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Stable Cooperative Surveillance With
Information Flow Constraints
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Abstract—We consider a cooperative surveillance problem for
a group of autonomous air vehicles (AAVs) that periodically re-
ceives information on suspected locations of targets from a satel-
lite and then must cooperate to decide which AAV should search
for each target. This cooperation must be performed in spite of im-
perfect intervehicle communications (e.g., messages with random
but bounded delays), less than full communication connectivity be-
tween vehicles, uncertainty in target locations, and imperfect ve-
hicle search sensors. We represent the state of the search progress
with a ‘“‘search map,” and use an invariant set to model the set of
states where there is no useful information on target locations. Ar-
rivals of new suspected target location information from the satel-
lite corresponds to perturbations of the search map from this in-
variant set. A cooperation strategy that pursues a type of “persis-
tent area denial” will try to force trajectories of the system into
the invariant set by exploiting initial target information and search
progress by the AAVs. We show that the invariant set is exponen-
tially stable for a class of cooperative surveillance strategies. We
provide a comparative analysis of cooperative and noncooperative
strategies. Next, we show via simulations the impact of imperfect
communications, imperfect vehicle search sensors, uncertainty in
search locations, and pop-up suspected locations on performance.

Index Terms—Autonomous vehicles, cooperative control, coop-
erative search, networked control systems, stability.

1. INTRODUCTION

ROUPS of possibly many autonomous air vehicles

(AAVs) of different types, connected via a commu-
nication network to implement a “vehicle network,” are
technologically feasible and hold the potential to greatly ex-
pand operational capabilities at a lower cost (e.g., due to the
economies of scale gained by manufacturing many simpler
vehicles). Cooperative control for navigation of such vehicle
groups involves coordinating the activities of several agents
so they work together to complete tasks in order to achieve a
common goal. Here, we study how to perform a cooperative
AAV surveillance task that involves two components: 1) search
for stationary targets located in a region and 2) reacting to “pop
up” suspected target locations that are provided by a satellite
(or other high-flying platform).
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There is a significant amount of current research activity
focused on cooperative control of AAVs, and some research
directions in this field are identified in [1]. Solutions to general
cooperative control problems can be obtained via solutions
to vehicle route planning (VRP) problems [2]. While VRP
methods can be used to allocate AAVs to tasks in order to
minimize the mission completion time, generally the methods
are only applicable when uncertainties are not present in the
environment. Additional VRP-related work focusing on coop-
erative search and coordinated sequencing of tasks is in [3]-[6].
Other cooperative control methods include gradient algorithms
[7]-19], multisensor fusion [10], surrogate optimization [11],
and receding horizon control [3], [4], [12]. Using such ap-
proaches, significant mission performance benefits can be
realized via cooperation in some situations, most notably when
there is not a high level of uncertainty.

One challenge in cooperative control problems is to over-
come the effects of uncertainty so that benefits of cooperation
can still be realized. When uncertainty dominates the system,
cooperative strategies will not be able to achieve the high level
of coordination achieved in many of the above-mentioned
studies that assume perfect communications. The most that can
be hoped for is to achieve some benefit from cooperation. Along
these lines, recent work considering imperfect communications
is found in [13]-[19]. Here, we continue along the lines of such
work, but with a focus on cooperative surveillance when there
are a variety of information flow constraints. Of all the current
work in cooperative control, the most closely related to this
study is the “persistent area denial (PAD)” problem studied
in [20] and [21], search theory [22], [23], the application
of the m-person Dynamic Traveling Repairperson Problem
(m-DTRP) to cooperative control [24], and the “map-based
approaches” in [25]-[30].

The main contributions of this paper are: 1) the use of search-
theoretic ROR maps [23] for the coordination of the search
efforts of multiple AAVs for finding targets in a limited area
with uncertainties from sources like communication delays and
partial knowledge of target locations; 2) a novel characteriza-
tion of cooperation objectives as stability properties of an in-
variant set; and 3) the use of standard Lyapunov stability-the-
oretic methods for verification of cooperative control systems.
Our stability analysis provides design guidelines, analogous to
how it does for conventional control. Our simulation studies
show the value of the design guidelines. In Section II the co-
operative surveillance problem is formulated and modeled. The
stability analysis is in Section III. An analytical study is used
to compare the cooperative surveillance approach to a nonco-
operative case in Section IV. Simulations are in Section V and
conclusions and future directions are provided in Section VI.
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II. COOPERATIVE SURVEILLANCE PROBLEM FORMULATION

Suppose that there is a group of AAVs that performs surveil-
lance of a given area and can use information from a satellite
to pursue suspected locations in that area. Assume that the
set of AAVs is given a number of targets to search for with
their respective likely locations. AAVs must work together
autonomously in order to try to maximize the probability of
finding targets in the environment with minimal AAV effort. A
table with a summary of all the variables can be found in the
Appendix.

A. Discrete Event System Model

Here we represent the cooperative surveillance problem as a
nonlinear discrete time asynchronous dynamic system [31] with
the model G = (X, €&, f., g, E,). Here, X is the set of states.
The set of events is denoted by £. State transitions are defined
by f. : X — X, e € £. The enable function, g, defines the oc-
currence of anevente by g : X — P(E)—{0}, being P(£) the
power set of £. Note that f, is defined whene € g.Letk > 0 be
the time indices for the states 2(k) € X" and the enabled events
e(k) € g.Let F, denote a set of “valid” event trajectories. Next,
we define these for the cooperative surveillance problem.

B. Vehicle Model

Suppose that the mth AAV flies at a constant altitude and
obeys a continuous time kinematic model given by the Dubin’s
car [32], 27"(t) = vcos™(t), 25" (t) = vsin™(t),0™(t) =
Wmaxt"™ (t) where 27" is its horizontal position, 3" is its vertical
position, v is its forward (constant) velocity, #™ is its heading di-
rection, w,y 18 its maximum angular velocity, and —1 < «™ <
1 is the steering input. Hence, ™ = +41(—1) stands for the
sharpest possible turn to the right (respectively, left). The min-
imum turn radius for the vehicle is R = (v)/(wmax). Rather
than allow v (¢) to be arbitrary, vehicles will either travel on
the minimum turn radius or on straight lines that are the optimal
paths from a vehicle’s current location and orientation to a de-
sired location and orientation [33].

C. Search Environment and Targets

The search environment is assumed to be rectangular with
length L and width W. Divide the edge with length L into
r € Z7 segments and the edge with length W into s € Z+
segments (ZV is the set of the positive integers). This decom-
poses the search area into s cells, each with a size of lw =
(LW)/(rs). Thus, there are Ng = s discrete cells to search,
and these cells are numbered so that the discretized search space
is Q@ = {1,2,...,Ng}. It is assumed that all the AAVs know
how the cells are numbered and hence know Ng. It is also as-
sumed that there are Ny, AAVs that search for targets and let
V ={1,2,..., Ny} denote the set of vehicles.

Assume that there are N distinct valid stationary targets that
the AAVs are searching for and let D = {1,2,..., Np} denote
the set of targets. Suppose that the size of each target is consid-
erably smaller than the size of each cell. Also, there could be
more than one target located in one cell; however, it is assumed
that all targets inside the same cell are separated in such a way
that they can be detected by the sensors of the AAVs if, for ex-
ample, they take enough “looks” at the cell.

AAV sensors return information about the targets. As-
sume that the sensor of AAV m has a rectangular “foot-
print” with depth df. = Np(L)/(r), width d}. =
NI (W)/(s), Nj*,Nm e 7t with N < r,NI' < s,
and the distance from AAV m to the center of the footprint is
denoted by d7* for all m € V. For convenience, here it is as-
sumed that d} = dy, = d7} = dyg, and d* = d forallm € V
so the footprint can be perfectly aligned with the grid of search
cells. Whenever an AAV is going to search a cell, it will ap-
proach this cell at an angle in the set {0, (7)/(2),, (37)/(2)}.
Due to sensor inaccuracies, it is assumed that searching a cell
once may not result in finding a target even if it is there. Mul-
tiple searches of the same cell may be needed to find a target.
In order to avoid detection by an adversary, AAVs turn their
sensors on only when they have reached the desired orientation
and location with respect to the center of the cell where the
target is suspected to be located. Once an AAV takes a snapshot
of the cell to be searched, the AAV will turn its sensor off until
a new cell of interest is reached again. Thus, suppose that AAV
m takes a snapshot of the cell of interest and that this covers
NN cells. It is assumed that AAV m is able to analyze all
the cells covered by the sensor and can determine, possibly
after a number of snapshots, which targets are located in various
cells. When targets are placed on the boundaries of the cells, it
is assumed that when a cell is searched the search includes the
left and lower boundaries of the cell, but it does not include the
two endpoints lying opposite to where the boundaries join. This
guarantees that the same object cannot be found by searching
two different cells.

D. Rate of Return (ROR) Map

Let p}(q) be the AAV m € V a priori probability that target
j € Disincell ¢ € Q. These distributions are assumed to be
mutually independent and the targets are assumed to be distin-
guishable when they are detected; that is, an AAV can identify
which target has been detected. These a priori probabilities must
be specified by information gathering sources (e.g., the satellite
or other high-flying platform). Ideally, the sum } ., p7"(q) =
1 forany j € D and m € V, but this may not be true if there is
a chance the target is not in any of the cells to be searched. For
simplicity, we assume here that p7*(q) = p;(q) forallm € V
so all AAVs get the same information.

Let £™(q, k) € {0,1,2,...} be the number of looks (passes
when a “snapshot” is taken) performed in cell ¢ € Q) by AAV
m € V by time index k, which is a measure of the amount
of search effort dedicated to cell ¢ € Q [23]. The AAVs share
™ (q, k) for all m € V, via intervehicle send/receive commu-
nications that may have arbitrary but finite delays. These de-
lays should not be thought of as arising only from delays on,
for instance, communication network links, but also from occlu-
sions and sensing/communication range constraints, or tempo-
rary loss of a communication link between vehicles. The max-
imum delay between AAV m/ and AAV m is known and equal
to B™™ € Z*. The information transmitted by the AAVs is
assumed to take at least one time index to arrive at any AAV.
The unknown but bounded delay between AAV m’ and AAV m
is modeled by a random choice of T,z”/m, 1< T]zn,m < Bpm'm
(with no assumption on the underlying statistics). If m = m/,
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then T,Q”,m = 0 for all k since a vehicle knows its own informa-
tion. Each AAV m € V stores the values of /™ (¢, k — 7/™™)
(i.e., the most recent information update that it has received from
AAV m/ € V) if the received £™ (g, k — 7/ ™) is greater than
the current value held by AAV m. Otherwise, AAV m discards
€™ (g, k — 7*'™) and keeps the old one (this event could arise
due to the random nature of the intervehicle communication that
could result in message misordering of the /™ (q,k — 7/™™)
values sent by AAV /). Each AAV m € V in general only has
up to date information on £™(q, k) (its own number of looks),
not on the number of looks of other AAVs m’ # m that are
out of date by k — 77"'™. AAV m € V uses the latest infor-
mation it has to form £™ (g, k) its estimate of the total number
of looks taken by all Ny AAVs. Here, we use /™(q, k) =
ZZYZI 0™ (g, k —7;"™) as the value for this estimate for each
m € V,q € Q, and k > 0. Clearly if there were no communi-
cation delays, then ém’(q, k) would be the total number of looks
that the group of AAVs have taken on cell ¢ € @ by time index
k > 0.

Let L™ C V be a set that contains the AAVs m/,m’ # m
that have looked at cells ¢ € (), possibly multiple times de-
noted by n™(£™ (q,k)) > 1, between the time when AAV
m decides to perform an additional look at target j in cell ¢
and the time when AAV m actually receives the new looks.
Let @™ C @ be the set that contains the cells that have been
visited by AAV m’ € L™ C V during the time when AAV
m decides to perform an additional look at target j in cell
q and the time when AAV m receives new look values. Let
C,, denote the set of cells covered by the sensor footprint of
AAV m. Define the set of “local” events for each AAV m as
{ein’Lm ’Qm./e;"’c’" , egn’Lm’Qm ’Cm}, where e’ln’Lm Q" _ “Re-
ception of looks at ¢ € Q™ fromm’ € L™” e;n’c'“ =“AAVm

LT Q7 Co e m L™ Q™

sensor on for cells ¢ € C,,,” e?’ R, = e’lw Q" and
Com :

es””™ occur simultaneously” so that the set of events of the

system such that e(k) € g is any subset of

Nv
e=p (U v een}) g
(1)

m=1

that contains all the elements of the right side of (1) except that
only one of the three types of local events can be in any event
e € &. Thus, the enable function g allows the occurrence of a
set of possible events at the same time.

Let a’", > 0 be a parameter that is proportional to the sensor
capabilities of AAV m for target j in cell ¢. Let 7}", € (0,1]
be the probability that AAV m detects target j in cell ¢ on a
single look, given that target j is in cell g. Assume that AAV
m knows each 7r§’fq/ and a;-’f; from AAV m/,m’ Zm,m € V.
It is necessary to relate the search effort made by any AAV
when it looks for a target to the probability of detecting a
target. This is done through a “df:tection function” [22], [23].
Let the detection function, b7 (£™ (g, k)), be the conditional
probability of detecting target j in cell g by time index k with
all the Km/(q./ k— 7',:,”’”1)7 m/ € V search values of cell ¢ held
by AAV m, given that target j is in cell ¢. If each cell look

has an independent probability of finding the target, then the
detection function is

Nl (g k=
[T (1- )™ ),
@

Since ™ (q, k) is an estimate, by (4™ (q, k)) should be thought
of as an estimate of the probability j € D was found. AAV
m € V will use this estimate to decide where to search.
To clarify the meaning of (2), note that if £ (g, k — 7] ™) =
0 in (2) for all m’ # m,m’ € V, then the detection function is
given by
a0 (q.k)

b (" (g, k) = B (™ (g, k) = 1= (1= 7)™ :

3)
Use of probability theory to specify (3) gives a7, = 1, but
this parameter is sometimes included to model sensor charac-
teristics. For example, o', > 1(< 1) corresponds to a more
(ess, respectively) effective sensor. Equation (3) models the
common situation with sensors where the probability of de-
tecting a target increases as the number of searches of a cell
increases. Higher values of r;”ql and a}’fq/ mean that the sensor
is better at finding a target in a cell since then fewer searches
of g are needed to achieve target detection. Some cells can be
more difficult to search. Some targets are more difficult to de-
tect. Some AAVs are better suited to finding certain targets in
certain cells. Each of these situations can be quantified with the
7r;”q' and a;-’f(; parameters.

The payoff to AAV m for searching for target j is defined as
pi(q)bj* (€™ (g, k)) which s the probability that target j is in cell
q and will be detected by AAV m in im (¢, k) looks. The cost for
searching for target j with £™(q, k) looks is simply defined as
' (€™ (q,k)) = c£™(q, k), where ¢ > 0 is the cost of a single
search. Note that the cost of one look at target 7 in cell q is given
by v (€™ (q, k) +1) = (£ (¢, k) +1) — ¢ (£ (q, k) = c.
In our simulations we will incorporate the cost of moving to a
location as part of the decision making; however, in our theory ¢
is independent of distance. It is a future direction to incorporate
distance into c for the theory.

Let 37(£™ (g, k)+1) be the mth AAV’s probability of failing
to detect target j on the first ém(q, k) looks in cell ¢ and suc-
ceeding on the £™ (g, k)th + 1 look (where 1 in the expression
£™(q, k) + 1is the look that AAV m is considering whether to
take), given that target j is in cell ¢ and assuming that no other
AAVs look at cell ¢ before AAV m does (i.e., it represents the
increase in probability that AAV m finds target j in cell q if it
takes one more look at it). The variable ﬂAJm (0™ (g, k) + 1) is

B (I (g, k) + 1) = b (F™ (g, k) + 1) = 67" (0™ (g, k) )

where lA);" (f™(q, k)+1) is the estimated detection function com-
puted by time index & when AAV m will perform an additional
look in cell q. It is an estimated value since there exists the
possibility that new number of looks by AAVs m’ # m could
be taken before AAV m takes the look at cell ¢, which would
change the expression shown in (4).
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Next, the rate of return (ROR) [23] in cell ¢ for target 5 and
AAV m can be defined in order to determine the benefit that
AAV m obtains at time index £ when an additional look will
be performed to find target j in cell q. Mathematically, this is
described by the payoff divided by the cost, or

pi(@)B7 (I (q. k) + 1)
@R + 1)

which gives the ratio of the increase in probability to the increase
in cost when ¢™(q, k) looks for target j have been performed in
cell ¢ and an additional look will be executed by AAV m in
cell g. Clearly AAV m would like to place search effort in cells
where this quantity is the largest. When the number of looks
increases, the value of p7" (0™ (q, k) + 1) will decrease. Also,
note that each AAV has an ROR map for each target in any cell.
Thus, each AAV has No Np ROR maps in total.

PRI (g, k) +1) =

&)

E. Detection of Targets

When AAV m finds target j, this AAV makes p;(q) = 0
and communicates this information to the satellite, which broad-
casts to all the AAVs the target that has been found. Hence, all
the AAVs make their respective p;(g) = 0 as well. By making
pj(q) = 0, the AAV that found target j along with the ones
that received this information are forcing their ROR maps to be
equal to zero. This means that this target is no longer of interest
to these AAVs. Below, in our stability analysis we will assume
either that targets are not found, or that if one is then this corre-
sponds to a state perturbation and hence is viewed as restarting
the process.

F. Percentage Rate of Return Map

Next, we introduce what we call the “percentage rate of re-
turn” (PROR) map p} (f™(q, k) + 1), which is the ratio of the
percentage change in probability to the percentage change in
cost when £ (q, k) looks for target j have been performed by
AAV m in cell ¢ and an additional look will be executed by AAV
m in cell q. Hence we have the equation shown at the bottom
of the page. Note that there are differences between the PROR
and the ROR map cases. However, as in the ROR case, AAV m
would like to place search effort in cells where ﬁ;ﬂ (L™ (q,k)+1)
is the largest. The PROR maps are defined for all £™(q, k) > 1
so that there is a difference in the way in which the PROR maps
are computed compared to the way in which ROR maps are (i.e.,
there is a divide by zero problem in the PROR case). Recall
that in the ROR scenario, AAVs receive the a priori probabilis-
tics p;(¢) from the satellite and then compute the ROR maps
according to (5) for any ¢"(q,k) > 0. For the PROR case,
the AAVs also require the p;(g) values from the satellite, but
these values are assumed to be as if the AAVs have not taken
the first look, so p}"(0) = p;(q) for £™(q,k) = 0 and for all
meV,j5€D,qeQ.

G. Cooperative Surveillance Strategies

Key challenges in cooperative surveillance include how to use
the information on the number of looks from other AAVs and
which strategy to use to guide vehicles using that information.
Here, the ROR maps will be used in the strategies; however,
the PROR maps can also be used by replacing each variable
ﬁyl(fm(q, k) + 1) by ﬁ;n(fm(q k) 4+ 1). Next, one choice for
search strategies is discussed. This strategy commands an AAV
to search for the target in the cell with the highest ROR map
that is obtained using both its own number of looks and the
possibly outdated number of looks received from other AAV's
through communications. In particular, the search decision for
AAV m € V at time index k is ¢*(m, k) € @ which defines
the cell it will search in next. Here, the strategy “go to the cell
where a single target is most likely to be present” is chosen as

(o7 ("@m+1)} ©

¢"(m. k) = arg max
and once AAV m reaches the location where cell ¢*(m, k)
is, it searches for all target types in it (break ties arbitrarily
or via going to the closest cell). To implement this policy
AAV m only needs the possibly outdated number of searches
Em'(q, k — T,:,"'m),m’ # m,m’ € V, not the values of maps
ﬁ?’(fm'(q, k) + 1). If AAV m receives a new look value for
cell ¢ from any AAV m/ # m while AAV m is heading to cell
q, this could lead AAV m to cell ¢ # q next if the ROR map
of cell ¢ is not the maximizer at the reception time of the new
information. Thus, AAV decision reconsiderations about the
current maximum benefit are allowed in this framework.
A policy “go look in any cell such that any target is most likely
to be present” can be defined as follows:

¢"(m. k) = arg max j;)pj (f (q,k)+1> )

where ties are broken arbitrarily or by going to the closest cell.
Note that both policies only rely on information at time index
k that is locally available at AAV m; hence, they can be imple-
mented in a distributed fashion. Also, both policies are compu-
tationally simple. Once the ROR values are computed via (5)
and (6) only requires the computation of the maximum element
of NpNg values and (7) requires a sum of Np values N times
then a choice of the maximum. Equation (6) is a policy biased
toward looking for the single most likely target to find. For some
patterns of suspected information on targets it could be less ef-
fective than the policy in (7) at finding the most targets in the
shortest time. In other cases, (6) could be more effective.
Other strategies could also be defined. For instance, assume
that N;* = Ny, N' = N,, forall'm € V and that the remain-
ders, (1)/(N¢) and (s) /(N ), are both zero. Divide the edge with
length L into (r)/(N) segments and the edge with length W

~m , 7

pi(a) (B (B (a. k) +1) = b7 (0 (0, k) ) (€7 (q, )

p; (U"(q, k) +1) = >

b7 (0 (g, k)) (] (€™ (g, k) + 1) = ¢ (€ (q, k)))
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into (s)/(NV.,) segments. This decomposes the search area into
(rs)/(N¢N,,) “supercells,” each with a size of NyN,, cells. We
designate as a supercell all the cells grouped within the sensor
footprint. Also, assume that all the AAVs know how the super-
cells are numbered so that the discretized search space is Qs =
{1,2,...,7s/(N¢Ny)}. Thus, apolicy “golook in any supercell
such that any target is most likely to be present” can be defined as
Sy(m, k) = argmaxs,eqs{>_jep A7 (£ (q, k) + 1)} where
S¥(m, k) represents the supercell covered by any sensor foot-

q
print. A strategy like this but analogous to (6) can also be used.

H. Distributed ROR Map Updates

The cooperative AAV surveillance problem can be viewed
as being composed of Ny subsystems and AAV m € V is
associated with the mth subsystem. Let the state of AAV m be

m +NpNg
x™(k) € R where

a™ (k) = [pT([?m(L k)), .. ‘3 pT(gm(NQ7 k)); . N ;
p?\}D (gm(L k)) e 7p7]GD (ém(NQv k))]T

is the vector that contains all the ROR map values that AAV m
holds by time index k. Let

w(k) = [2'(k)T,..a™ ()T =X eRYTTTY (8)
be the states of the system at time index k. The values of
oy (f™(q, k)), which will be defined below, are not the same as
the p’* (f™(q, k)+1) in (5) even though they are both computed
at time index k. The p7* (I™(q, k)) value is the updated ROR
map when an event e; (k) € e(k) € g(x(k)) occurs at time
index k. Later, AAV m computes at k the estimated rate of
return, p (4™ (q, k) + 1), of all its maps when an additional
look will be performed to find target j in cell ¢ based on
p7*(£™(q,k)). Finally, any cooperative surveillance strategy
defined in Section II-G could be used to decide which cell AAV
m will likely visit next.

Let the sequence {z(k — 1)} € X™ denote the state trajec-
tory such that (k) = fe(x)(z(k—1)) for some e(k) € g(z(k))
for all k > 0. Define the sequence {e(k)} € €N as an event tra-
jectory such that there exists a state trajectory, {z(k)} € XN,
where e(k) € g(x(k)) for every k. The set of all event trajecto-
ries is denoted by £ C EN. Since each AAV m stores £ (g, k)
from any AAV m’ # m when it is greater than the current value
that AAV m holds, the set £, C F can account for these events
and it prunes the set E.

An ROR map will be updated at anytime when an event
e(k) € g(x(k)) occurs using the state transition function f..
Thus, there are three ways of updating the ROR maps for each
AAV corresponding to the three event types. An ROR map
update is performed by AAV m when it is not visiting a cell
of interest and receives one or more number of looks from
AAV m/ # m. For event e[""" (@MQ" ") ¢ oy € g(a(k)),
components of (k) with ¢ € Q™ (k) have

(™ (g, k) = p (7 (g, — 1))
r.n// o ([m// (q7k))

T ()

m” €L (q,k)

)

The occurrence of event e;ﬂ’c’"(k) € e(k) € g(z(k)) forces

AAV m to update pgn(ém(q,k)) so that the components of
z™ (k) with ¢ € Cp, (k) have

Py (" (q,k)) = (" (q, k= 1) (L= 77) ™. (10)
When ef ™" (@R Q7ECn(0) ¢ o (1) € g(a(k)) occurs, com-
ponents of ™ (k) with ¢ € Cy,, (k) [ @™ (k) have

P (g k) = p (0 (g, k — 1))

1" "
a™ w0 (q,k))
_.m ai’, . m” J»q

X (1 7[']7(1) I I (1 ﬂ-]aq

mr€L™ (q,k)

(11)

and the components with ¢ € (C,,(k) — Q™ (k)) have

p7 (07 (a, k) = P (0™ (q, k = 1)) (1 = 77, )
while the components of ™ (k) with ¢ € (Q™ (k) — C(k))
have

Py (™ (q,k)) = (1= 7y @ b

II

m”eL’” ((bk)
X (0 (g, k= 1)), (12)

If the PROR approach is used, then map updates can also be
derived as above.

III. STABILITY ANALYSIS

Let H = {1,2,...,NyNpNg}. If z is a vector, then (z);
denotes the ith component of this vector. Let X. = {z(k) €
X 10 < (x(k)); <e foralli € H},e > 0 be the set that
holds the AAVs’ ROR map values that are less than or equal
to € at time index k. Typically, ¢ is chosen to be small so that,
since the search cost c is fixed, the set X, characterizes when
the probability that further looks of any cell are unlikely to find
a target. Hence, when the state is in X the group of AAVs has
“used up” the information about likely target locations that was
provided initially by the satellite. Initially, the AAVs by them-
selves are assumed to have no target location information (so
the state is in &) and then at £ = O the satellite provides
p;j(¢) and this corresponds to a perturbation from the X set.
Let d(z(k), X.) : X — R denote a metric on R™

d(z(k), X.) = inf{m?,x“(x(k))i

—(a");|}: foralli e H,a' € A.}. (13)
We are interested in showing that the cooperative surveillance
strategy will drive perturbations from A back into X.. To do
that, we first introduce a lemma that shows that every compo-
nent (z(k)); will get closer to the set X. several time indices
after k. The derivation of these time indices after k£ depends on
temporal (i.e., delays) and spatial (i.e., the position of all the
AAVs at time index k, and the density of the suspected target lo-
cations) characteristics of the cooperative surveillance problem.
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Finally, we use the result obtained in the lemma to show that X
is exponentially stable. The proof for every lemma and theorem
can be found in the Appendix.

Lemma Ill.1: Let N, ;”’ be the number of times that AAV m/’
visits cell ¢ between time indices k and k + C/(N, g”"). Let ¢* be
the last cell visited by AAV m at time index k + C(N, qm'). If we
define a Lyapunov function

V(k)= mflx{|(x(k‘))i — €|} (14)
and Ny AAVs use any cooperative surveillance strategy that
satisfies (6), then there exists a function

C(N") = Ng + (Ng —1)(Ny — 1)

Nq
+ 3 DN+ N (Ny = 1) + N (Ny - 2)

m'#m | ¢=1 a#q"

15)

that guarantees that V (k + C(N,;"’)) < V(k).

Remark I1I.1: A lower bound for C(N, ,;”') could be obtained
in (15) for the special case where every AAV visits every cell
once (i.e., N;n' = 1forallm’ € V,q € @) and the delays are
so large that there is no sharing of the looks performed by any
AAV between the time indices & and k& + C(1). Thus, (15) is

Ng
C(l) = NQ + Z Z 1= NQ + (NV — 1)NQ = NQNV-
m’'#m q=1

(16)

Remark I11.2: A similar result to (16) can be obtained for the
case when the delays are small and when every AAV m visits
a group of cells ¢ € Q7' C () between k and k + C'(N;"/).
Assume that every AAV m visits every cell ¢ € Q7' once,
N (’f = 1, and that every AAV m’ # m receives this infor-
mation. Also, assume that every AAV m visits different cells
between k and k + N;”/ such that Q™ Q™ = {0} for all
m # m' and U7Nn‘;1 Q" = Q. Using (17) for this particular
case, we obtain

C(1) = Ny Z 1+ Z Ny Z 1| = NoNy (17)

qEQ™ qeQ™’

m’'#m

where the fact that 37 c o 14+ 3,2 Dogeqn’ 1 = N was
used in (17). Note that the time indices C'(1) here are completed
with the occurrence of the reception of a number of look and not
with a visit the last cell; otherwise, there would be no time to
communicate the result of the look taken by any AAV at the last
cell q[ . Furthermore, the benefit of sharing information is shown
in this particular scenario since every AAV does not have to visit
every cell, which minimizes AAV’s fuel expenditure.

Next, the result of the above lemma is used to show that X,
is exponentially stable.

Theorem I11.2: If Ny, AAVs use any cooperative surveillance
strategy that satisfies (6), then the set X is invariant and expo-
nentially stable in the large w.r.t. E,.

Remark II1.3: If c3 = 7™ in (35), ROR map updates are
driven by the AAV with the most inaccurate sensor and best

probability of detecting targets on a single look. On the other
hand, if ¢ = 1 — max{(1 — x)%, o}, it is desirable to have the
expression max{(1—m)%, o'} close to 0. This could be achieved,
ignoring o, when ©# ~ 1 and/or ¢ > 1 so ROR maps are
flattened out by the AAV with the most inaccurate sensor and
smallest probability of detecting targets on a single look. Hence,
the final result is related to the fact that the ROR map values
will enter faster into the invariant set when the probability of
detecting targets in cells on one single look is close to 1 (i.e.,
m = 7 ~ 1) and the AAVs’ group possesses high-quality sen-
sors (i.e.,a> 1) forallm e V,j € D,q € Q.

Remark I11.4: An analogous stability analysis can be carried
out for the strategy shown in (7). For instance, let ™ (k) =
[ e AL K)o, S e p o (07 (N, )] T € R
be the vector that contains all the ROR map values that AAV m
holds by time index k. Also, let H = {1,2,..., Ny Ny} and
w(k) = [#2(k)T,...,2Nv (k)T]T € RtV be the states of
the system at time index k. Assume that the definitions for the
set X, the metric d(z(k), X.), and the Lyapunov function V (k)
are the same as the ones defined in Section III. It can be shown
that the set X is invariant and exponentially stable in the large
w.r.t. B,.

IV. NONCOOPERATIVE SURVEILLANCE PROBLEM

Consider the case where the AAVs do not communicate with
each other so they do not share the number of looks. We call
this the “noncooperative” problem. In this case, let £ (q, k) be
the number of looks by AAV m. The rate of return in cell g for
target 7 and AAV m is defined as in classical search theory by
PP (0, ) +1) = (D)/(0)pf () (1= o @ (1 (1.
77, ) ). The strategy “go to the cell where a single target is
most likely to be present” defined in Section II-G is
{o7 (" (@ k)+ 1D} A8)

q¢*(m,k) = arg max

JED, q€Q

and once AAV m reaches the location where cell ¢*(m, k) is,
it searches for all target types in it (break ties arbitrarily or by
going to the closest cell). Here, the decisions are made at time &
based on real values of the ROR maps when an additional look
will be performed at target 5 in cell ¢ and not on estimated values
like in the cooperative case. It is the “real value” since there is
no information shared by any other AAV and decision recon-
siderations are not allowed on this case. The other strategies of
Section II-G can also be defined similarly.

Let 2™ (k) and z(k) be defined as in Section II-H. Further-
more, the ROR map updates need to be defined for this problem.
Thus, the components of ™ (k) with ¢ ¢ C,,(k) remain the
same and components with ¢ € C,, (k) have p7*({™(q, k)) =
Py ™ (g, k = 1))(1 - w;{lq)“fq. Next, a comparison between
the cooperative surveillance problem and the noncooperative
one is established to determine when the cooperative strategies
could be superior. To do that, the same definitions introduced in
Section III for X, d(z(k), X.), and V (k) are used here. Also,
we show that the noncooperative strategy will drive perturba-
tions from X back into X..

Lemma IV.1: Let N, ;"' be the number of times that AAV m/

visits cell ¢ during time indices k and k + C(N, ;"/) Denote ¢*
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as the last cell visited by AAV m at time index k + C(N, ,}“,) If m for the cooperative case are less than the ones for the nonco-

we use (14) and Ny AAVs use any noncooperative surveillance
strategy that satisfies (18), then there exists a function

Nq
c(Ny)=No+ > Y N

m’'#m q=1

19)

that guarantees that V' (k + C(Z\_f;"/)) < V(k).

Theorem IV.2: If Ny AAVs use any noncooperative surveil-
lance strategy that satisfies (18), then the set & is invariant and
exponentially stable in the large.

A. Comparative Analysis Between Cooperative and
Noncooperative Strategies

First of all, we use (13) as the performance metric for com-
parisons. This metric indicates how fast the components of x (k)
approach the set &.. The faster the components approach X, the
quicker the targets could likely be found with minimal effort.
We start the comparison using the results obtained in Lemmas
III.1 and I'V.1. Recall that the time indices are driven by the oc-
currence of events and not by step sizes, so the above lemmas
can only be compared under special cases. Thus, we assume in
this analysis that the number of time indices generated by both
strategies between & and k + C’(N,}“/) (k + C’(N,;”') respec-
tively) takes place during an equal time range.

Note that although we consider that the time indices gener-
ated by both strategies elapse during the same time, it is still dif-
ficult to see which strategy is superior since the sequence of cells
visited for each AAV might evolve differently in each problem
resulting in different N;"/ and 1\7,;”' values. Thus, we further
narrow the comparison for the special case described in Remark
II1.1 and also assume that N;” =1lin(19)forallm € V,q € Q.
For this particular case, C(-) = Ng Ny in (15) and (19). This
means that when the delays in the cooperative case are larger
than the time between indices k and k + C (N;”/), the perfor-
mance of the cooperative strategy is equal to the noncoopera-
tive one since the components, ROR maps of z:(k), decrease the
same amount in both problems during the same time interval.
Furthermore, if at least one value of the number of looks trans-
mitted by AAV m/ is received by at least one AAV m # m/
between k and k + C(N, ;n/), then one component of the state
of the cooperative strategy is closer to X than one component
of the state of the noncooperative problem. Therefore, these two
facts show that the cooperative strategy can perform no worse
than the noncooperative one for the special case studied here.
Moreover, notice that if Remark III.2 is used for the coopera-
tive problem, then the performance of the cooperative strategy
is equal to the noncooperative one provided that 77 = 7 and
aj, = aforallm € V,q € Q,j € D; however, the former
minimizes fuel expenditure by visiting less suspected cells than
the noncooperative case.

Next, we provide conditions to evaluate when the coopera-
tive approach is superior to the noncooperative one. For this, we
consider again that the time indices generated by both strategies
elapse during the same time. Using the conditions of Lemma
III.1 defined for the cooperative case, the conditions stated in
Lemma IV.1 for the noncooperative case, and the ROR map up-
date formulas, it can be shown that the ROR map values of AAV

operative case. Moreover, if the condition

(1 - ﬂ?q)

771, 771,
a”, N,

VAL ] " (14:;-7.14 N‘;n
H (1 -7y )
m’'#{m/ ,m}
(1,7”" NWI/
< (1)
is satisfied for the ROR map update formulas of each AAV m/’ #
m, then the performance of the cooperative strategies is superior
to the noncooperative strategies.

One important fact to highlight is the result obtained in (35)
and (36). Although the upper bounds for these equations are
equal, this is a consequence of the conservative nature of the
analysis in the cooperative problem. For instance, notice how
the final result would change in (35) if the above special case
is considered (i.e., AAV m always receives at least one value
of the number of looks between & and k + C(N, ;”/)). The up-
date of the ROR map in the cooperative case would be made by
means of either (27) or (30). It is easy to see, under the consid-
erations assumed above, that the components of the state for the
cooperative case would enter faster into the set X than in the
noncooperative case. This is precisely the benefit obtained by
the AAVs sharing information.

V. SIMULATIONS

Two simulations are shown in this section. The first one
shows how the cooperative surveillance strategies react, during
the ongoing mission, to the arrivals of new suspected target
location information from the satellite. The second simula-
tion illustrates the performance of nonplanning and planning
cooperative strategies, with different horizon lengths, in the
presence of communication delays in different ranges.

Travel distances between cells are considered for each AAV
at each decision time. Let 27 = [z{,2]" denote the coordi-
nates in the (z7,2%) plane of the center of the gth cell. Let
ds(zm(k),z7) > 0 be the minimum distance that AAV m
must travel at index k from its current location and orientation
Tm (k) = [27(k), 25*(k), 0™ (k)] T to take a snapshot at cell q.
Notice that since all AAVs are moving all the time, it is not pos-
sible to have dq(zm (k), z7) = 0 due to if an AAV needs to take
two consecutive snapshots of the same cell, then this particular
AAV will travel a distance, different from zero, determined by
the path generated by Dubin’s car. The cooperative strategy de-
fined in (6) is modified for the nonplaning case as follows:

q*(m, k)

; (0 (g, k) + 1 !

8 it 7 (700 +0) +
and the update of the ROR maps is performed as defined in
Section II-H.

Consider, for the cooperative strategy with planning, that
AAV m plans to visit a sequence of cells next at index k.
The planning cooperative surveillance strategy for AAV
m is made over the ROR maps, where the plan of length
P at index k is denoted by ¢*[m,k,P] = q¢*(m,k,0),
g (m,k,1),....,¢*(m,k,P — 1). Let C,,(k,0) denote
all the cells covered by the sensor footprint of the mth
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AAV’s first plan. Suppose now that the AAVs share the cells
q*[m, k, P] along with the number of looks for all m € V,
via intervehicle communications with arbitrary but finite
delays. Let Q™ ™[k,P] C Q be a set held by AAV m
at index k that contains the possibly out-of-date sequence
of all the cells planned to be visited by each AAV m/,
m/ # m such that Q™ ™[k, P] = Cypr (k—77™,0), Cyp (k —
m 1), Cp(k — 7™ P — 1) while the set
Q™Mk,P] C (@ denotes the sequence of all the cells
planned to be visited by AAV m at index k such that
QM[k, P] = Cpn(k,0),Cr(k,1),...,Cpn(k,P—1).Let H, =
{0,1,..., P} denote the set of horizon lengths. Thus, the
cooperative strategy defined in (6) for : € Hy is modified for
this case to

*(m, k,i) = Am(ém ki 1)
q*(m, k1) argjeg{a(feQ{ﬂ] (q,k,i) +

*aa%mw}

where d (7 (k, 1), ?) is the distance between AAV m and cell
q for the ith plan. The maps p7* (€™ (g, k,4) + 1) fori > 1,i €
H, with any cell in both ¢ € Q™™ [k, P] and ¢ € Q™[k,i—1]
(note that when 7 = 0 the updates are performed as described in
Section II-H) have

7 (ki 1) = 5 (0700, 0) (=)

% H (1_7rm)a7-?q H (1_7rm)a7-?q.

7, 7,
qu’”’”"[k,P] qu'rn,[k,i]

The set Q™ [k, 1] takes into account all the cells covered by the
mth AAV’s sensor footprint up to the :th projection horizon. On
the other hand, the set Q™ ™[k, P] includes all the cells, pos-
sibly out of date by T]:n/m, in the projection length P of each
AAV m’ € V,m' # m. Therefore, each AAV m first flattens
out each ROR map associated with each cell contained in the
projection length P of each AAV m’ # m, and then it further
flattens out, except in the first projection, each ROR map cov-
ered by the sensor footprint in its previous projection length be-
fore making any decision about the cell to be visited next.

Let the length and width of the search region be L = 10000 m
and W = 10000 m, respectively, and let r = s = 100 so that
the search environment is divided into rs = 10000 cells and
the size of each cell is 10000 m2. Suppose that a group of three
AAVs is considered. AAVs are assumed to move at a constant
speed of v = 150 m/s and have a minimum turning radius of
800 m. Each AAV sensor footprint is 500 m x 500 m and the
distance from each AAV to the center of the footprint is 400 m.
There are four suspected areas in the environment (see Fig. 1).
Let 71';”; = 0.8, a;?f(; = 0.9 (e.g., imperfect sensors), for all
m € V,j € D,q € Q, the sampling time Ty, = 0.1 s, and
the simulation length of 600 s. All these above parameters are
used in the simulations unless otherwise stated.

A. Performance in the Presence of Pop-Up
Suspected Locations

The behavior of the cooperative strategies with planning is
shown in this section when some suspected locations pop-up

Simulation time: 0

Distance in km

pected locations:
CAAYST e fortarget 2
0 2 4 6 8 10
Distance in km

Fig. 1. Initial positions and orientations of AAVs and suspected locations of
targets. AAVs are labeled 1 up to 3 from left to right.

when the group of AAVs have already begun the mission. The
same parameters mentioned above are used in this simulation
except the following. The suspected area of targets 1 and 2 are
available to all the AAVs at the beginning of the simulation,
while the suspected areas of targets 3 and 4 pop up at time 230 s.
Moreover, the horizon length for each AAV is P = 3 and the
communication delays, 1 < T];n/m < 3 s, are fixed randomly
between AAVs during the mission. The trajectories of the AAVs
are shown in Fig. 2. Note that the group of AAVs focus their
effort in the suspected locations of targets 1 and 2 since the
beginning of the mission and up to the 230 s [see Fig. 2(a)].
Thus, the suspected locations of targets 3 and 4 pop-up 230 s
after the mission has begun and the group of AAVs focus on
those new areas and finally make some visits to the location
where targets 1 and 2 might be [see Fig. 2(b)].

B. Influences of Communication Delays and Plan Horizons

We focus here on the AAVs’ performance when both non-
planning and planning strategies are used for the cooperative
surveillance in a mission. Specifically, the impact of both com-
munication delays and the planning horizon length on the plan-
ning strategies is investigated. We seek to determine if planning
cooperative strategies are always superior to nonplanning coop-
erative ones. We would like to obtain conditions under which it
is best to plan over the maps and when it is best not to do it in
the presence of communications delays. We run a Monte Carlo
simulation with the following values: the maximum delay in a
range B™'™ € {0.2,1,3,5,10,20} s for each m, m’, m # m’,
and a projection lengths range of P € {1,2,3,4,5,6}. Each
delay-projection length case consists of 35 simulations where
the communication delays are randomly generated in each of
these simulations such that 1 < ’r,T'm < B™'™ for all m #
m/. The number of simulations for each delay-projection length
combination was chosen such that the standard deviation of the
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Fig. 2. Performance of cooperative surveillance strategies in the presence of
pop-up suspected locations. (a) Mission performance without targets 3 and 4.
(b) Mission performance with targets 3 and 4.

performance measures (introduced below) did not change sig-
nificantly and settled to a relatively small constant value beyond
35 simulations.

To establish a comparison between the performance of non-
planning cooperative and planning cooperative strategies, we
use the metric defined in (13) as a way to evaluate the perfor-
mance of the AAVs. We will compute the average of the av-
erage of the metric at each delay-projection length case with
e = 10~*. We will also compute the maximum of the average
of this quantity over the entire simulation run. The results of the
Monte Carlo simulation are shown in Fig. 3. Fig. 3(a) shows the
performance of both the nonplanning and planning cases for the
average of the average of the metric. Notice that the performance
of the nonplanning case stays almost constant for the range
of communication delays considered in the simulation. For the
planning case, the performance decreases for small delays, ex-
cept for the “one look ahead” case, due to the fact that most
of the time the AAVs make decisions at the same time, which
results in a worst performance for the bounded delay equals
to 0.2 s. Then, all the performances increase almost steadily
for larger delays than 1 s. It is important to highlight that it is

105 - -

95 - -

—*— Nonplanning

—=— 1look ahead
=+ 2looks ahead
—+—- 3 looks ahead|
~—©— 4 looks ahead
© - 5 looks ahead
—O— - 6 looks ahead

L
0 2 4 6 8 10 12 14 16 18 20
delays(seq.

(@)

—— Nonplanning

1look ahead
«+- 2looks ahead|
—+— 3 looks ahead
—©6— 4 looks ahead
-© -+ 5 looks ahead

—O— - 6 looks ahead
1 L ! L I
0 2 4 6 8 10 12 14 16 18 20

delays(sed.
(b)

Fig. 3. Performance measures of the nonplanning and planning case. (a) Av-
erage of average of metric. (b) Maximum of average of metric.

worthwhile to consider large projection lengths for small com-
munication delays. However, when the communication delays
are large then the value of planning ahead over the maps is not
useful (e.g., note, for instance, how the performance for all the
projection lengths have almost the same value for a delay of
20 s). Moreover, if we run the simulation for larger delays, then
the performance of the planning case will eventually be equal
to the nonplanning case. Fig. 3(b) shows the performance for
both the nonplanning and planning case when the maximum of
the average of the metric is used as a performance measure. No-
tice that it is better to use a nonplanning strategy for the AAVs
instead of some planning strategies for delays greater than 3 s.
However, all the planning strategies are superior to the nonplan-
ning one for delays less than 3 s. Note that when the delay is
equal to 20 s all the performances are about the same so it is
better to use a nonplanning strategy for large delays. The results
obtained in this section could be used as design guidelines in
order to decide whether it is worthwhile to plan ahead or not to
do it in the presence of communication delays. In the case of
deciding to plan ahead, the proper horizon length could also be
chosen depending on the known bounded communication delay
present in the network.
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VI. CONCLUDING REMARKS

We have used classical search theory for the coordination of
multiple AAVs for finding targets in a limited area with uncer-
tainties from several sources. Also, we have characterized coop-
eration objectives as stability properties of an invariant set and
have used standard Lyapunov stability-theoretic methods for
the verification of cooperative control systems. We introduced
a noncooperative problem and derived conditions under which
its performance is inferior to the cooperative problem. More-
over, design guidelines for tuning the cooperative controller are
provided when there are several sources of uncertainties in the
system.

Future work should investigate the incorporation of travel dis-
tance into the cost ¢, the accuracy and speed trade-off in the
surveillance mission (e.g., integration of “whereabouts search”
[23]), the possibility of adding the predicted information [20] in
the current framework in order to enhance team performance,
and the incorporation of the optimal search and stop problem
[23] into the cooperative surveillance framework when there are
rewards for finding the targets in the environment and costs as-
sociated with searching. A summary of all the variables defined
in this study is given in Table L.

APPENDIX

1) Proof of Lemma Ill.1: Here, we derive the number of time
indices, C(N, ;”,) that elapse after the current time index % for
which we are guaranteed that V(k + C(N;”/)) < V(). We
assume the worst case scenario for the temporal-spatial factors,
which are when: 1) the delays are so large so that every AAV
must visit every cell (i.e., AAV m visits each cell ¢ and some
time later AAV m receives new look values from some AAV m/
taken at cell ¢): 2) AAV m is located in the search environment
in such a way that it takes the longest time to visit all the Ng
cells; and 3) the ROR maps of all the AAVs have the same value
in (8) by time index k (i.e., there are Ny Np N maximizers).
Note that since all the positions of the AAVs m’ # m are closer
to the suspected location of the targets than the mth AAV’s posi-
tion, AAVs m/’ could take NV ;”' > 1 looks in cell q before AAV
m visits all the Ng cells.

We first describe the time indices of C(1V, (;"/) associated with
AAV m. Note first that AAV m visits Ng cells. Assume that the
looks taken in N — 1 cells by AAV m are received by Ny — 1
AAVs some time later (i.e., (Ng — 1)(Ny — 1) time indices
in total). There are Ng — 1 look values that are received by
AAVs m’ # m since AAV m visits the last cell ¢¢ at time index
kE+C(N, qm') so there is no time for AAVs /' # m to receive this
new information. Thus, the total time indices associated with
AAV m are

Ng + (Ng — 1)(Ny — 1). (20)

Now we account for the time indices of C'(1V, ;"/ ) associated with
each AAV m/. AAV m/ visits each cell ¢V, ;"/ times (i.e., a total
of Zflvfl N, ;n, time indices). Each visit performed by AAV m/
inany cell ¢ # ¢° will be communicated and received by Ny — 1
AAVs after some time (i.e., atotal of 3 __, . N(;"/ (Ny —1) time
indices). Similarly, each visit performed by AAV m’ in cell ¢
will be received by all the AAVs except for AAV m (i.e., a total

of N:}’ (Ny — 2) time indices). Recall that, by assumption, a
new look performed in cell ¢* by AAV m/ is not received by
AAV m until the latter visits cell ¢* for the first time. The total
time indices associated with AAV m’ are then

Nq
SN+ Y N (Ny — 1)+ N (Ny —2). (21)
g=1 q#q*

Since the time indices in (21) hold for each AAV m’ # m, and
adding in (20) the total is obtained. [ |

2) Proof of Theorem II1.2: This proof is shown in several
steps. First we show that X is an invariant set. Next we show
that the ROR maps of the system decrease when they are outside
X between time indices k and k+C/(N, ,;”' ). Later, we show how
ROR maps decrease until they enter the invariant set. Finally, we
combine all the results to show that the set X is invariant and
exponentially stable in the large w.r.t. F,. Note that the use of
the above lemma guarantees that: 1) any ROR map will decrease
in at least C'(V, ,;”/) time indices even if any AAV holds out of
date number of looks from other AAVs, and 2) any AAV m
makes definite progress after C(NN, ;”,) time indices since all the
ROR maps of AAV m have decreased either because AAV m
has visited all the cells ¢ € @ or because AAV m has received a
new number of looks performed by any AAV m’ in some cells
q € Q (i.e., old information from the system has been purged).

X. is an invariant set. For any 2(0) € X, it is known that
(2(0)); < e. An upper bound for the ROR map updates can be
derived from (9)—(12) to have

p7 (U™ (q.k)) < p7 (" (g, k = 1)(1 = m)*

where T = ming, ; {77} and @ = miny.ev jep eial,} >
0. From (22), it can be seen that for all j € D,q € Q,m €
Vii € H,and k > 0(xz(k + 1)); < (x(k)); so that for all
i€ H(x(k+1)); <(x(k)); < (2(0)); < e. Therefore, the set
X is invariant.

ROR maps are outside X. between time indices £ and
k + C(N;”/). By assumption, max;{(z(k));} > ¢ and
max; {(z(k + C(N(’IW')))Z} > ¢. Also, assume without loss of
generality that max;{(z(k));} = ,037}/ (0™ (¢, k)) is the max-
imizer derived from (6) at time index k so that AAV m’ € V
chooses to search next for target 5/ € D in cell ¢ € @ at time
index k. There could arise two possible events, denoted a) and
b), at time index k + C(N;"/).

Case a: The maximizer at this time index is not the map asso-
ciated with target j' in cell ¢’ held by AAV m/. Assume without
loss of generality that the map derived from (6) at time index
k + C(N™) is max;{(z(k + C(N7")))i} = p (0™ (q. k +
C (N;"/ )) so that AAV m chooses to search next for target j lo-
cated in cell q.

Now we use (14) to obtain

(22)

V(k+ C(N™)) = V(k)

q

= max{|(z(k + C(N;"))); — e} — max{|(x(k)); - e}
= o (g b+ o)) = (1 (@) . @3)

Here, two other possibilities could arise as well.
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TABLE 1
SUMMARY OF ALL THE VARIABLES DEFINED IN THIS STUDY
Variables Description
T,y v Horizontal position, vertical position, and velocity of m AAV
0™, Winaz, U™ Heading direction, maximum angular velocity, and steering input of " AAV
LW Length and width of search environment
s Number of cells in the search environment along the horizontal and vertical direction
Ng Total number of discrete cells
dj.dp Depth and width of m® AAV’s sensor footprint
ay Distance from m?® AAV to the center of the sensor footprint
' (q) Probability that target j is in cell ¢ for m* AAV
(g, k) Number of looks performed in cell ¢ by m* AAV at time k
Bmm Maximum delay between AAV m/ and AAV m
" Random delay between AAV m’ and AAV m at time k
L™(q, k) AAV m receives at time k the set of the AAVs m/, m’ # m that has looked at cells ¢
n™ (™ (g, k)) AAV m receives at time k the number of times that AAVs m’, m’ # m have looked at cells ¢
ar, Sensor capabilities of AAV m for target j in cell g
Ty Probability that AAV m detects target j in cell ¢ on a single look
b (e (g, k)) Conditional probability of detecting target j in cell ¢ by AAV m at time k
B (g, k) +1) mt" AAV’s probability of succeeding to detect target j in cell ¢ on an additional look
P77 (0™ (g, k) + 1) | Ratio of increase in probability to increase in cost for target j in cell ¢ when AAV m executes an additional look
x™(k), x(k) State of subsystem, AAV m, and the system at time index k
q*[m, k, P] Planning cooperative surveillance strategy of length P for AAV m at time k
Chi(k,i) Cells covered by the sensor footprint of the m** AAV’s i** plan at time k
Q™ ™k, P Set held by AAV m at time & that contains the sequence of the cells planned to be visited by AAV m/ # m
QM [k, P] Sequence of cells planned to be visited by AAV m at index k

Case a.1: This is the case where the map of target j in cell g
has not been updated by any AAV between time indices k& and
k+C (N;"' ). This means that, on one hand, it is known that

o (0@ b+ CN)) = o7 (E"(@ k) %)

and, on the other one, p7* (™ (q,k)) < p;’?' (0™ (¢, k)) since the
map of target 5 in cell ¢ has not been modified between time in-
diceskandk + C(N, ,;"'/ ), it means that this map is not equal to the
one that maximizes (6) at time index k (see the lemma where it is
studied the worst case scenario). Therefore, there exists a positive
constanto € (0, 1) suchthatthe following expressionis satisfied:

o (070, k)) = oot (£ (1)) (25)
Now, using (24) and (25) in (23)
V(k+C (N ) = Vk) < =(1 = 0)d (a(k), X.) . 6)

Case a.2: For this case AAV m has updated the
map of target j in cell ¢ n™({™(q,k + C’(N,;”/))) +
Zm/'eL;n(q,k+c(N;ﬂ’)) (e (g k + C(N;nl))) times
between time indices k& and k& + C(N;“'). Notice that
(0" (q, k + C’(N;“'))) > 1 corresponds to the number
of times that AAV m has visited cell g looking for any target
while n™(£™" (¢, k + C(N™))) > 1 indicates that AAV m
have received new look values performed by any AAV m/ in

cell ¢ between time indices k and k + C(N;”,). Hence, the
ROR map p7* (™ (q, k + C(N;”/))) of cell ¢ is modified as

m m(pm m "‘;’.anm(ém( k+C qu, ))
Py () =P (" (q. k) (1 — 7, st ()
X H (1 -7
m”eL’m(q,k-i-C(N;”/))
<™ (g, k) (1 —m)®

where the last inequality is obtained using (22). Moreover, it is
also known that

PT ™ (g, k) < o3t (07 (q, )
Now (27) and (28) can be used in (23) to obtain

V(k+C0N™)) = V(k) € =(1 = (1= m))d(a(k), X.).

) (29)

Case b: The maximizer at time index k + C'(N," ) happens

to be the map associated with target j' in cell ¢’ held by AAV

m’. Thus, e < p7*(£™(q,k + C(N;”/))) < p?}/ (0 (¢ k +

C(N™))) = max;{(z(k + C(N)));} and AAV m’ could

have updated the map of target 4’ in cell ¢’ zllm'(lf/m/(q' Jk +

C(NG")) + Em”eLm’(q/,Hc(N;"’)) n™ (e ¢k +

C(N;”/))) times between time indices / and k + C(N,;”/), SO

that the inequality for map p;-?,(ﬁm,(q’, k+ C(N;”/))), shown
at the bottom of the page, holds.

1

) (e (g, k+C(NTY')))

27)

(28)

oy )=y (l?m/(q’, k)) (1 = g yesan™ (€7 (a ke (37)))

I () et
-

m"€L™ (¢,k+C(N'))

(30)
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Using (14) and (30) we have
v (k +C (N;”)) —V(k) < —(1 = (1 — 7)2)d(z(k), Xz).
(31
ROR maps enter into the set X.. Here we know that ¢ >
max;{(z(k + C(N;")))i} so using (14) we have
1% (k + C(N;”')) ~V(k) < —wd(a(k), X)), (32)
X. is exponentially stable in the large w.r.t. F,. Here, it is

sufficient to show that there exists positive constants c1, c2, c3
and that (33) and (34) are satisfied [31]

ad(z(k), X:) < V(k) < cod(x(k), X.) (33)
v (k e (N;”’)) —V(k) € —esd(z(k), X.)  (34)

forall (0) € X, k > 0 with 0 < ¢3/ca < 1 for some specified
C(qu/) > 0. We use the metric defined in (13) and the Lya-
punov function introduced in (14). Clearly, (33) is satisfied for
c1 = co = 1. From (26), (29), (31), and (32), it can be seen that
(34) is also satisfied by

V(k+C(NIM)) - V(k)

< —max{l — max{(1 — m)%, o}, 7}d(x(k), X.) (35)

where ¢1 > 0,¢2 > 0 and 0 < ¢3 = max{7%,1 — max{(1 —
m)%, 0}} < co, which implies that the invariant set X is expo-
nentially stable in the large w.r.t. F,,. [ |

3) Proof of Lemma IV.1: Different from the cooperative
problem, the derivation of C(N(’I“') only depends on spatial
issues of the noncooperative surveillance problem. As in the
cooperative problem, we assume the worst case scenario for
the spatial factors, which are defined by 2) and 3) in the proof
of Lemma III.1.

AAV m generates N, time indices of C'(N, (}“/) since it visits
all the suspected cells. AAV m/ # m visits each cell g 1\7;7’"
times so it contributes a total of ZqN:Ql qu/ time indices of
C(N, ;"/). Since these events are generated by each AAV m/ #
m, and adding the indices from AAV m, the total is obtained.

4) Proof of Theorem IV.2: The same logic applied on The-
orem III.2 can be used here to obtain that c; = ¢co = 1,¢3 =
max{7%, 1 — max{(1 — x)%,0}} and that

V(k+C (N;"’)) —V(k) € —esd(z(k), X).  (36)
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