
Automatica 42 (2006) 245–250
www.elsevier.com/locate/automatica

Stability analysis of network-based cooperative resource allocation
strategies�

Alvaro E. Gil, Kevin M. Passino∗,1

Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Ave., Columbus, OH 43210, USA

Received 9 February 2005; received in revised form 22 April 2005; accepted 14 September 2005
Available online 1 December 2005

Abstract

Resource allocation involves deciding how to divide a resource of limited availability among multiple demands in a way that optimizes
current objectives. In this brief paper we focus on one type of distributed resource allocation problem where via an imperfect communication
network multiple processors can share the load presented by multiple task types. We introduce asynchronous “cooperative” resource allocation
strategies, and show that they lead to a bounded cumulative demand.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Resource allocation; Stability; Cooperative control; Scheduling

1. Introduction

Resource allocation has played an important role in the so-
lution of a large variety of engineering problems. Consider the
scenario where we have a group of M processors, not con-
nected over a communication network, and all process just one
task type out of N task types at a time. If the group of proces-
sors does not coordinate their choices (we name such strategies
“noncooperative” which can be thought of as a special type of
cooperation that does not rely on direct communications), then
for a variety of scheduling strategies they will choose the same
task type to process all the time, and suppose this is possible
(e.g., two machines processing parts from one buffer). Here,
we focus on the problem where there is a network of proces-
sors, each of which can process different task types. To study
the key challenge in this case, we focus on a total “overlap” in

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Ioannis
Paschalidis under the direction of Editor Ian Petersen.

∗ Corresponding author. Tel.: +1 614 292 5716; fax: +1 614 292 7596.
E-mail address: passino@ece.osu.edu (K.M. Passino).

1 This work was supported by the AFRL/VA and AFOSR Collaborative
Center of Control Science (Grant F33615-01-2-3154) and the DARPA/ANTS
program.

0005-1098/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2005.09.015

processing responsibilities and provide guidelines to handle
the impact of other demands on the processors when partial
overlapping responsibilities are present in the system. In this
“cooperative scheduling problem” there are local schedulers
for each of the M > 1 processors and a communication net-
work that allows them to share the load presented by the
N > M buffers. Here, two or more processors are not allo-
cated to service the same buffer at the same time so that the
set of processors is always simultaneously processing task
types from M buffers. Notice that this approach could limit
the benefits of cooperation in some applications since if one
buffer has a very high arrival rate then using more than one
processor for it could be justified. We will further assume
that each processor can only process one task type at a time
and that to switch processing to another task type it incurs
a random but bounded delay. The motivation of studying
the above cooperative problem instead of the noncooperative
one lies in the performance achieved by the former approach
depending on the system load. For instance, for the lightly
loaded case, noncooperative strategies process tasks from
buffers faster than cooperative strategies which forces the set
of processors to switch between buffers more frequently in the
noncooperative case than in the cooperative one. In this case
the cooperative strategy better distributes processing resources
to minimize wasteful delays due to setup times. On the other

http://www.elsevier.com/locate/automatica
mailto:passino@ece.osu.edu


246 A.E. Gil, K.M. Passino / Automatica 42 (2006) 245–250

hand, for the highly loaded case, such benefits are not found as
often in the cooperative case since all the processors are busy
and do not switch as much. Hence, it is so important to carry
out stability analysis of cooperative problems. We will consider
the case where the information needed by the processors in
order to make decisions about which task type to process next
is either held by one processor all the time, or passed along a
communication network to any processor. In this study we use
a deterministic setting; it is an important research direction to
consider cooperative resource allocation problems of the type
we consider here in a stochastic setting (see Andradóttir, Ayhan,
& Down, 2003).

The work on resource allocation and scheduling in the area
of flexible manufacturing systems (FMS) that is most closely
related to ours was done by Perkins and Kumar (1989). In some
respects our work can be viewed as an extension of the results
by Perkins and Kumar (1989). For instance, (i) we focus on
M processors processing tasks from M of N buffers at a time,
(ii) the class of policies that we introduce is a generalization
of the ones defined by Perkins and Kumar (1989) but with the
peculiarity that the decisions are made over a range of M times
rather that one time, (iii) the processors in this case are hetero-
geneous, (iv) they operate asynchronously over a network with
random but bounded delays, (v) cooperative or noncooperative
strategies can be implemented in real-time based on the system
load and (vi) Remark 5 considers processors processing tasks
from a subset of the total available buffers in a single station.
These distinctions are amplified by the fundamentally different
set of ideas that are needed to prove our main result. More-
over, our overall philosophical approach is similar to the one of
Perkins and Kumar (1989) and hence differs from a stochastic
scheduling viewpoint of Gershwin (1994).

Other resource allocation methods include new product de-
velopment process as studied by Wang, Perkins, and Khurana
(2002), “pull” production control methods of Seidman and Hol-
loway (2002), and constrained optimization problems of Ibaraki
and Katoh (1988). Moreover, application of the approaches in
this paper has been studied by Quijano, Gil, and Passino (2005),
Gil, Passino, Ganapathy, and Sparks (2003).

2. Asynchronous cooperative resource allocation

Suppose that the number of task types N is fixed, that
we number them, and denote the set of task types as
P = {1, 2, . . . , N}. Let pi, i ∈ P denote the arrival rate of
task type i to its respective buffer i so pit is the number
of tasks of type i ∈ P that have arrived by time t �0. Let
xi(t), i ∈ P, t �0 denote the size of the buffer level holding
task type i and assume that there are sensors that provide the
value of these levels whenever a processor requests it. There is
a time delay that represents the amount of time that it takes for
the processor to switch from processing task type i to another
task type j, j �= i. We will call this type of delay �i,j > 0 and
assume it is a random but bounded delay with bound �.

We assume that the number of processors is constant,
we number them, and denote the set of processors as

Q={1, 2, . . . , M}. Let 1/aij represent the “rate” at which pro-
cessor j ∈ Q processes task type i ∈ P . It can be shown that
when processor j starts processing tasks from the ith buffer, the
buffer level decreases at a rate (1−aij pi)/aij . Hence, it is clear
that a necessary condition for stability is that 0 < aij pi < 1, for
all i ∈ P, j ∈ Q. Moreover, this necessary condition indicates
how fast processing of buffer levels can occur depending on
the set of values of aij , pi . The term aij pi represents the load
on processor j due to task type i. We assume in this paper that
N > M .

We define the set U(t) ⊂ P as the set of “unattended” task
types not processed by any processor at the current time t while
the set Ua

j (t) = {i∗j (t)} ∪ U(t) is the set of task types that
can be considered for processing by processor j ∈ Q. Here,
i∗j (t) is the task type being processed by processor j at time t.
Notice that processor j just needs to sample the buffer levels
contained in the set U(t) at time t whenever processor j is ready
to make a new decision. Define A(t) as the set of task types
processed by the group of M processors at the current time t;
hence P = U(t) ∪ A(t), t �0.

The “capacity condition” (Perkins & Kumar, 1989) for our
case is

� =
N∑

i=1

aipi < M , (1)

where ai = maxj {aij }. This capacity condition is the sum of
all the individual processor’s capacity conditions as defined
by Lu and Kumar (1991). It is not possible to prove that all
resource allocation strategies are stable given this new capacity
condition. However, our goal is to obtain the least restrictive
conditions by trying to get � as close as possible to M for a
few strategies.

Now, we will explain how asynchronous decision making is
accomplished in this system. Define a processor ju ∈ Q that
holds the set U(t). We assume that whenever a processor � ∈ Q

where � �= ju (if �= ju there is no need for a request) finishes
processing a task type at time tf such that xi∗� (t

f ) = 0 (we
consider “clearing policies” as by Perkins & Kumar, 1989, but
in some situations it would be better not to clear the buffers
as by Kumar & Seidman, 1990), it broadcasts a request for the
set U(t) to all the processors. Let the amount of time it takes
to broadcast the request and receive U(t) be �c �0 which is
random, but bounded by a constant �c > 0. In the time interval
[tf , tf + �c] that processor � waits for the unattended set it
continues to process task type i∗� so xi∗� (t

′)=0, t ′ ∈ [tf , tf +�c].
The instant that processor � gets U(t) (and the “request queue”
defined below), it becomes processor ju, samples the buffer
levels contained in the set U(t), puts task type i∗� on U(t),
decides which task type to process next, and takes it off U(t).
So, at time tf + �c the unattended set is again available for
another processor to request.

Since two or more processors could request the set U(t)

at the same time, we use a mutual exclusion algorithm which
coordinates the access of all processors to the set U(t) in
such a way that this set can be accessed and updated by only
one processor at a time. Whenever processor j requests U(t),



A.E. Gil, K.M. Passino / Automatica 42 (2006) 245–250 247

it will receive both U(t) and the request queue. The request
queue contains the number of processors that are waiting
for U(t). Thus, any processor that receives both U(t) and
the request queue updates the set U(t) and passes this U(t)

along with the queue to the new processor at the head of the
queue, and this process is repeated until the queue becomes
empty.

Note that we have described the case where both the set U(t)

and the request queue are passed along the network and they
are held by the processor that requested this information; it is
clear for this case that a “tracking” mechanism is needed to
know the current processor that holds this information, unless
broadcast type requests are made as we assume here. However,
another scenario can be studied as well, where processor ju

always holds both the set U(t) and the request queue, and
whenever a processor � ∈ Q, � �= ju, requests the set U(t)

held by the processor ju, it modifies it with the new unattended
task types, and sends it back to the processor ju. Regardless
of the strategy used to share U(t), here the key point will be
that it is shared over an asynchronous network with random but
bounded delays.

Let kj , kj ∈ {0, 1, 2, . . .}, denote the index of the sequence
of times that processor j makes allocation decisions, j ∈ Q. Let
Dkj be the time when processor j ∈ Q, decides to process task
type i∗j (kj ), and assume that at the initial time Dkj =0 for kj =0.
Let Dkj +1 be the next decision time for processor j which is
when it completes the processing of task type i∗j (kj ) and gets
the unattended set. For each j define Dkjc to be the closest de-
cision time made by any other processor jc, previous to the de-
cision time Dkj +1 (so given j we can define jc at each Dkj +1).
Note that if no other processor except j makes a decision be-
tween times Dkj and Dkj +1 then Dkjc is just equal to Dkj so
jc = j . Since �i,j > 0 and �c �0 we know that Dkj +1 > Dkjc .
By the definition of jc �= j , Dkj �Dkjc < Dkj +1, and we know
that

Dkj +1 − Dkjc �
� + ai∗

jc (kjc
)xi∗

jc (kjc
)(Dkjc )

1 − ai∗
jc (kjc

)pi∗
jc (kjc

)

+ �c. (2)

It is important to highlight that for this case pijc = pi , for all
jc ∈ Q; this notation is meant to emphasize that buffer level
i∗ is being chosen by processor jc. Notice that if xi∗

jc
(t) < ∞,

for all t �0 and 0 < aij pi < 1, for all i ∈ P, j ∈ Q then the
buffer level decreasing rate (1−aij pi)/aij will cause the buffer
xi∗

jc
to be cleared within a finite time and thus two consecutive

decisions for processor jc will occur within a finite time, with
bounds given by Eq. (2). Furthermore, note that in the time
interval t ∈ [Dkjc , Dkj +1] the set U(t) is constant. This will
be useful in our proof below.

3. Cooperative resource allocation strategies

The strategy “Process M buffer levels greater or equal to
the average one” is a generalization of the one for the M = 1
case by Perkins and Kumar (1989). At time kj the resource

allocation strategy on processor j ∈ Q, chooses to process task
type i∗j (kj ) such that

xi∗j (kj )(Dkj )�
∑

ij ∈Ua
j (D

kj ) xij (Dkj )

N − M
∀ij ∈ Ua

j (Dkj ). (3)

Processor j then processes it until it finishes the tasks in the
buffer (which will only take a finite amount of time) at which
time it sends a request for U(t) keeping xi∗j (t

′)=0 for Dkj +1 −
�c � t ′ �Dkj +1 until it receives U(t). Note that when a pro-
cessor j finishes processing a task type i∗j (kj − 1) it chooses a

new task type i∗j (kj ) from the buffer level that is greater than
or equal to the average of the buffer levels contained in the set
Ua

j (Dkj ) and, then replaces it with i∗j (kj −1) to form U(Dkj ).

Ties are broken arbitrarily. Generally for j �= j
′
, Dkj �= D

kj
′

and Ua
j (Dkj ) �= Ua

j
′ (D

kj
′ ) so Eq. (3) represents how decisions

are made over a range of M times, not just one time as it is in
the M = 1 case. Since there can be many more decisions made
by one processor than another it could be that Dkj −D

kj
′ → ∞

as kj → ∞ and kj
′ → ∞, j �= j

′
.Note that although the pro-

cessors could complete processing of their respective task types
at the same time, their decisions will occur at different times
since the processors will make choices depending on the queue
held by processor ju so that they will pick different buffers to
process due to the use of the mutual exclusion algorithm.

Other strategies can also be defined. For instance, one strat-
egy that “process M task types with the largest buffer levels”,
also a generalization of one from Perkins and Kumar (1989),
can be used in this framework. Similarly, the strategy “process
M task types expected to be most difficult to process”, chooses
the buffers expected to take the longest time to process.

4. Stability analysis

In this section we analyze the stability of the implementation
of the strategies defined in Eq. (3). The same proof strategy
holds if the other strategies in Section 3 are used.

Theorem. Assume 0 < aij pi < 1, for all i, j and

N∑
i=1

aipi < M(1 + ap − ap), (4)

where ap = mini,j {aij pi}, and ap = maxi,j {aij pi}.
(i) For the cooperative resource allocation strategies in Eq.

(3) a specific bound on the ultimate buffer level for all i ∈ P

is given by

lim
t→∞ xi(t)

� �

a

(
ap + 1

M

N∑
i=1

aipi − ap

)
+ (N − M)

a

a

× max
ij

{
(� + �c(1 − aij pi))(

∑N
i=1aij pi − Map)

aij (1 − aij pi − (1/M)
∑N

i=1aij pi + ap)

}
, (5)

where a = mini,j {aij }, and a = maxi,j {aij }.



248 A.E. Gil, K.M. Passino / Automatica 42 (2006) 245–250

(ii) If the initial condition of the buffer levels satisfies

N∑
i=1

xi(0)�(N − M) max
ij

⎧⎨
⎩(� + �c(1 − aij pi))

× (
∑N

i=1aij pi − Map)

aij (1 − aij pi − (1/M)
∑N

i=1aij pi + ap)

}
(6)

then the inequality in (5) is satisfied for all i ∈ P, t �0.

Proof. Let

V (t) =
M∑

j=1

Vj (t) =
M∑

j=1

⎛
⎝ai∗j xi∗j (t) +

∑
i∈U(t)

aij xi(t)

M

⎞
⎠ . (7)

The reader familiar with the first proof of Perkins and Kumar
(1989) will notice some similarities to this proof since it is the
special M = 1 case of this one. There are, however, significant
fundamental differences since we have M heterogenous pro-
cessors operating simultaneously, asynchronously, and over a
network with delays.

Define the function Vj (t) for processor j as

Vj (t) = ai∗j xi∗j (t) +
∑

i∈U(t)

aij xi(t)

M
. (8)

The function Vj (t) represents the amount of work at time t that
processor j needs to do in order to process the task type that it
is currently processing, plus the task types that are unattended.
Notice that the unattended set U(t) is being “artificially shared”
among all processors and hence the term in Eq. (8) is divided
by M.

Consider the sum of the values of the Vj (t) at the set of
decision times Dkj +1,

M∑
j=1

Vj (Dkj +1) =
M∑

j=1

⎡
⎣ai∗j (kj )xi∗j (kj )(Dkj +1)

+
∑

i∈U(D
kj +1)

aij xi(Dkj +1)

M

⎤
⎦ . (9)

There is an important difference between Eqs. (7) and (9). While
Eq. (7) is evaluated at a specific time t, Eq. (9) is evaluated at
the M processor decision times Dkj +1. Since these M decision
times occur at different times, it is clear that there is in general
a time misalignment among all processor’s decisions. Hence,
the left-hand side of Eq. (9) is not V (t). Below, we will not use
V (t) as a Lyapunov-like function in our proof. Instead we use
the Eq. (9) in this manner.

Next, since xi∗j (kj )(Dkj +1) = 0, for all j ∈ Q (i∗j (kj ) was

the task type that was just processed by processor j ∈ Q), and
that by the definition of jc, U(Dkj +1) = U(Dkjc ) for t such

that Dkjc � t �Dkj +1 then

M∑
j=1

Vj (Dkj +1)�
M∑

j=1

{Vjc (Dkjc ) − �(i∗jc (k
jc

))

× xi∗
jc (kjc

)(Dkjc ) + �(i∗jc (k
jc

))}, (10)

where

�(ijc ) = aijc

(
1 − aijc pijc −∑

i∈U(D
kjc ) aij pi/M

1 − aijc pijc

)
,

�(ijc ) =
(� + �c(1 − aijc pijc ))

∑
i∈U(D

kjc ) aij pi/M

1 − aijc pijc

.

It is clear that �(ijc ) > 0, and is easy to show that �(ijc ) is
also greater than zero. Moreover, we use the definition of either
resource allocation strategy for j = jc to obtain

�(i∗jc (k
jc

))xi∗
jc (kjc

)(Dkjc )�
�(i∗jc (k

jc
))

(N − M)a
Vjc (Dkjc ).

Combine this with Eq. (10) to get

M∑
j=1

Vj (Dkj +1)�
M∑

j=1

{
Vjc (Dkjc )

(
1 − minijc �(ijc )

(N − M)a

)

+M max
ijc

�(ijc )

}
. (11)

This means that we have a contractive mapping in Eq. (11).
Notice, however, that in Eq. (11) we have on the left-hand
side Vj (Dkj +1) and on the right Vjc (Dkjc ), so the mapping is
contractive as we go from kjc

to kj + 1, for all j ∈ Q. The
sums in Eq. (11) account for all time so that the contractive
mapping is valid for all t �0.

Define for k�0 V (k) = ∑M
j=1Vjc (Dkjc ) and V (k + 1) =∑M

j=1Vj (Dkj +1). Now, we use V (k) and V (k + 1) in Eq. (11)

V (k + 1)��V (k) + �, (12)

where �=(1−minijc �(ijc )/(N −M)a) and �=M maxijc �(ijc )

which are both constants. But, since 0 < �(ijc ) < 1 for all
i ∈ P, jc ∈ Q then 0 < � < 1. Eq. (12) is a difference
inequality with a solution that is bounded for all k by
V (k)�(V (0) − �/(1 − �))�k + �/(1 − �). Notice that if
V (0) > (�/(1 − �)) (V (0) < �/(1 − �)) then since �k → 0 as
k → ∞, V (k) decreases (increases) to �/(1 − �) as k → ∞.
Now,

�

1 − �
= M(N − M)a max

ijc

�(ijc )

�(ijc )
, (13)

which gives us a bound on the transient and ultimate V (k)

values at the decision times as k → ∞. It can be shown that for
all t, Dkjc +�� t �Dkj +1 the inequality Vjc (t)�Vjc (Dkjc +�)

holds. On the other hand, using Eq. (8) an upper bound for

Vjc (Dkjc + �)�Vjc (Dkjc ) + �

(
ap +

N∑
i=1

aipi

M
− ap

)



A.E. Gil, K.M. Passino / Automatica 42 (2006) 245–250 249

is obtained. Next, note that for any jc

xi∗
jc

(t) +
∑

i∈U(t)

xij (t)

M

� Vjc (Dkjc )

a
+ �

a

(
ap +

N∑
i=1

aipi

M
− ap

)

for all t , Dkjc � t �Dkj +1. Hence, using Eq. (13)

lim
t→∞ xi∗

jc
(t)�B, (14)

where B is the right-hand side of Eq. (5).
Now, we must show that each buffer will get chosen by some

processor j ∈ Q infinitely often so that every buffer becomes
i∗jc persistently so that Eq. (14) provides a bound for each buffer
level i ∈ P . If that is the case, then we can replace the variable
xi∗

jc
(t) in the left-hand side of Eq. (14) by xi(t). Note that we

have a bound for every jc for every buffer level so xi∗
jc

(t) is
bounded, and using Eq. (2), Dkj +1 − Dkjc is bounded. This
results in a bound on the time that the unattended set will not be
changed. Ignored buffers rise, so eventually any ignored buffer
in U(t) will be taken off U(t) and hence become i∗jc .

For the condition stated in (ii), we know by definition that
V (0)=∑N

i=1aixi(0)�a
∑N

i=1xi(0). Now, if Eq. (6) holds, then
following the above procedure we finally obtain that for all i ∈
P, t �0 xi(t) is bounded by the right-hand side of Eq. (5). �

Remark 1. The upper bound obtained is in term of system pa-
rameters. For instance, when the time delays, � and �c, increase,
the bound also increases (e.g., network delays can result in ig-
noring buffers longer). If the number of tasks and processors
are about the same, then the ultimate bound decreases.

Remark 2. If ap = ap in Eq. (4), then
∑N

i=1aipi < M , which
indicates that the multiprocessor system could work at its max-
imum capacity. Otherwise, the capacity of the system is de-
creased. If the loads are not all equal then when a processor is
processing a task type with a high load it will take a consider-
able amount of time to complete processing that buffer which
slows down the overall processing rate thereby reducing pro-
cessing capacity of the system.

Remark 3. If we assume that 0 < aij pi < M/N , for all i ∈
P, j ∈ Q and that Eq. (1) holds, then the same ultimate bound
on the buffer level for all i ∈ P is given by (5) when the
cooperative resource allocation strategy in Eq. (3) is used.

Remark 4. The above theorem can be applied to the con-
catenation or arbitrary interconnections of several cooperative
scheduling systems described here. We can derive a similar re-
sult to Eq. (5) by using the statements of Theorem 5 and Lemma
6 introduced by Perkins and Kumar (1989) and slightly modi-
fying Eq. (2) to guarantee the stability of the system.

Remark 5. We can relax the necessary condition 0 < aij pi < 1
in the above theorem by assuming that it only holds for some

j ∈ Q, for all i ∈ P . If ai
j
′ pi �1, j

′ �= j holds for some pro-

cessor j
′
, processor j

′
should never engage in processing tasks

from buffer i. The proof presented above can be changed to
derive an ultimate bound for partial or no overlapping respon-
sibilities of processors for some buffers.

References

Andradóttir, S., Ayhan, H., & Down, D. G. (2003). Dynamic server allocation
for queueing networks with flexible servers. Operations Research, 51(6),
952–968.

Gershwin, S. B. (1994). Manufacturing system engineering. Englewood Cliffs,
NJ: Prentice-Hall.

Gil, A. E., Passino, K. M., Ganapathy, S., & Sparks, A. (2003). Cooperative
scheduling of tasks for networked uninhabited autonomous vehicles. In
Proceedings of the IEEE CDC (pp. 522–527). Maui, HI.

Ibaraki, T., & Katoh, N. (1988). Resource allocation problems: Algorithmic
approaches. Cambridge, MA: MIT Press.

Kumar, P. R., & Seidman, T. J. (1990). Dynamic instabilities and stabilization
methods in distributed real-time scheduling of manufacturing systems.
IEEE Transactions on Automatic Control, 35(3), 289–298.

Lu, S. H., & Kumar, P. R. (1991). Distributed scheduling based on due dates
and buffer priorities. IEEE Transactions on Automatic Control, 36(12),
1406–1416.

Perkins, J. R., & Kumar, P. R. (1989). Stable, distributed, real-time
scheduling of flexible manufacturing/assembly/disassembly systems. IEEE
Transactions on Automatic Control, 34(2), 139–148.

Quijano, N., Gil, A. E., & Passino, K. M. (2005). Experiments for
decentralized and networked dynamic resource allocation, scheduling, and
control. IEEE Control and Systems Magazine, 25(1), 63–79.

Seidman, T., & Holloway, L. (2002). Stability of pull production control
methods for systems with significant setups. IEEE Transactions on
Automatic Control, 47(10), 1637–1647.

Wang, Y., Perkins, J., & Khurana, A. (2002). Optimal resource allocation
in new product development projects: A control-theoretic approach. IEEE
Transactions on Automatic Control, 47(8), 1267–1276.

Alvaro E. Gil received his B.S. and M.S.
degrees in electrical engineering from Insti-
tuto Universitario Politécnico, Barquisimeto,
Venezuela, in 1990 and 1998, respectively,
and the Ph.D. degree in electrical engineering
from The Ohio State University, Columbus, in
2003. From 1990 to 1999, he held engineer-
ing positions in the Automation Department
at Petróleos de Venezuela (PDVSA) in Mara-
caibo, Venezuela. From 2002 to 2003 he was
a research associate at the Department of

Electrical Engineering, The Ohio State University. He worked as a postdoctoral
researcher at Ohio State University between 2003 and 2005. He is now
with Xerox Corporation, Webster, NY. His current research interests include
networked cooperative resource allocation strategies, cooperative scheduling,
distributed mobile sensor networks, and multiobjective control.

Kevin M. Passino (S’79, M’90, SM’96, Fel-
low 2004) received his Ph.D. in Electrical En-
gineering from the University of Notre Dame in
1989. He is currently a Professor of Electrical
and Computer Engineering at The Ohio State
University and Director of the OSU Collabora-
tive Center of Control Science that is funded
by AFOSR and AFRL/VA. He has served as
the Vice President of Technical Activities of the
IEEE Control Systems Society (CSS); was an
elected member of the IEEE Control Systems

Society Board of Governors; was the Program Chair of the 2001 IEEE Confer-
ence on Decision and Control; and is currently a Distinguished Lecturer for the
IEEE Control Systems Society. He is co-editor (with P.J. Antsaklis) of the book
“An Introduction to Intelligent and Autonomous Control”, Kluwer Academic



250 A.E. Gil, K.M. Passino / Automatica 42 (2006) 245–250

Press, 1993; co-author (with S. Yurkovich) of the book “Fuzzy Control”, Ad-
dison Wesley Longman Pub., 1998; co-author (with K.L. Burgess) of the book
“Stability Analysis of Discrete Event Systems”, John Wiley and Sons, 1998;
co-author (with V. Gazi, M.L. Moore, W. Shackleford, F. Proctor, and J.S. Al-
bus) of the book “The RCS Handbook: Tools for Real Time Control Systems
Software Development”, John Wiley and Sons, NY, 2001; co-author (with

J.T. Spooner, M. Maggiore, R. Ordonez) of the book “Stable Adaptive Con-
trol and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator
Techniques”, John Wiley and Sons, NY, 2002; and author of “Biomimicry for
Optimization, Control, and Automation”, Springer-Verlag, London, UK, 2005.
For more information, see: http://www.eleceng.ohio-state.edu/∼passino/.

http://www.eleceng.ohio-state.edu/~passino/

	Stability analysis of network-based cooperative resource allocation strategies62626262
	Introduction
	Asynchronous cooperative resource allocation
	Cooperative resource allocation strategies
	Stability analysis
	References


