k+ �2�M /��N2B max�N�W /2m� ,1��.
Since L�k��N �the maximum span between any two nodes� we

now that after N�2�M /m�NB max�N�W /2m� ,1�� steps, either �a�
H*�k+1��� �H*�k��−1 and s �x �k+1��=s �x �k�� for all q
q q j j
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�H*�k+1� and all j�H*�k� or �b� sq�xq�k+1���sj�xj�k��−� for
all q�H*�k+1� and all j�H*�k�. In other words, either the num-
ber of best suitability nodes in the entire graph decreases by at
least 1, or the suitability of the best node decreases by at least �.

Again, because �H*�k���N−1, we can conclude that for
x�k�� �Xd, maxi�si�xi�k���−maxi�si�xi�k+N3�2�M /��NB max
��N�W /2m� ,1������� which again, together with the bounds on
V�x�k��, satisfies sufficient conditions for exponential stability to
the invariant set Xd �17�.
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