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Abstract

In direct adaptive control, the adaptation mechanism attempts to adjust a parameterized nonlinear controller to approximate an

ideal controller. In the indirect case, however, we approximate parts of the plant dynamics that are used by a feedback controller to

cancel the system nonlinearities. In both cases, ‘‘approximators’’ such as linear mappings, polynomials, fuzzy systems, or neural

networks can be used as either the parameterized nonlinear controller or identifier model. In this paper, we present an algorithm to

tune the adaptation gain for a gradient-based hybrid update law used for a class of nonlinear continuous-time systems in both direct

and indirect cases. In our proposed algorithm, the adaptation gain is obtained by minimizing the instantaneous control energy.

Finally, we will demonstrate the performance of the algorithm via a wing rock regulation example.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In adaptive control, the adaptive law is usually used
to approximate either the parameters of the ideal
controller as in the direct case, or the parameters of
the plant dynamics as in the indirect case. Some research
has been done in this field for both discrete (Chen and
Khalil, 1995) and continuous-time systems (Ioannou
and Sun, 1996; Spooner and Passino, 1996). In Chen
and Khalil (1995), the authors presented an indirect
adaptive control law for a class of feedback linearizable
discrete-time nonlinear systems, and provided global
results with respect to the state, but local with respect to
the parameters. Using the class of systems considered in
Chen and Khalil (1995), algorithms to auto-tune the
adaptation gain and direction of descent for both direct
and indirect adaptive controllers have been presented in
e front matter r 2004 Elsevier Ltd. All rights reserved.
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Nounou and Passino (2004). In Spooner and Passino
(1996), the authors presented both indirect and direct
adaptive control algorithms using linearly parameter-
ized approximators to control SISO systems with
guaranteed convergence of the tracking error to zero.
For this class of systems, an algorithm to auto-tune the
direction of the search vector for direct adaptive control
systems has been presented in Nounou (2003). Here, this
work is extended to auto-tune the adaptation gain for
both direct and indirect adaptive control systems. In all
of the above cases, the auto-tuning algorithms are based
on minimizing the instantaneous control energy which is
of great interest in many applications. The paper is
organized as follows. In Section 2, direct and indirect
adaptive control algorithms are discussed along with a
description of the plant considered for control. In
Section 3, the hybrid adaptive law used for parameter
adaptation and its stability results are discussed. Then,
in Section 4, an algorithm to auto-tune the adaptation
gain for both direct and indirect adaptive control is
presented. Stability results for the auto-tuning algorithm

www.elsevier.com/locate/engappai
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are also discussed. In Section 5, an aircraft wing rock
simulation is used to illustrate the algorithm. Finally,
Section 6 outlines some concluding remarks.
2. Direct and indirect adaptive control

In this section, we start by describing the system we
consider for control, along with its assumptions. Then,
both direct and indirect adaptive control schemes are
briefly discussed, and the error equation is derived for
both cases.

2.1. Plant description

Here, we will consider the single-input single-output
continuous-time system described by

_X ¼ f ðX Þ þ gðX Þup;

yp ¼ hðX Þ; ð2:1Þ

where X 2 Rn is the state vector, up 2 R is the input,
yp 2 R is the output of the plant and functions
f ðX Þ; gðX Þ 2 Rn; and hðX Þ 2 R are smooth. If the
system has ‘‘strong relative degree’’ r, then it can be
shown (as in Spooner and Passino (1996)) that

_x1 ¼ x2 ¼ Lf hðX Þ;

..

.

_xr�1 ¼ xr ¼ Lr�1
f hðX Þ;

_xr ¼ Lr
f hðX Þ þ LgLr�1

f hðX Þup (2.2)

with x1 ¼ yp; which may be rewritten as

yðrÞ
p ¼ ðakðtÞ þ aðX ÞÞ þ ðbkðtÞ þ bðX ÞÞup; (2.3)

where Lr
ghðX Þ is the rth Lie derivative of hðX Þ with

respect to g (LghðX Þ ¼ ðqh=qX ÞgðX Þ; and e.g.
L2

ghðX Þ ¼ LgðLghðX ÞÞ), and it is assumed that for some
b040; we have jbkðtÞ þ bðX ÞjXb0 so that it is bounded
away from zero (for convenience we assume that bkðtÞ þ

bðX Þ40; however, the following analysis may easily be
modified for systems which are defined with
bkðtÞ þ bðX Þo0). We will assume that akðtÞ and bkðtÞ

are known components of the dynamics of the plant
(that may depend on the state) or known exogenous
time dependent signals and that aðX Þ and bðX Þ represent
nonlinear dynamics of the plant that are unknown. It is
assumed that if X is a bounded state vector, then akðtÞ

and bkðtÞ are bounded signals. Throughout the analysis
to follow, both akðtÞ and bkðtÞ may be set to zero for all
tX0:

Definition 1. The dynamics for a relative degree r plant
described by 2.1 (as shown in Spooner and Passino
(1996)) may be written in normal form as

_x1 ¼ x2; (2.4)

..

. ..
.

(2.5)

_xr�1 ¼ xr; (2.6)

_xr ¼ aðx;pÞ þ bðx; pÞup; (2.7)

_p ¼ Cðx; pÞ (2.8)

with p 2 Rn�r; and yp ¼ x1: The ‘‘zero-dynamics’’ of the
system are given as

_p ¼ Cð0; pÞ: (2.9)

Here, we will consider plants that either have no zero
dynamics (i.e., n ¼ r), or plants with zero dynamics (i.e.,
1pron) that are exponentially attractive. These types of
plants are defined in the following plant assumptions
(Spooner and Passino, 1996).
2.2. Plant assumptions

Assumption 1. The plant is of relative degree r ¼ n (i.e.
no zero dynamics), such that

d

dt
xi ¼ xiþ1; i ¼ 1; . . . ; n � 1;

d

dt
xn ¼ aðX Þ þ akðtÞ þ ðbðX Þ þ bkðtÞÞup;

where yp ¼ x1; with akðtÞ and bkðtÞ known functions.
Here it is assumed that there exists b040 such that
bðX Þ þ bkðtÞXb0; and that x1; :::; xn are measurable.

Assumption 2. The plant is of relative degree r, 1pron;
with the zero dynamics exponentially attractive and
there exists b040 such that bðX Þ þ bkðtÞXb0: The
outputs yp; . . . ; y

ðr�1Þ
p are measurable.

It is clear that plants satisfying Assumption 1 have
bounded states if the reference input and its derivatives
are bounded, and the output error and its derivatives are
also bounded. It can also be shown (as in Spooner and
Passino (1996)) that plants satisfying Assumption 2 have
bounded states if the output is bounded.

Next, a brief description of direct and indirect
adaptive control schemes will be presented.

2.3. Direct adaptive control

A direct adaptive controller, that seeks to drive the
output of a relative degree r plant yp to track a known
desired output trajectory ym; uses an approximator that
attempts to approximate the ideal controller dynamics
(u�; that we assume to exist) by adjusting the controller
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parameters. Hence, our objective is design a controller
which makes the output of the plant yp track the output
trajectory ym: In additions to the plant Assumptions 1
and 2, we use the following plant assumption (Spooner
and Passino, 1996).

Assumption 3. Given yðrÞ
p ¼ ðaðX Þ þ akðtÞÞ þ ðbðX Þ þ

bkðtÞÞup; we require that bkðtÞ ¼ 0; tX0; and that
there exists positive constants b0 and b1 such that
0ob0pbðX Þpb1o1 and some function BðX ÞX0 such
that j _bðX Þj ¼ jðqb=qX Þ _X jpBðX Þ for all X 2 Sx: Here,
akðtÞ is a known time dependent signal. Here, we also
require the following output trajectory assumption
(Spooner and Passino, 1996).

Assumption 4. The desired output trajectory and its
derivatives ym; . . . ; y

ðrÞ
m are measurable and bounded.

Using feedback linearization (Sastry and Bodson,
1989), we know that there exists some ideal controller

u� ¼
1

bðX Þ
ð�aðX Þ þ nðtÞÞ; (2.10)

where nðtÞ :¼ yðrÞ
m þ des þ ēs � akðtÞ; with ēs :¼ _es � eðrÞo ;

and d40: For now we assume that bkðtÞ þ b̂ðX Þ is
bounded away from zero so that (2.10) is well-defined,
however, we shall later show how to ensure that this is
the case. The tracking error is defined as es :¼kTe where
e :¼ ½eo; _eo; . . . ; eðr�1Þ

o �T; k :¼ ½k0; . . . ; kr�2; 1�
T; and

eo :¼ ym � yp; thus ēs ¼ ½_eo; . . . ; eðr�1Þ
o �½k0; . . . ; kr�2�

T: We
pick the elements of k such that L̂ðsÞ :¼ sr�1 þ kr�2sr�2 þ

� � � þ k1s þ k0 has its roots in the open left half plane.
The goal of the adaptive controller is to ‘‘learn’’ how to
control the plant to drive es (which is a measure of the
tracking error) to some neighborhood of zero. We may
express u� as

u� ¼ A�
u
>zuðX ; nÞ þ uk þ duðX Þ: (2.11)

The ideal parameter vector, A�
u; is defined as

A�
u :¼ arg min

Au2Ou

sup
X2Sx ;n2Sm

jA>
u zuðX ; nÞ � ðu� � ukÞj

" #
;

(2.12)

where Au is assumed to be defined within the compact
parameter set Ou; and Sx and Sm � Rn are defined as the
spaces through which the state trajectory and the free
parameter nðtÞ may travel under closed-loop control.
Also, zu is defined as the partial of the approximator
with respect to the parameter vector, uk is a known part
of the controller, and duðX Þ is the approximation error
which arises when u� is represented by an approximator
(e.g., fuzzy system, neural network, or other universal
approximator) of finite size. It is assumed that
jduðX ÞjpDuðX Þ; where DuðX Þ is a known upper bound
on the error. Since universal approximators are used for
approximation, jduðxÞj may be made arbitrarily small by
a proper choice of the approximator structure. To do
this, we will require X and n to be available. The ideal
control (2.10) can be approximated by

ud ¼ A>
u zu þ uk; (2.13)

where Au is updated on line. Using the control (2.13),
the rth derivative of the output error becomes

eðrÞo ¼ yðrÞ
m � yðrÞ

p ¼ yðrÞ
m � aðX Þ � akðtÞ � bðX Þud : (2.14)

Using the definition of u� (2.10) we may rearrange (2.14)
so that

eðrÞo ¼ yðrÞ
m � aðX Þ � akðtÞ � bðX Þu� � bðX Þðud � u�Þ

ð2:15Þ

¼ � des � ēs � bðX Þðud � u�Þ: ð2:16Þ

We may alternatively express (2.16) as

_es þ des ¼ �bðX Þðud � u�Þ: (2.17)

Assume for now that parameter vector, AuðkÞ; is
updated on line using a hybrid adaptive law (in later
section, we will discuss this adaptive law in detail).
Define the approximator parameter error as fðkÞ ¼
AuðkÞ � A�

u: Using the definitions of the ideal control
(2.11) and the actual one (2.13), it can be shown that

ud � u� ¼ fðkÞ>zu � duðX Þ: (2.18)

Substituting (2.18) into (2.17), we can define ê :¼ u� � ud

in the direct case such that

ê ¼
_es þ des

bðX Þ
¼ �fðkÞ>zu þ duðX Þ: (2.19)

Note that ê (which is a function of the plant dynamics,
bðX Þ) is a measure of the tracking performance, and will
be used in the parameter hybrid update law (as we will
show in later sections).

2.4. Indirect adaptive control

Unlike the direct approach, in the indirect approach
we approximate the plant dynamics (aðxÞ and bðxÞ), then
the feedback controller uses these estimates of the plant
dynamics to tune the parameters of the controller so
that the plant output yp tracks the output trajectory ym:
The plant dynamics aðX Þ and bðX Þ can be expressed as

aðX Þ ¼ A�
a
>zaðX Þ þ daðX Þ; (2.20)

bðX Þ ¼ A�
b
>zbðX Þ þ dbðX Þ; (2.21)

where

A�
a :¼ arg min

Aa2Oa

sup
X2Sx

jA>
a zaðX Þ � aðX Þj

" #
; (2.22)

A�
b :¼ arg min

Aa2Ob

sup
X2Sx

jA>
b zbðX Þ � bðX Þj

" #
: (2.23)

The parameter vectors, Aa and Ab; are assumed to be
defined within the compact parameter sets, Oa and Ob;
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respectively. In addition, we define the subspace Sx �

Rn as the space through which the state trajectory may
travel under closed-loop control. Also, daðX Þ and dbðX Þ

are approximation errors which arise when aðX Þ and
bðX Þ are represented by approximators of finite size. We
assume that DaðX ÞXjdaðX Þj; and DbðX ÞXjdbðX Þj;
where DaðX Þ and DbðX Þ are known bounds on the
approximation errors. Since universal approximators
(e.g., fuzzy systems, neural networks, and others (Wang,
1994)), both jdaðX Þj and jdbðX Þj may be made arbi-
trarily small by a proper choice of the approximator if
aðX Þ and bðX Þ are smooth. It is important to keep in
mind that DaðX Þ and DbðX Þ represent the magnitude of
error between the actual nonlinear functions describing
the system dynamics and the approximators when the
‘‘best’’ parameters are used.

We assume that the actual plant dynamics, aðX Þ and
bðX Þ; can be expressed as

âðX Þ ¼ A>
a za; (2.24)

b̂ðX Þ ¼ A>
b zb; (2.25)

where the vectors AaðkÞ and AbðkÞ are updated on line
(as we will show later) using a hybrid adaptive law. The
parameter error vectors

faðkÞ ¼ AaðkÞ � A�
a; (2.26)

fbðkÞ ¼ AbðkÞ � A�
b; (2.27)

are used to define the difference between the current
estimate of the parameters (at time k) and the best
values of the parameters defined by (2.22) and (2.23).
The certainty equivalence control term (Sastry and
Isidori, 1989) is defined as

ui ¼
1

bkðtÞ þ b̂ðX Þ
½�ðakðtÞ þ âðX ÞÞ þ nðtÞ�; (2.28)

where nðtÞ :¼ yðrÞ
m þ des þ ēs; with es and ēs defined as in

the direct case. For now we assume that bkðtÞ þ b̂ðX Þ is
bounded away from zero so that (2.28) is well-defined,
however, we shall later show how to ensure that this is
the case. Using the control (2.28), the rth derivative of
the output error becomes eðrÞo ¼ yðrÞ

m � yðrÞ
p so

eðrÞo ¼ yðrÞ
m � ðakðtÞ þ aðX ÞÞ �

bkðtÞ þ bðX Þ

bkðtÞ þ b̂ðX Þ

�½�ðakðtÞ þ âðX ÞÞ þ nðtÞ�: ð2:29Þ
Table 1

Summary of parameters

k yðX Þ d

Direct 1 bðX Þ duðX Þ

Indirect �1 1 daðX Þ þ dbðX
We may rearrange terms so that

eðrÞo ¼ 1 �
bkðtÞ þ bðX Þ

bkðtÞ þ b̂ðX Þ

" #
ð�ðakðtÞ þ âðX ÞÞ

þ nðtÞÞ � aðX Þ þ âðX Þ � des � ēs ð2:30Þ

¼ ðâðX Þ � aðX ÞÞ þ ðb̂ðX Þ � bðX ÞÞui � des � ēs: ð2:31Þ

We may express (2.31) as

_es þ des ¼ ðâðX Þ � aðX ÞÞ þ ðb̂ðX Þ � bðX ÞÞui: (2.32)

Analogous to the direct case, it can be shown that

âðX Þ � aðX Þ ¼ f>
a za � daðX Þ; (2.33)

b̂ðX Þ � bðX Þ ¼ f>
b zb � dbðX Þ: (2.34)

Substituting (2.33) and (2.34) in (2.32), we get

_es þ des ¼ f>
a za � daðX Þ

� �
þ f>

b zb � dbðX Þ

h i
ui

¼ f>z� ½daðX Þ þ dbðX Þ�; ð2:35Þ

where f ¼ f>
a ;f

>
b

h i>
; and z ¼ z>a ; z

>
b ui

h i>
: Let us

define ê as

ê :¼ � _es � des ¼ �f>zþ ½daðX Þ þ dbðX Þ�: (2.36)

Note that ê is a measure of the tracking performance,
and will be used in the parameter hybrid update law (as
we will show in later sections).

In summary, the measure of tracking performance ê

for both direct and indirect cases can be written as

ê :¼
k _es þ desð Þ

yðX Þ
¼ �f>zþ d; (2.37)

where the parameters for both direct and indirect cases
are summarized in the Table 1.

Next, we present a hybrid adaptive law that can be
used for parameter adaptation.
3. Hybrid adaptive law: update and stability

Consider the adaptive law

_A ¼ Z�z; (3.1)

where the _A is the derivative of the parameter vector
with respect to time, Z40 is a scalar adaptation gain,
and � :¼ ê=m2: As defined in Ioannou and Sun (1996),
m2 ¼ 1 þ n2

s ; and m is designed so that z=m and
fðtÞ zðtÞ

fuðtÞ zuðtÞ

Þ faðtÞ
>;fbðtÞ

>
h i>

zaðtÞ
>; zbðtÞ

>uiðtÞ
� �>
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dðX Þ=m 2 L1; and ns is chosen such that jzj=mp1: A
typical choice for n2

s is n2
s ¼ gz>z; where gX1: The

adaptive law (3.1) is usually used with systems that have
no modeling error (Ioannou and Sun, 1996). In the
presence of modeling error, however, a leakage mod-
ification is often used. The idea behind leakage is to
modify the adaptive law (3.1) so that the time derivative
of the Lyapunov function used to analyze the adaptive
scheme becomes negative in the space of the parameter
estimates when these parameters exceed certain bounds
(Ioannou and Sun, 1996). One way to solve this problem
is to modify the adaptive law (3.1) as follows:

_A ¼ Z�z� wZA; (3.2)

where w (which will be defined later) is a positive scalar
signal (i.e., wðtÞX0) that is designed so that stability is
maintained if the parameter error exceeds a certain
bound.

In the update law (3.2), the parameter vector A is
updated continuously with time, such that at every
instant of time, t, we have a new estimate of the
parameter vector. In many cases, it is desirable to
update the estimate at specific instants of time tk; where
ftkg is an unbounded monotonically increasing sequence
in Rþ: Let tk ¼ kTs where Ts ¼ tkþ1 � tk is the sampling
period, and k 2 Nþ (i.e., k ¼ 0; 1; . . .). To derive the
hybrid adaptive law, integrate the continuous adaptive
law (3.2) from some time instant tk ¼ kTs to the
subsequent time instant tkþ1 ¼ ðk þ 1ÞTs to have

Aðk þ 1Þ ¼ AðkÞ þ Z
Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt; (3.3)

where AðkÞ :¼AðtkÞ: Note that the adaptive law (3.3)
generates a sequence of estimates AðkÞ ¼ AðkTsÞ; for
k ¼ 0; 1; 2; . . . : Although �ðtÞ and zðtÞ may change over
time, the estimate AðkÞ is constant for t 2 ½tk; tkþ1Þ: As
mentioned earlier, stability and boundedness results that
can be obtained using the hybrid adaptive law (3.3) is
dependent on the choice of the parameter wðtÞ: In
Ioannou and Sun (1996), some stability results have
been established for the ‘‘switching s-modification’’.
The choice of wðtÞ in the switching s-modification is
defined as wðtÞ ¼ ss; where

ss ¼
0 if jAðkÞjoM0;

s0 if jAðkÞjXM0

�
(3.4)

s040; and M0X2jA�j: Note that the adaptive law (3.2)
has actually been analyzed in Ioannou and Sun (1996)
for three different choices of the leakage term wðtÞ:
These choices are the s-modification, the switching-s
modification, and the �-modification. The authors in
Ioannou and Sun (1996) have shown that, unlike the s-
modification and the �-modification, the switching-s
modification is able to achieve robustness without
having to destroy some important properties (i.e., �;
�m; _A 2 L2) of the adaptive law. Also, the selection of a
discontinuous ss (3.4) fits the discrete-time nature of the
adaptive law (3.3). For a more detailed analysis on the
choices of wðtÞ refer to Ioannou and Sun (1996).

Next, we will show the stability properties that are
established by the hybrid adaptive law (3.3). However,
before we start the theorem, let us state the following
definition.

Definition 2. Let x : ½0;1Þ ! Rn; where x 2 L2e (the
L2e norm is defined as kxðtÞk2 :¼ð

R T

0
jxðtÞj2 dtÞ1=2; and

we say that xðtÞ 2 L2e when kxðtÞk2 exists for any finite
t), and consider the set

SðmÞ ¼ x : ½0;1Þ ! Rn

Z tþTs

t

x>ðtÞxðtÞdðtÞ






�

pc0mTs þ c1; 8t; TsX0

�
ð3:5Þ

for a given constant mX0; where c0; c1X0 are some finite
constants, and c0 is independent of m: If x 2 S; we say
that x is m-small in the mean square sense.

Theorem 1. Let m, s0; Ts; Z be chosen so that
�
 d
m
2 L1; z>z

m2 p1;

�
 2TsZo1; 2s0TsZo1:
Then the hybrid adaptive law (3.3) guarantees that
(1)
 �; �ns 2 L1; AðkÞ 2 l1 (for a sequence x ¼

ðx1; x2; . . .Þ and xi 2 R where iX1; the l1 norm is

defined as kxk1 :¼ supiX1jxij: We say that x 2 l1 if

kxk1 exists).

(2)
 �; �m 2 Sðd2=m2Þ:
Proof. This proof follows the one in Ioannou and Sun
(1996) but with appropriate modifications for the
theory. &

Now, we will state the stability results for continuous-
time direct and indirect adaptive control schemes when
the hybrid adaptive law is used.
Theorem 2. Given the error dynamics (2.37) with the

reference trajectory assumption (Assumption 4) satisfied,
and either Assumption 1 or 2 holds (and for the direct

case, Assumption 3 holds), then the hybrid adaptive law in

both direct and indirect cases will ensure (in addition to

the results stated in Theorem 1) that
1.
 es is bounded.

2.
 The plant output and its derivatives yp; . . . ; y

ðr�1Þ
p are

bounded.

3.
 The control signal (ud in the direct case or ui in the

indirect case) is bounded.

The proof can be found in the Appendix.
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4. Auto-tuning the adaptation gain

In this section, we will present a methodology to auto-
tune the adaptation gain for a continuous-time non-
linear adaptive control systems when a gradient-based
hybrid adaptive law is used for parameter adaptation.
The gradient update law relies on the following idea.
Starting with an initial value for the parameter vector,
the gradient algorithm changes (updates) this vector by
adding to it another vector having a magnitude and a
direction of descent. We can think of this as searching
for the ideal parameter vector. In most adaptive
schemes, the adaptation gain is held constant. Here,
however, we argue that the adaptation gain can be
selected (adapted) on-line to minimize the instantaneous
control energy. It is important to mention that our
objective here is to search for an ‘‘optimal’’ Z (that we
will call Zopt). Note that Zopt is not necessarily the
optimal adaptation gain. The step of finding Zopt is
crucial to find the new parameter vector (AoptðkÞ), and
hence the new control, uoptðtÞ: The term optimal is used
here only because the adaptation gain (as shown below)
will be selected to minimize the instantaneous control
energy JuðZÞ ¼ u2ðtÞ: We would like to note that the
adaptation gain ZðkÞ is fixed over the interval ½tk; tkþ1Þ:

4.1. Auto-tuning algorithm

The adaptation gain tuning algorithm (for both direct
and indirect adaptive cases) proceeds according to the
following steps (shown in Fig. 1):
1.
η

Find a range on ZðkÞ (i.e., Z 2 ½Zmin; Zmax�), such that
the stability is maintained no matter which ZðkÞ in
this range is used.
2.
 Find the new adaptation gain (ZoptðkÞ) that minimizes
the instantaneous control energy JuðZÞ ¼ u2ðtÞ:
3.
 Using ZoptðkÞ; find the new parameter vector AoptðkÞ

and hence the new control uoptðtÞ:
4.1.1. Finding a feasible range on ZðkÞ
Recall from Theorem 1 that the parameters m, s0; Ts;

ZðkÞ need to be chosen so that

2TsZðkÞo1 (4.1)

or
 range

η min 

η max 

Step 1 Step 2 Step3

Find

uopt 

and let

u = uopt 

ηopt 

to minimize

Pick

u2(t)

Fig. 1. Steps used for adaptation gain selection.
ZðkÞo
1

2Ts

(4.2)

and

2s0TsZðkÞo1 (4.3)

or

ZðkÞo
1

2s0Ts

: (4.4)

To satisfy both conditions (4.2) and (4.4), we select ZðkÞ
such that

ZðkÞomin
1

2Ts

;
1

2s0Ts

� �
:¼ Z̄; (4.5)

where Z̄ is an upper bound on the adaptation gain.
Define ZðkÞ ¼ rðkÞZ̄ and

½Zmin ¼ r1Z̄�p½ZðkÞ ¼ rðkÞZ̄�½pr2Z̄ ¼ Zmax�; (4.6)

where 0or1prðkÞpr2o1 for fixed constants r1 and r2:
Note that both ZðkÞ and rðkÞ are constants over the
interval ½tk; tkþ1Þ:

4.1.2. Finding the new adaptation gain ZoptðkÞ via

minimizing the instantaneous control energy

Here, the new adaptation gain is obtained by
minimizing the following cost function

min JuðZÞ ¼ u2ðtÞ (4.7)

such that ZminpZðkÞpZmax: Assume that the ideal
control can be approximated by

uðtÞ ¼ A>ðkÞzðtÞ; (4.8)

where AðkÞ is constant over the interval tk; tkþ1½ Þ:
Substituting the hybrid adaptive law (3.3) into (4.8),
we get

uðtÞ ¼ Aðk � 1Þ þ ZðkÞ
Z tk

tk�1

½�ðtÞzðtÞ � wðtÞ
�

�Aðk � 1Þ�dt

>

zðtÞ

¼ Aðk � 1Þ>zðtÞ þ ZðkÞ

�

Z tk

tk�1

½�ðtÞzðtÞ � wðtÞAðk � 1Þ�dt
� 
>

zðtÞ: ð4:9Þ

Let j1ðtÞ ¼ ½
R tk

tk�1
½�ðtÞzðtÞ � wðtÞAðk � 1Þ�dt�>zðtÞ and

j2ðtÞ ¼ Aðk � 1Þ>zðtÞ; then uðtÞ can be written as uðtÞ ¼

j1ðtÞZðkÞ þ j2ðtÞ: Hence, u2ðtÞ can be written as u2ðtÞ ¼

j2
1ðtÞZ

2ðkÞ þ 2j1ðtÞj2ðtÞZðkÞ þ j2
2ðtÞ: Since u2ðtÞ is in

quadratic form, the cost function (4.7) can be minimized
as a quadratic programming problem with linear
inequality constraint (ZminpZðkÞpZmax). Since j2

2ðtÞ is
independent of ZðkÞ; it can be omitted from the cost
function we want to minimize. Hence, the instantaneous
control energy u2ðtÞ (that we need to minimize to obtain
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the new adaptation gain) can be expressed as

minZ u2ðtÞ ¼ min
Z

j2
1ðtÞZ

2ðkÞ þ 2j1ðtÞj2ðtÞZðkÞ

s:t: ZminpZðkÞpZmax: ð4:10Þ

Since j2
1ðtÞ is positive definite, this problem (4.10) is

known to have a unique global minimum, ZoptðkÞ; which
can be used to find the new parameter vector and hence
the new control. Now, this adaptation gain can be used
in the update routine of the controller’s parameter
vector as shown next.

4.1.3. Finding the new parameter vector (AoptðkÞ) and

the new control (uoptðtÞ)

The new adaptation gain ZoptðkÞ can be used to find
the new parameter vector AoptðkÞ as follows:

AoptðkÞ ¼ Aoptðk � 1Þ þ ZoptðkÞ

�

Z tk

tk�1

½�ðtÞzðtÞ � wðtÞAoptðk � 1Þ�dt: ð4:11Þ

This new parameter vector of the controller is used to
find the new control as

uoptðtÞ ¼ Aopt>ðkÞzðtÞ; (4.12)

which is the final control to be input to the system.

4.2. Stability analysis

Here, we will present the stability results when the
adaptation gain is auto-tuned according to the algo-
rithm presented above.

Theorem 3. Let m, s0; Ts; ZðkÞ be chosen so that d=m 2

L1; z>z=m2p1; then the hybrid adaptive law (4.11)
(when the adaptation gain is auto-tuned to minimize the

instantaneous control energy) guarantees that
(1)
 �; �ns 2 L1; AðkÞ 2 l1;

(2)
 �; �m 2 Sðd2

m2Þ:
The proof can be found in the Appendix A. Now, we
present the following theorem to show boundedness of
all signals.

Theorem 4. Given the error dynamics (2.37) with the

reference trajectory assumption (Assumption 4) satisfied,
and either Assumption 1 or 2 holds (and for the direct

case, Assumption 3 holds), then the hybrid adaptive law

(4.11) in both direct and indirect cases will ensure (in
addition to the results stated in Theorem 3) that
1.
 es is bounded.

2.
 The plant output and its derivatives yp; . . . ; y

ðr�1Þ
p are

bounded.

3.
 The control signal (ud in the direct case or ui in the

indirect case) is bounded.

Proof. The proof of this theorem is similar to the proof
of Theorem 2. &
5. Aircraft wing rock example

Aircraft wing rock is a limit cycling oscillation in the
aircraft roll angle f and roll rate _f: Limit cycle roll and
roll rate are experienced by aircraft with pointed
forebodies at high angle of attack. Such phenomenon
may present serious danger due to the potential of
aircraft instability. If dA is the actuator output, a model
of this phenomenon is given by

€f ¼ a1fþ a2
_fþ a3

_f
3
þ a4f

2 _fþ a5f _f
2
þ bdA: (5.1)

Choose the state vector x ¼ ½x1;x2;x3�
> with x1 ¼ f;

x2 ¼ p ¼ _f; and x3 ¼ dA: Suppose that we use a first
order model to represent the actuator dynamics of the
aileron (the control surface at the outer part of the
wing). Then we have

_x1 ¼ x2;

_x2 ¼ a1x1 þ a2x2 þ a3x3
2 þ a4x2

1x2 þ a5x1x2
2 þ bx3;

_x3 ¼ �
1

t
x3 þ

1

t
u;

y ¼ x1; ð5:2Þ

where u is the control input to the actuator and t is the
aileron time constant. For an angle of attack of 21.51,
a1 ¼ �0:0148927; a2 ¼ 0:0415424; a3 ¼ 0:01668756;
a4 ¼ �0:06578382; and a5 ¼ 0:08578836: Also, b ¼ 1:5
and t ¼ 1

15
: Here, we use an initial condition of

xð0Þ ¼ ½0:4; 0; 0�>: Here, the reference signal ymðtÞ ¼ 0:
The above model was taken from Nayfeh et al. (1989)
and Elzebda et al. (1989) and is based on wind tunnel
data in Levin and Katz (1984). The objective of this
example is to demonstrate the auto-tuning algorithm
presented earlier.

Based on the definition of the plant considered (2.1)
we can show that

f ðX Þ ¼

x2

a1x1 þ a2x2 þ a3x3
2 þ a4x2

1x2 þ a5x1x2
2 þ bx3

�
1

t
x3

2
664

3
775;

(5.3)

gðX Þ ¼

0

0
1

t

2
664

3
775 (5.4)

and

hðX Þ ¼ x1: (5.5)

Also, it can be verified that the relative degree of the
system is r ¼ n ¼ 3 (no zero dynamics). It can be shown
(according to (2.3)) that

yð3Þ ¼ ðakðtÞ þ aðX ÞÞ þ ðbkðtÞ þ bðX ÞÞu; (5.6)
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where (assuming that akðtÞ ¼ bkðtÞ ¼ 0)

aðX Þ ¼ a1x2 þ 2a4x1x2
2 þ a5x3

2 �
b

t
x3

þ ½a2 þ 3a3x2
2 þ a4x2

1 þ 2a5x1x2�

� ½a1x1 þ a2x2 þ a3x3
2 þ a4x2

1x2

þ a5x1x2
2 þ bx3� ð5:7Þ

and

bðX Þ ¼
b

t
: (5.8)

Here, it is assumed that there exists positive constants b0

and b1 such that 0ob0pbðX Þpb1o1; where in this
case b0 ¼ 10 and b1 ¼ 40:

As defined earlier, our measure of the tracking
performance is

� ¼
kð_es þ desÞ

yðX Þm2
; (5.9)

where es ¼ k>e and k ¼ ½k0; k1; 1� ¼ ½100; 20; 1�:

5.1. Direct case

Here, we attempt to approximate the ideal controller
by an approximator in the form of a Takagi–Sugeno
fuzzy system (TSFS). The TSFS used here has nine
rules, and it has two inputs to the premise of each rule,
x1 and x2: Also, it has three inputs to the consequent of
0 1 2 3 4 5
-2.5
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-0.5

0

0.5

1
ε

Time (s
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Time (s

Fig. 2. The responses of � an
each rule, x1; x2; and x3: The certainties of the rules are
determined by Gaussian membership functions whose
centers are evenly distributed between �2 and 2. The
parameters of the TSFS are updated using the hybrid
adaptive law

AðkÞ ¼ Aðk � 1Þ þ ZðkÞ

�

Z tk

tk�1

½�ðtÞzðtÞ � wðtÞAoptðk � 1Þ�dt: ð5:10Þ

After some tuning, we have found that we can obtain a
small value of � (as shown in Fig. 2) using Ts ¼ 0:005;
s0 ¼ 1; M0 ¼ 1; g ¼ 1:8; and d ¼ 30: The value of Ts is
chosen to be 0:005 since small sampling time is needed to
simulate such a continuous time system. To simplify the
tuning procedure, s0 is chosen to be 1 so that

1

2Ts

¼
1

2s0Ts

and hence Z̄ defined in (4.5) becomes

Z̄ ¼ min
1

2Ts

¼
1

2s0Ts

� �
¼

1

2Ts

¼
1

2s0Ts

:

Based on theory, g should be selected such that gX1:
Here, we started with g ¼ 1; and we found by some
tuning that an acceptable response can be achieved
using g ¼ 1:8: Also, d which needs to be positive serves
as a weighting between es and _es in the definition of �:
We started with d ¼ 1: After some tuning, we have
found that d ¼ 30 is an acceptable choice. Based on the
6 7 8 9 10

ec)

6 7 8 9 10

ed η 

ec)

d Z in the direct case.
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theory, M0 has to be selected such that M0X2jA�j:
Since jA�j is unknown, we initially selected M0 to be
some large positive scalar, and by some tuning we were
able to decrease the magnitude of this scalar to M0 ¼ 1
such that we achieve some acceptable performance.
Using (4.5), it can be easily shown that Z̄ ¼ 100: Here,
we selected r1 and r2 to be 0:05 and 0:95; respectively.
This implies that the lower and upper bounds on the
adaptation gain are 5 and 95, respectively. In the fist plot
of Fig. 2, we show how � decreases to a small value. The
second plot in the figure shows how the adaptation gain
varies based on the variations of �: It is clear from the
figure that the adaptation gain, in almost the first 2 s,
increases to its upper bound since large adaptation gain
is needed to derive � to some small value. After the 2 s,
the adaptation gain usually takes its lower bound since �
has small value over that time. However, at certain
instants the adaptation gain starts to increase to its
upper bound for relatively short time intervals. It is
unclear from Fig. 2 why the adaptation gain behaves in
such mannerafter the first two seconds (when � is
relatively small). To investigate this observation, we
consider Fig. 3, where the first plot which is a scaled
version of the first plot in Fig. 2 shows the behavior of �
at a smaller range. It is clear from this figure that �
exhibits small variations in magnitude. This shows (for
this particular example) how sensitive the presented
auto-tuning algorithm is for small variations in �: It is
important to note that since � 2 Sðd2=m2Þ; � can be
0 1 2 3 4 5

0

1

2
x 10-15 ε

Time (

0 1 2 3 4 5
0

20

40

60

80

100

Auto-tun

Time (s

-1

-2

Fig. 3. The responses of � an
made smaller by either decreasing d2 (by improving the
approximation accuracy) or by increasing m2 (by
increasing g). The response of the aircraft roll angle, f;
is shown in the first plot of Fig. 4. The second plot of
this figure shows the behavior of the aileron input, dA: It
is clear that the response of the aircraft roll angle is
unacceptable with this set of controller parameters.
However, such results are expected since the objective of
the adaptive control law is to drive � (not the tracking
error, e0) to a small value that is function of d and m

(since � 2 Sðd2=m2Þ). We know that � is defined as

� ¼
kð_es þ desÞ

yðX Þm2
2 S

d2

m2

� �
:

One way to decrease the tracking error is to try to make
es dominate the effects on the dynamics of � (by
increasing the value of d), and hence e0 will become
smaller since es is smaller. This is clear from the response
of the aircraft roll angle shown in Fig. 5 when d is
increased to 5000. Note that the algorithm presented
earlier focuses on auto-tuning the adaptation gain by
minimizing the control energy. For this reason, let us
discuss how this algorithm impacts the resulting control
energy. To do that, we need to investigate how the MSE
and MCE change for different values over the feasible
range of adaptation gain (which is in this case
0oZo100). Fig. 6 shows how both the MCE and
MSE change for several fixed values of the adaptation
6 7 8 9 10

sec)

6 7 8 9 10

ed η

ec)

d Z in the direct case.
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Fig. 5. The responses of the aircraft roll angle and aileron input in the direct case for d ¼ 5000:
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gain over a simulation period of 10 s. The first plot in
Fig. 6 shows the changes in MCE for several values of
the adaptation gain. The dotted line in this figure shows
the value of the MCE when the auto-tuning algorithm is
used. This value is found to be 0.2205. It is clear that
MCE (except at very small values of Z) slightly oscillates
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Fig. 6. Changes in the MCE and MSE as Z varies in the direct adaptive case.
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around 0.9. The large MCE values at small fixed values
of Z can be due to the large error that may result when
small fixed values of Z are used. To decrease such large
error, a relatively large control energy is often needed. It
is clear that the MCE achieved when the auto-tuning
algorithm is used is smaller than the MCE obtained
using any fixed adaptation gain. Similarly, the second
plot in the figure shows the changes in MSE for several
fixed values of the adaptation gain, and the dotted line
shows the value of the MSE when the auto-tuning
algorithm is used. This value is found to be 0.0138. The
third plot is only a scaled version of the second plot to
clarify the variation of MSE at large values of the
adaptation gain. It is clear from the figure that the MSE
decreases as the adaptation gain increases. This decrease
is due to the relatively large control energy (compared to
the MCE obtained using the auto-tuning algorithm) that
improves the closed-loop performance. The MSE
obtained using the auto-tuning algorithm is found to
be larger than almost any MSE value obtained at a fixed
adaptation gain. This is due to the fact that in the auto-
tuning algorithm the adaptation gain is obtained to
minimize the control energy at the expense of error
energy. Hence, we can conclude that our simulation
results support the objective of the presented algorithm
in the sense that the adaptation gain is selected on-line
to minimize the control energy in such a way that a good
closed-loop performance is achieved.
5.2. Indirect case

Here, we attempt to approximate parts of the plant
dynamics (i.e., aðX Þ and bðX Þ) and use these estimates to
find the control. The function a is approximated here by
an approximator in the form of a Takagi–Sugeno fuzzy
system (TSFS) that has nine rules. This TSFS has two
inputs to the premise of each rule, x1 and x2: Also, it has
three inputs to the consequent of each rule, x1; x2; and
x3: The certainties of the rules are determined by
Gaussian membership functions whose centers are
evenly distributed between �2 and 2. The function
bðX Þ; however, is approximated by a scalar. The
parameters of both approximators are updated using
the hybrid adaptive law (5.10). After some tuning, we
have found that we can obtain a small value of � (as
shown in Fig. 7) using Ts ¼ 0:005; s0 ¼ 1; M0 ¼ 200;
g ¼ 3; and d ¼ 3: Ts and s0 are chosen to be 0:005 and 1,
respectively, for the same reason stated in the direct
case. Also, since g should be selected such that gX1; we
started with g ¼ 1; and we found by some tuning that
good response can be achieved using g ¼ 3: As in the
direct case, d needs to be positive; we started with d ¼ 1;
and after some tuning we have found that d ¼ 3 is an
acceptable choice. Also, M0 has to be selected such that
M0X2jA�j: Since jA�j is unknown, we initially M0 to be
some large positive scalar, and by some tuning we
have found that M0 ¼ 200 provides an acceptable



ARTICLE IN PRESS

0 1 2 3 4 5 6 7 8 9 10

0

5
ε

Time (sec)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Auto-tuned η 

Time (sec)

-5

-10

-15

Fig. 7. The responses of � and Z in the indirect case.

H.N. Nounou, K.M. Passino / Engineering Applications of Artificial Intelligence 18 (2005) 317–334328
performance. Using (4.5), it can be easily shown that
Z̄ ¼ 100: Here, we selected r1 and r2 to be 0.05 and 0.95,
respectively. This implies that the lower and upper
bounds on the adaptation gain are 5 and 95, respec-
tively. The responses of � and Z are shown in Fig. 7. In
the first plot of Fig. 7, we show how � decreases to a
small value. The second plot in the figure shows how the
adaptation gain varies based on the variations of �: It is
clear from the figure that the adaptation gain, in almost
the first 5 s, increases to its upper bound whenever
necessary to keep � small, and after that the adaptation
gain decreases to its lower bound since � is small enough
that no major changes in the approximators are needed
and hence small adaptation gain is sufficient. As in the
direct case, � 2 Sðd2=m2Þ; � can be made smaller by
either decreasing d2 or by increasing m2: The response of
the aircraft roll angle, f; is shown in the first plot of
Fig. 8. The second plot of this figure shows the behavior
of the aileron input, dA: It is clear that the response of
the aircraft roll angle is unacceptable with this set of
controller parameters. As in the direct case, however,
such results are expected since the objective of the
adaptive control law is to drive � (not the tracking error,
e0) to a small value. The main difference is that d cannot
be made much larger than what we have here (we can
only increase it to about 20), and hence es (and e0)
cannot be driven to smaller values. The response of the
aircraft roll angle and aileron input in the for d ¼ 20 is
shown in Fig. 9. As in the direct case, we need to
investigate how the MSE and MCE change for different
values over the feasible range of adaptation gain (which
is in this case 0oZo100). Fig. 10 shows how both the
MCE and MSE change for several fixed values of the
adaptation gain over a simulation period of 10 s. The
first plot in Fig. 10 shows the changes in MCE for
several values of the adaptation gain. The dotted line in
this figure shows the value of the MCE when the auto-
tuning algorithm is used. This value is found to be
0.2074. It is clear that MCE (except at very small values
of Z) slightly oscillate around 0:9: The reason behind
large MCE values at small fixed values of Z is stated
earlier in the direct case. It is clear that the MCE
achieved when the auto-tuning algorithm is used is
larger than most MCE values obtained using fixed
adaptation gains. Similarly, the second plot in the figure
shows the changes in MSE for several fixed values of the
adaptation gain, and the dotted line shows the value of
the MSE when the auto-tuning algorithm is used. This
value is found to be 1.6528. The third plot is only a
scaled version of the second plot to clarify the variation
of MSE at large values of the adaptation gain. It is clear
from the figure that the MSE decreases as the
adaptation gain increases. This decrease is due to the
relatively large control energy (compared to the MCE
obtained using the auto-tuning algorithm) that improves
the closed-loop performance. The MSE obtained using
the auto-tuning algorithm is found to be larger than
almost any MSE value obtained at a fixed adaptation
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Fig. 8. The responses of the aircraft roll angle and aileron input in the indirect case for d ¼ 3:
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Fig. 9. The responses of the aircraft roll angle and aileron input in the indirect case for d ¼ 20:
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gain. As in the direct case, this is due to the fact that in
the auto-tuning algorithm the adaptation gain is
obtained to minimize the control energy at the expense
of error energy. Hence, we can also conclude that our
simulation results support the objective of the presented
algorithm in the sense that the adaptation gain is
selected on-line to minimize the control energy in such a
way that a good closed-loop performance is achieved.



ARTICLE IN PRESS

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

η

M
C

E

Changes in MCE and MSE as η varies 

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

η

M
S

E

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

η

M
S

E

Fig. 10. Changes in the MCE and MSE as Z varies in the indirect adaptive case.

H.N. Nounou, K.M. Passino / Engineering Applications of Artificial Intelligence 18 (2005) 317–334330
6. Conclusion

Considering both direct and indirect adaptive control
schemes, the main contribution of this paper is to auto-
tune the adaptation gain for a gradient-based approx-
imator parameter update law used for a class of
continuous-time nonlinear systems. The adaptation
mechanism of the gradient update law is usually based
on minimizing the squared output error. Here, however,
we auto-tune the adaptation gain to minimize the
control energy. Based on the simulation results of the
wing rock example, a comparison to some extent can be
made between direct and indirect adaptive control
schemes. Unlike the direct case, it is shown by the
example that in the indirect case it is not feasible to
decrease es (and hence the tracking error, e0) to small
values.
Appendix A

A.1. Proof of Theorem 2

Part 1: From Theorem 1 we know that

� ¼
kð_es þ desÞ

ym2
2 S

d2

m2

� �
: (A.1)
Rearranging terms, (A.1) can be written as

_es þ des ¼
�ym2

k
: (A.2)

The differential equation shown in (A.2) is a first order
non-homogeneous differential equation, and its solution
can be written as the sum of the homogeneous solution
and the particular one (i.e., es ¼ ðesÞh þ ðesÞp; where ðesÞh
and ðesÞp are the homogeneous and particular solutions,
respectively). It can be shown that the homogeneous
solution has the form

ðesÞh ¼ cee
�dt; (A.3)

where ce is a constant that depends on the initial
condition, and the particular solution is

ðesÞp ¼
�ym2

kd
: (A.4)

Hence, es can be expressed as

es ¼ cee
�dt þ

�ym2

kd
: (A.5)

Since d40; cee
�dt decreases exponentially as time

increases. Hence

lim
t!1

es ¼
�ym2

kd
: (A.6)
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We know from Theorem 1 that both of � and �m 2

Sðd2=m2Þ: This implies that m is bounded. Since all
parameters in the right-hand side of (A.6) are bounded,
es is bounded.

Part 2: Hence, jesj is bounded by some upper
bound Meðd;mÞ (i.e., jesjpMe). The following
analysis, to show that the output error and its
derivatives are bounded provided that jesjpMe; has
been discussed in Spooner and Passino (1996). Define
transfer functions

ĜiðsÞ :¼
si

L̂ðsÞ
; i ¼ 0; . . . ; r � 1; (A.7)

which are stable since L̂ðsÞ has its poles in the open left
half plane. Since eðiÞo ¼ ĜiðsÞes; with es bounded, then eðiÞo

is bounded (i.e., eðiÞo 2 L1). Since eðiÞo is bounded and
eðiÞo ¼ yðiÞ

m � yðiÞ
p ; and yðiÞ

m is bounded (by Assumption 4),
then the output and its derivatives are bounded
(yðiÞ

p 2 L1; 8i ¼ 0; 1; :::; r � 1). This establishes the sec-
ond part of the theorem.

Part 3: Since the output and its derivatives are
bounded, using Assumptions 1 or 2 we know that the
states of the plant are bounded. Hence, in the indirect
case the functions aðX Þ; akðtÞ; bðX Þ; bkðtÞ 2 L1: The
projection algorithm, ensures that bkðtÞ þ b̂ðX Þ is
bounded away from zero and that âðX Þ is bounded,
thus ui 2 L1: In the direct case, since the states are
bounded then z is bounded. Also, we can use a
projection algorithm to ensure that A 2 L1: Hence,
from the definition of the control ud (2.13), we know
that ud is bounded (i.e., ud 2 L1). This establishes the
third part of the theorem. &
A.2. Proof of Theorem 3

Consider the following Lyapunov-like function

V ðkÞ ¼ fðkÞ>fðkÞ: (A.8)

Since Aðk þ 1Þ � A� ¼ AðkÞ � A� þ Aðk þ 1Þ � AðkÞ; we
know that

fðk þ 1Þ ¼ fðkÞ þ DAðkÞ; (A.9)

where

DAðkÞ ¼ rðk þ 1ÞZ̄
Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt:

(A.10)

Here, rðkÞZ̄ ¼ ZðkÞ represents any adaptation gain
within the feasible range

½Zmin ¼ r1Z̄�p½ZðkÞ ¼ rðkÞZ̄�p½Zmax ¼ r2Z̄�;
where 0or1prpr2o1: Using (A.9) in (A.8), we can
write

V ðk þ 1Þ ¼ ½fðkÞ þ DAðkÞ�>½fðkÞ þ DAðkÞ�

¼ fðkÞ>fðkÞ þ 2fðkÞ>DAðkÞ þ DA>ðkÞDAðkÞ

¼ V ðkÞ þ 2fðkÞ>DAðkÞ þ DA>ðkÞDAðkÞ:

ðA:11Þ

Substituting (A.10) in (A.11), we get

V ðk þ 1Þ ¼ V ðkÞ þ 2fðkÞ>rðk þ 1ÞZ̄

�

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt

þ

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�>dt

� ½rðk þ 1ÞZ̄�2

�

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt: ðA:12Þ

Using (2.37) and the definition that � ¼ ê=m2; it can be
easily shown that

fðkÞ>z ¼ ��m2 þ d (A.13)

or

fðkÞ>�z ¼ ��2m2 þ �d: (A.14)

Integrating both sides of (A.14), we get

fðkÞ>
Z tkþ1

tk

�ðtÞzðtÞdt

¼

Z tkþ1

tk

½��2ðtÞm2ðtÞ þ �ðtÞdðtÞ�dt: ðA:15Þ

We know that �a2 þ abp� ða2=2Þ þ ðb2=2Þ: Let a ¼ �m
and b ¼ d=m: Hence, (A.15) can be written as

fðkÞ>
Z tkþ1

tk

�ðtÞzðtÞdtp�

Z tkþ1

tk

�2ðtÞm2ðtÞ
2

dt

þ

Z tkþ1

tk

d2
ðtÞ

2m2ðtÞ
dt: ðA:16Þ

Consider the last term in (A.12) and note that

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�> dt½rðk þ 1ÞZ̄�2

�

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt

¼ ½rðk þ 1ÞZ̄�2
Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt











2

:

ðA:17Þ
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Since ða þ bÞ2p2a2 þ 2b2; where a ¼
R tkþ1

tk
�ðtÞzðtÞdt and

b ¼
R tkþ1

tk
�wðtÞAðkÞdt; then

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt











2

p2

Z tkþ1

tk

�ðtÞmðtÞ
zðtÞ
mðtÞ

dt











2

þ 2

Z tkþ1

tk

wðtÞAðkÞdt











2

: ðA:18Þ

Also, since jzðtÞj=mðtÞp1; wðtÞps2
s ; andR tkþ1

tk
jAðkÞj2 dt ¼ jAðkÞj2T2

s ; then

2

Z tkþ1

tk

�ðtÞmðtÞ
zðtÞ
mðtÞ

dt











2

þ 2

Z tkþ1

tk

wðtÞAðkÞdt











2

p2Ts

Z tkþ1

tk

�2ðtÞm2ðtÞdtþ 2s2
s T2

s jAðkÞj2: ðA:19Þ

Hence, from (A.17) to (A.19), we can say that

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�> dt½rðk þ 1ÞZ̄�2

�

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt

p2½rðk þ 1ÞZ̄�2Ts

Z tkþ1

tk

�2ðtÞm2ðtÞdt

þ 2½rðk þ 1ÞZ̄�2s2
s T2

s jAðkÞj2: ðA:20Þ

It can be shown that (A.12) can be written as

V ðk þ 1ÞpV ðkÞ þ 2rðk þ 1ÞZ̄f>
ðkÞ

Z tkþ1

tk

�ðtÞzðtÞdt

þ

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�> dt½rðk þ 1ÞZ̄�2

�

Z tkþ1

tk

½�ðtÞzðtÞ � wðtÞAðkÞ�dt

� 2rðk þ 1ÞZ̄f>
ðkÞ

Z tkþ1

tk

wðtÞAðkÞdt: ðA:21Þ

Using (A.16) and (A.20) in (A.21), we have

V ðk þ 1ÞpV ðkÞ � rðk þ 1ÞZ̄
Z tkþ1

tk

�2ðtÞm2ðtÞdt

þ rðk þ 1ÞZ̄
Z tkþ1

tk

d2
ðtÞ

m2ðtÞ
dt

� 2rðk þ 1ÞZ̄ssTsfðkÞ
>AðkÞ

þ 2½rðk þ 1ÞZ̄�2Ts

Z tkþ1

tk

�2ðtÞm2ðtÞdt

þ 2½rðk þ 1ÞZ̄�2s2
s T2

s jAðkÞj2: ðA:22Þ
Rearranging terms, (A.22) becomes

V ðk þ 1ÞpV ðkÞ � rðk þ 1ÞZ̄½1 � 2rðk þ 1ÞZ̄Ts�

�

Z tkþ1

tk

�2ðtÞm2ðtÞdt

þ rðk þ 1ÞZ̄
Z tkþ1

tk

d2
ðtÞ

m2ðtÞ
dt

� 2rðk þ 1ÞZ̄ssTs fðkÞ>AðkÞ
�

�rðk þ 1ÞZ̄ssTsjAðkÞj2
�
: ðA:23Þ

Using the fact that jA�jXjAðkÞj; we know that

fðkÞ>AðkÞ ¼ ½AðkÞ � A��>AðkÞ

¼ jAðkÞj2 � A�>AðkÞ

XjAðkÞj2 � jA�jjAðkÞj

XjAðkÞj2 � jA�j2

X
jAðkÞj2

2
�

jA�j2

2
: ðA:24Þ

Using (A.24) in (A.23), we have

V ðk þ 1ÞpV ðkÞ � rðk þ 1ÞZ̄½1 � 2rðk þ 1ÞZ̄Ts�

�

Z tkþ1

tk

�2ðtÞm2ðtÞdt

þ rðk þ 1ÞZ̄
Z tkþ1

tk

d2
ðtÞ

m2ðtÞ
dt

� 2rðk þ 1ÞZ̄ssTs

jAðkÞj2

2
�

jA�j2

2

�

� rðk þ 1ÞZ̄ssTsjAðkÞj2



ðA:25Þ

or

V ðk þ 1ÞpV ðkÞ � rðk þ 1ÞZ̄½1 � 2rðk þ 1ÞZ̄Ts�

�

Z tkþ1

tk

�2ðtÞm2ðtÞdt

þ rðk þ 1ÞZ̄
Z tkþ1

tk

d2
ðtÞ

m2ðtÞ
dt

� 2rðk þ 1ÞZ̄ssTs
1

2
� rðk þ 1ÞZ̄s0Ts

� ��

� jAðkÞj2 �
jA�j2

2



: ðA:26Þ

Let Dm ¼ supt d=m 2 L1: Since Dm is constant over the
time ½tk; tkþ1Þ; then (A.26) becomes

V ðk þ 1ÞpV ðkÞ � rðk þ 1ÞZ̄½1 � 2rðk þ 1ÞZ̄Ts�

�

Z tkþ1

tk

�2ðtÞm2ðtÞdtþ Tsrðk þ 1ÞZ̄jDmj
2

� 2rðk þ 1ÞZ̄ssTs

1

2
� rðk þ 1ÞZ̄s0Ts

� ��

� jAðkÞj2 �
jA�j2

2



: ðA:27Þ
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From the definition (4.5), we know that

rðk þ 1ÞZ̄oZ̄p
1

2Ts

(A.28)

and

rðk þ 1ÞZ̄oZ̄p
1

2s0Ts

: (A.29)

From (A.28) and (A.29), we know that

2rðk þ 1ÞZ̄Tso1 (A.30)

and

rðk þ 1ÞZ̄s0Tso1
2
: (A.31)

To show that AðkÞ 2 l1; we need to consider two
cases: the case when jAðkÞjoM0 and the case when
jAðkÞjXM0: In the first case (when jAðkÞjoM0 for some
bounded parameter M0), it clear that AðkÞ 2 l1: In the
other case (when jAðkÞjXM0 and hence ss ¼ s0),
however, we consider (A.27). In (A.27) (when (A.30)
and (A.31) are both satisfied), we can guarantee that
V ðk þ 1ÞpV ðkÞ whenever

Tsrðk þ 1ÞZ̄jDmj
2 � 2ssTsrðk þ 1ÞZ̄ 1

2
� rðk þ 1ÞZ̄s0Ts

� �
jAðkÞj2 þ rðk þ 1ÞZ̄ssTsjA

�j2p0 ðA:32Þ

or since ss ¼ s0

jAðkÞj2X
jDmj

2 þ s0jA
�j2

s0½1 � 2rðk þ 1ÞZ̄s0Ts�
: (A.33)

Since in this case we know that jAðkÞjXM0; we can
guarantee that V ðk þ 1ÞpV ðkÞ whenever

jAðkÞj2Xmax M2
0;
jDmj

2 þ s0jA
�j2

s0½1 � 2Zs0Ts�

� �
: (A.34)

Note, here, that M0 is assumed to be large enough (e.g.,
M0X1) such that M0XjA�j: We can conclude from
(A.34) (since all of its parameters are bounded) that
V ðk þ 1ÞpV ðkÞ: Since V ðkÞ is defined as V ðkÞ ¼

fðkÞ>fðkÞ; then it can be shown (for some bounded
parameter initial condition, Að0Þ 2 l1) that AðkÞ 2 l1:
Since all parameters in the hybrid adaptive law (4.11)
are bounded, then we can conclude that � and hence �m
are bounded. This establishes the first part of the
theorem.

To establish the second part, consider

ssf
>
ðkÞAðkÞ

¼ ssAðkÞ>AðkÞ � ssA
�>AðkÞ

¼
ss

2
AðkÞ>AðkÞ þ

ss

2
AðkÞ>AðkÞ � ssA

�>AðkÞ
h i

X
ss

2
jAðkÞj2 þ

ss

2
jAðkÞj2 � 2jA�jjAðkÞj
� �

X
ss

2
jAðkÞj2 þ

ss

2
jAðkÞj½jAðkÞj � 2jA�j�: ðA:35Þ
Since M0X2jA�j; (A.35) becomes

ssf
>
ðkÞAðkÞ

X
ss

2
jAðkÞj2 þ

ss

2
jAðkÞj½jAðkÞj � M0�: ðA:36Þ

Also, using (3.4) in (A.36), we get

ssf
>
ðkÞAðkÞX

ss

2
jAðkÞj2: (A.37)

Adding and subtracting s0rðk þ 1ÞZ̄Ts from the right-
hand side of (A.37), and using the fact that 2s0rðk þ

1ÞZ̄Tso1; (A.37) becomes

ssf
>
ðkÞAðkÞ

Xss
1
2
þ rðk þ 1ÞZ̄s0Ts � rðk þ 1ÞZ̄s0Ts

� �
jAðkÞj2:

ðA:38Þ

Defining cs ¼
1
2
� rðk þ 1ÞZ̄s0Ts; (A.38) can be written

as

ss f>
ðkÞAðkÞ � rðk þ 1ÞZ̄s0TsjAðkÞj2

� �
XsscsjAðkÞj2: ðA:39Þ

Rearranging terms, (A.23) can be written as

rðk þ 1ÞZ̄½1 � 2rðk þ 1ÞZ̄Ts�

Z tkþ1

tk

�2ðtÞm2ðtÞdt

þ 2rðk þ 1ÞZ̄ssTs fðkÞ>AðkÞ � rðk þ 1ÞZ̄ssTsjAðkÞj2
� �

pV ðkÞ � V ðk þ 1Þ þ rðk þ 1ÞZ̄
Z tkþ1

tk

d2
ðtÞ

m2ðtÞ
dt

ðA:40Þ

and using (A.39), (A.40) becomes

rðk þ 1ÞZ̄½1 � 2rðk þ 1ÞZ̄Ts�

Z tkþ1

tk

�2ðtÞm2ðtÞdt

þ 2rðk þ 1ÞZ̄ssTscsjAðkÞj2

pV ðkÞ � V ðk þ 1Þ þ rðk þ 1ÞZ̄
Z tkþ1

tk

d2
ðtÞ

m2ðtÞ
dt

ðA:41Þ

which implies that �m 2 Sðd2=m2Þ: Since j�jpj�mj

(because mX1), we conclude that � 2 Sðd2=m2Þ: &
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