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a b s t r a c t

A model of honey bee social foraging is introduced to create an algorithm that solves a class of dynamic

resource allocation problems. We prove that if several such algorithms (‘‘hives’’) compete in the same

problem domain, the strategy they use is a Nash equilibrium and an evolutionarily stable strategy.

Moreover, for a single or multiple hives we prove that the allocation strategy is globally optimal. To

illustrate the practical utility of the theoretical results and algorithm we show how it can solve a

dynamic voltage allocation problem to achieve a maximum uniformly elevated temperature in an

interconnected grid of temperature zones.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades there has been an increasing interest in
understanding how some organisms generate different patterns, and
how some of them use collective behaviors to solve problems
(Bonabeau et al., 1999). In engineering, this ‘‘bioinspired’’ design
approach (Passino, 2005) has been used to exploit the evolved
‘‘tricks’’ of nature to construct robust high performance technologi-
cal solutions. One of the most popular bioinspired design approaches
is what is called ‘‘Swarm Intelligence’’ (SI) (Bonabeau et al., 1999;
Kennedy and Eberhart, 2001). SI groups those techniques inspired by
the collective behavior of social insect colonies, as well as other
animal societies that are able to solve large-scale distributed
problems. Some of the algorithms that have been developed are
inspired on the collective foraging behavior of ants (Dorigo and
Maniezzo, 1996), bees (Nakrani and Tovey, 2003; Teodorovic and
Dell’orco, 2005; Walker, 2004), or the general social interaction of
different animal societies (e.g., school of fishes) (Kennedy and
Eberhart, 1995). For instance, the ant colony optimization (ACO)
algorithms introduced by Dorigo and colleagues (e.g., see Dorigo and
Blum, 2005; Bonabeau et al., 1999; Dorigo and Stützle, 2004; Dorigo
et al., 2002) mimic ant foraging behavior and have been used in the
solution to classical optimization problems (e.g., discrete combina-
torial optimization problems, Dorigo et al., 1996) and in engineering
applications (e.g., Schoonderwoerd et al., 1996; Reimann et al.,
2004). Another approach that mimics the behavior of social

organisms is the particle swarm optimization (PSO) technique,
where the behavior of different types of social interactions (e.g., flock
of birds) is mimicked in order to create an optimization method that
is able to solve continuous optimization problems (Poli et al., 2007).
Many applications have applied this type of optimization method
(see Poli, 2007 for an extensive literature review on the field). For
instance, in Han et al. (2005) the authors use the PSO technique in
order to optimally select the parameters of a PID controller, while in
Juang and Hsu (2005) the PSO is used in order to design a recurrent
fuzzy controller used to perform temperature control using a field-
programmable gate array (FPGA). The primary goal of this paper is to
show that another SI technique (i.e., honey bee social foraging) can
be exploited in a bioinspired design approach to (i) solve a dynamic
resource allocation problem (Ibaraki and Katoh, 1988) by viewing it
from an evolutionary game-theoretic perspective, and (ii) provide
novel strategies for multizone temperature control, an important
industrial engineering application. It should be pointed out that the
ACO is designed and successful for primarily static discrete
optimization problems, like for shortest paths and hence is not
directly applicable to dynamic continuous resource allocation
problems. In the other hand, PSO has been used for continuous
optimization problems. Even though we might be able to formulate
our problem using an objective function and solve it with PSO, the
main objective of this paper is not to compare with optimization
methods as it has usually been in this area (Poli, 2007). In this paper,
we aim to study the game-theoretic development of the honey bee
social foraging (rather than optimization), and the implementation
of those game-theoretic methods.

Our model of honey bee social foraging relies on experimental
studies (Seeley, 1995) and some ideas from other mathematical
models of the process. A differential equation model of functional
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aspects of dynamic labor force allocation of honey bees is
developed and validated for one set of experimental conditions
in Seeley et al. (1991) and Camazine and Sneyd (1991). The work
in Cox and Myerscough (2003) extends this model (e.g., by adding
details on energetics and currency) and Sumpter and Pratt (2003)
introduced a generic nonlinear differential equation model that
can represent social foraging processes in both bees and ants. Like
in Sumpter and Pratt (2003) and Cox and Myerscough (2003), our
model of recruitment uses the idea from Seeley et al. (1991) and
Camazine and Sneyd (1991) that dance strength proportioning on
the dance floor shares some characteristics with the evolutionary
process (e.g., with fitness corresponding to forage site profitability
and reproduction to recruitment as discussed in Seeley, 1995).
Here we make such connections more concrete by modeling the
bee recruitment process in an analogous manner to how survival
of the fittest and natural selection are modeled in genetic
algorithms using a stochastic process of fitness proportionate
selection (Mitchell, 1996). The authors in de Vries and Biesmeijer
(1998) introduce an ‘‘individual-oriented’’ model of social fora-
ging and validate it against one set of experimental conditions as
was done in Seeley et al. (1991) and Camazine and Sneyd (1991).
More recently, in de Vries and Biesmeijer (2002) the authors
expanded and improved the model in de Vries and Biesmeijer
(1998) (e.g., taking into account the findings in Seeley and Tovey
(1994) and by studying an equal harvest rate forager allocation
distribution). The work in Bartholdi et al. (1993) studies the
pattern of forager allocation and the optimality of it. The authors
in Dukas and Edelstein-Keshet (1998) study the spatial distribu-
tion of solitary and social food provisioners under different
currency assumptions. The work in Bartholdi et al. (1993), Dukas
and Edelstein-Keshet (1998), and de Vries and Biesmeijer (2002)
identifies connections to the concept of the ‘‘ideal free distribu-
tion’’ (IFD) (Fretwell and Lucas, 1970). Here, we do not use a
detailed characterization of bee and nectar energetics and
currency since there is not enough experimental evidence to
justify whether or when a gathering rate or efficiency-based
currency is used (Seeley, 1995); instead, we develop a generic

measure of forage site profitability. This general profitability
measure approach is the same one used in Passino and Seeley
(2006) to represent the nest-site quality landscape for the honey
bee nest-site selection process. Our general measure has the
advantage of allowing us to easily represent a wide range
of density-dependent foraging currencies via the classical
‘‘suitability function’’ approach to IFD studies (Fretwell and Lucas,
1970). Also, it eases the transition to the multizone temperature
control problem since the temperature control objective can be
easily characterized with our general profitability measure.

The IFD concept has been used to analyze how animals
distribute themselves across different habitats or patches of food
(Fretwell and Lucas, 1970). These habitats have different
characteristics (e.g., one habitat might have a higher nutrient
input rate than another), but animals tend to reach an equilibrium
point where each has the same correlate of fitness (e.g., consump-
tion rate). The term ‘‘ideal’’ means that the animals can perfectly
sense the quality of all habitats and seek to maximize the
suitability of the habitat they are in (by choosing which habitat to
reside in), and the term ‘‘free’’ means that the animals can go to
any habitat. In this paper, the IFD is a central unifying concept.
The IFD will emerge for one hive as the foragers are cooperatively

allocated across sites. Moreover, if n hives compete in the same
environment for a resource the IFD will also emerge. Here, we
create a mathematical representation of the n-hive game where
each hive’s strategy choice entails picking the distribution of
its foragers across the environment. Our analytical study starts by
showing that the IFD is a strict Nash equilibrium (Bas-ar and
Olsder, 1999) in terms of the payoffs to each hive and a special

type of evolutionarily stable strategy (ESS). The original definition
of an ESS is based on one important assumption: the population
size has to be infinite. In Schaffer (1988) and Maynard Smith
(1988) the authors define the conditions that must be satisfied in
order to prove that a strategy is evolutionarily stable for a finite-
population size. Using the ideas in Schaffer (1988) we state the
conditions for what we call a one-stable ESS, and show that the IFD
satisfies those conditions. This means that in an n-hive game, if a
single hive’s strategy (forager allocation) mutates from the IFD it
cannot survive when competing against a field of n�1 hives that
use the IFD strategy. While this means that the IFD is locally
optimal in a game-theoretic sense (i.e., unilateral forager alloca-
tion deviations by a hive are not profitable), here we show that
the achieved IFD is a global optimum point for both single hive
and n-hive allocations. For the n-hive case, this means that if the
forager allocation of all hives but one is at the IFD, then the
remaining hive has to distribute its effort according to the IFD if it
is to maximize its return.

Finally, it is important to highlight that other algorithms have
been developed using honey bee social foraging. For instance, in
Teodorovic and Dell’orco (2008) the authors introduce a bee
colony optimization (BCO) algorithm, which is a generalization of
the bee system (BS) tested in another combinatorial optimization
problems, to solve a common problem in traffic congestion.
Others have used different approaches to solve different optimi-
zation problems such as energy efficient mobile ad hoc networks
(Wedde and Farooq , 2005), job shop scheduling (Chong et al.,
2006), or Internet servers (Nakrani and Tovey, 2003; Walker,
2004). In general, all the articles that present a honey bee social
foraging algorithm do not focus on trying to mimic the whole
behavior of the foraging process. They tend to concentrate on the
most important part of the foraging process, i.e., the waggle
dance. Also, the problems that these algorithms are trying to solve
can be grouped into continuous optimization problems. As it was
pointed out before, our approach seeks to illustrate concepts from
a game-theoretic perspective rather than the optimization one
used in most of these algorithms (Pankiw, 2005; Pham et al.,
2006; Teodorovic and Dell’orco, 2005; Chong et al., 2006;
Karaboga, 2005). On the other hand, the utility of the theoretical
concepts introduced in this paper, and the honey bee social
foraging algorithm are illustrated by means of an engineering
application. In general, most of the applications that use honey
bee social foraging approaches use their algorithms in simula-
tions, or in applications where the algorithm is not directly
applied to solve a real engineering application. However, in our
case, the technological challenge we confront is experimental
multizone temperature control. Achievement of high performance
multizone temperature control is very important in a range of
commercial and industrial applications. For instance, recent work
in this area includes distributed control of thermal processes
(Jones et al., 2003; Zaheer-uddin et al., 1993; Emami-Naeini et al.,
2003; Demetriou et al., 2003; Ross, 2004), and semiconductor
processing (Alaeddine and Doumanidis, 2004a, b; Schaper et al.,
1999b). Particularly relevant to our work is the study in Emami-
Naeini et al. (2003), where the authors use multivariable
distributed control in order to maintain a uniform temperature
across a wafer during ramp-up (similar to the control objective
we study here). In Schaper et al. (1999a) the authors describe a
lithographical system that is heated by 49 independently
controlled zones. Here, we use a multizone experimental setup
that is similar to the one in Quijano et al. (2005) where dynamic
resource allocation methods are studied. In Quijano and Passino
(2007) a multizone temperature control experiment is also used,
but the dynamics are based on a replicator dynamics model.
Our experiments demonstrate how one hive can achieve an IFD
that corresponds to maximum uniform temperatures on the
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temperature grid using a honey bee social foraging algorithm.
We illustrate the dynamics of the foraging algorithm by showing
how it can successfully eliminate the effects of ambient
temperature disturbances. Moreover, we show that even if two
hives have imperfect information they can be used as a feedback
control that will still achieve an IFD.

The paper is organized as follows. First, in Section 2 we
introduce the honey bee social foraging algorithm. In Section 3
we perform a theoretical analysis of the hives’ achieved IFD
equilibrium. In Section 4 we apply the honey bee social foraging
algorithm to a multizone temperature control experiment and
show how the IFD emerges under a variety of conditions.

2. Honey bee social foraging algorithm

Modeling social foraging for nectar involves representing the
environment, activities during bee expeditions (exploration and
foraging), unloading nectar, dance strength decisions, explorer
allocation, recruitment on the dance floor, and accounting for
interactions with other hive functions. The experimental studies
we rely on are summarized in Seeley (1995). Our primary sources
for constructing components of our model are as follows: dance
strength determination, dance threshold, and unloading area
(Seeley and Towne, 1992; Seeley, 1994; Seeley and Tovey, 1994);
dance floor and recruitment rates (Seeley et al., 1991); and
explorer allocation and its relation to recruitment (Seeley, 1983;
Seeley and Visscher, 1988). Table 1 summarizes all notation used
for the model that is explained next.

2.1. Foraging profitability landscape

We assume that there are a fixed number of B bees involved in
foraging. For i¼1,2,y,B bee i is represented by yiAR2 which is its

position in two-dimensional space. During foraging, bees sample
a ‘‘foraging profitability landscape’’ which we think of as a spatial
distribution of forage sites with encoded information on foraging
profitability that quantifies distance from hive, nectar sugar
content, nectar abundance, and any other relevant site variables.
The foraging profitability landscape is denoted by Jf ðyÞ. It has a
value Jf ðyÞA ½0,1� that is proportional to the profitability of nectar
at a location specified by yAR2. Hence, Jf ðyÞ ¼ 1 represents a
location with the highest possible profitability, Jf ðyÞ ¼ 0 repre-
sents a location with no profitability, and 0o Jf ðyÞo1 represents
locations of intermediate profitability. For y¼ ½y1,y2�

>, the y1 and
y2 directions for our example foraging area are for convenience
scaled to [�1,1] since the distance from the hive is assumed to be
represented in the landscape. We assume the hive is at ½0,0�>.

As an example of the type of foraging profitability landscape
we could have four forage sites centered at various positions that
are initially unknown to the bees (e.g., site 1 could be at

½1:5,2:0�>). The ‘‘spread’’ of each site characterizes the size of the
forage site, and the height is proportional to the nectar
profitability. For example, we could use cylinders with heights

Nj
f A ½0,1� that are proportional to nectar profitability, and the

spread of each site can be defined by the radius of the cylinders ef .

Below, we will say that bee i, yi
¼ ½yi

1,yi
2�
>, is ‘‘at forage site 1’’ ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyi
�½1:5,2�>Þ>ðyi

�½1:5,2�>Þ
q

oef . We use a similar approach for

other sites.

2.2. Bee roles and expeditions

Let k be the index of the foraging expedition and assume that
bees go out at one time and return with their foraging profitability
assessments at one time (an asynchronous model with randomly
spaced arrivals and departures will behave in a qualitatively
similar manner). Our convention is that at time k¼0 no
expeditions have occurred (e.g., start of a foraging day), at time
k¼1 one has occurred, and so on. All bees, i¼1,2,y,B, have
yi
ð0Þ ¼ ½0,0�> so that initially they are at the hive.

Let xj(k) be the number of bees at site j at k. We assume that the
profitability of being at site j, which we denote by sj for a bee at a
location in site j, decreases as the number of bees visiting that site
increases. A typical choice (Fretwell and Lucas, 1970; Giraldeau and
Caraco, 2000) is to represent this by letting, for each j,

sjðkÞ ¼
aj

xjðkÞ

In this case, we could assume that aj is the number of nutrients
per second at the jth site. With this representation we think of a site
as a choice for the hive, with the site degrading in profitability via
the visit of each additional bee, a common assumption in theoretical
ecology. In IFD theory sj is called the ‘‘suitability function’’ (Fretwell
and Lucas, 1970).

Of the B bees involved in the foraging process, we assume that
there are Bf(k) ‘‘employed foragers’’ (ones actively bringing nectar
back from some site and that will not follow dances). Initially,
Bf(0)¼0 since no foraging sites have been found. We assume that
there are Bu(k)¼Bo(k)+Br(k) ‘‘unemployed foragers’’ with Bo(k)
that seek to observe the dances of employed foragers on the dance
floor and Br(k) that rest (or are involved in some other activity).
Initially, Bu(0)¼B, which with the rules for resting and observing
given below will set the number of resters and observers. We
assume that there are Be(k) ‘‘forage explorers’’ that go to random
positions in the environment, bring their nectar back if they find
any, and dance accordingly, but were not dedicated to the site
(of course they may become dedicated if they find a relatively
good site).

Table 1
Notation.

Variable Description

B Number of bees

yi Position in two dimensional space of the ith bee

Jf ðyÞ Foraging profitability landscape

xj(k) Number of bees at site j at step k

Bf Employed foragers

Bu Unemployed foragers

Bo Bees that seek to observer the dances

Br Bees that rest

Be Forage explorers

Fi(k) Foraging profitability assessment by employed forager i

wf
i Profitability assessment noise

en Lower threshold on site profitability

Lf
i Number of waggle runs of bee i at step k

b Parameter that affects the number of dances produced for an

above-threshold profitability

Ft(k) Total nectar profitability assessment at step k

Fq
i (k) Quantity of nectar gathered for Fi(k)

Ftq(k) Total quantity nectar influx to the hive at step k

Wi(k) Wait time that the bee i experiences

c, ww
i

(k)

Scale factor, and random variable that represents variations in the

wait time

F̂
i

tqðkÞ
Estimate of the total nectar influx

d Proportionality constant related to the site abandonment rate

pr(I,k) Probability that bee i will dance for the site

Bfd Number of employed foragers with above-threshold profitability

that dance

po Probability that an unemployed forager will become an observer

Lt(k) Total number of waggle runs on the dance floor at step k

pe(k) Probability of an observer becomes an explorer

pi(k) Probability of an observer will follow the dance of bee i

N. Quijano, K.M. Passino / Engineering Applications of Artificial Intelligence 23 (2010) 845–861 847
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We ignore the specific path used by the foragers on expeditions
and what specific activities they perform. We assume that a bee
simply samples the foraging profitability landscape once on its
expedition and hence this sample represents its combined overall
assessment of foraging profitability for location yi

ðkÞ. It is this value
that it holds when it returns to the hive. It also brings back
knowledge of the forage location which is represented with yi

ðkÞ for
the kth foraging expedition. Let the foraging profitability assessment
by employed forager (or forage explorer) i be

FiðkÞ ¼

1 if Jf ðy
i
ðkÞÞþwi

f ðkÞZ1

Jf ðy
i
ðkÞÞþwi

f ðkÞ if 14 Jf ðy
i
ðkÞÞþwi

f ðkÞ4en

0 if Jf ðy
i
ðkÞÞþwi

f ðkÞren

8>>><
>>>:

where wi
f(k) is the profitability assessment noise. Here, we let wf

i(k)
be uniformly distributed on (�wf,wf) with wf¼0.1
(to represent up to a 710% error in profitability assessment). The
value en40 sets a lower threshold on site profitability. Here,
en ¼ 0:1. For mid-range above-threshold profitabilities the bees will
on average have an accurate profitability assessment since the
expected value with respect to k of wi

f(k), E[wi
f(k)]¼0. Let Fi(k)¼0 for

all unemployed foragers.

2.3. Dance strength determination

Let Lf
i(k) be the number of waggle runs of bee i at step k, what is

called ‘‘dance strength.’’ The Bu(k) unemployed foragers have
Lf

i(k)¼0. All employed foragers and forage explorers that have
Fi(k)¼0 will have Lf

i(k)¼0 since they did not find a location above
the profitability threshold en so they will not seek to be unloaded
and will not dance; these bees will become unemployed foragers.

2.3.1. Unload wait time

Next, we will explain dance strength decisions for the
employed foragers and forage explorers with FiðkÞ4en. To do
this, we first model wait times to get unloaded and how they
influence the ‘‘dance threshold.’’ Define FtðkÞ ¼

PB
i ¼ 1 FiðkÞ as the

total nectar profitability assessment at step k for the hive.
Foragers at profitable sites tend to gather a greater quantity of
nectar than at low profitability sites. Let Fq

i (k) be the quantity of
nectar (load size) gathered for a profitability assessment F i(k). We
assume that Fi

qðkÞ ¼ aFiðkÞ where a40 is a proportionality
constant. We choose a¼ 1 so that Fi

qðkÞA ½0,1�, with Fq
i (k)¼1

representing the largest nectar load size. Notice that if we let
Ftq(k) be the total quantity of nectar influx to the hive at step k,

FtqðkÞ ¼
XB

i ¼ 1

Fi
qðkÞ ¼ a

XB

i ¼ 1

FiðkÞ ¼ aFtðkÞ

so the total hive nectar influx is proportional to the total nectar
profitability assessment. Also, FtqðkÞA ½0,aB� since each successful
forager contributes to the total nectar influx.

The average wait time to be unloaded for each bee with
FiðkÞ4en is proportional to the total nectar influx. Suppose that
the number of food-storer bees is sufficiently large so the wait
time Wi(k) that bee i experiences is given by

WiðkÞ ¼cmaxfFtqðkÞþwi
wðkÞ,0g ¼cmaxfaFtðkÞþwi

wðkÞ,0g ð1Þ

where c40 is a scale factor and ww
i (k) is a random variable that

represents variations in the wait time a bee experiences. We
assume that ww

i (k) is uniformly distributed on (�ww,ww). Since
FtqðkÞA ½0,aB�, cðaBþwwÞ is the maximum value of the wait
time which is achieved when total nectar influx is maximum. For
the experiments in Seeley and Tovey (1994) (July 12 and 14 data)
the maximum wait time is about 30 s (and we know that it must
be under this value or bees will tend to perform a tremble dance

rather than a waggle dance to recruit unloaders, Seeley, 1995);
hence, we choose cðaBþwwÞ ¼ 30. Note that 7cww seconds is
the variation in the number of seconds in wait time due to the
noise and ww should be set accordingly. We let cww ¼ 5 to get a
variation of 75 s. If B¼200 is known, we have two equations and
two unknowns, so combining these we have cBþcww ¼ 30,
which gives c¼ 25=200 and ww¼40.

That there is a linear relationship between wait times and total
nectar influx for sufficiently high nectar influxes is justified via
experiments described in Seeley and Tovey (1994) and Seeley
(1995, p. 112). Deviations from linearity come from two sources,
the ww

i (k) noise and the ‘‘max’’ in Eq. (1). Each successful forager
has a different and inaccurate individual assessment of the total
nectar influx since each individual bee experiences different wait
times in the unloading area. The noise wi

w(k) in Eq. (1) represents
this. Some foragers can get lucky and get unloaded quickly and
this will give them the impression that nectar influx is low. Other
foragers may be unlucky and slow to get unloaded and this will
result in an impression that there is a very high nectar influx.

2.3.2. The dance decision function

Next, we assume that the ith successful forager converts the
wait time it experienced into a scaled version of an estimate of the
total nectar influx that we define as

F̂
i

tqðkÞ ¼ dWiðkÞ ð2Þ

So, we are assuming that each bee has an internal mechanism for
relating the wait time it experiences to its guess at how well all
the other foragers are doing (Seeley, 1995). The proportionality
constant for this is d40 and since WiðkÞA ½0,cðaBþwwÞ� ¼ ½0,30� s
we have F̂

i

tqðkÞA ½0,30d�.
So, how does total nectar influx influence the dance strength

decision, and in particular the dance threshold? In order to decide
how long to dance, the bee takes into account a set of forage site
variables that determine the energetic profitability (e.g., distance
from hive, sugar content of nectar, nectar abundance), together
with a set of general foraging conditions that determine the
threshold of dance response (e.g., colony’s nectar influx, weather,
time of day) (Seeley, 1995). Here, we build on this by defining a
‘‘decision function’’ for each bee that shows how the dance
threshold for each individual bee shifts based on the ith bee’s
estimate of total nectar influx. The decision function is

Li
f ðkÞ ¼maxfbðFiðkÞ�F̂

i

tqðkÞÞ,0g ð3Þ

which is shown in Fig. 1. The parameter b40 affects the number
of dances produced for an above-threshold profitability.

In Fig. 1, �bF̂
i

tqðkÞ is the intercept on the dance strength axis.
The diagonal bold line in Fig. 1 shifts based on the bee’s
estimation of total nectar influx since this is proportional to
F̂

i

tqðkÞ. Notice that since the line’s slope is b, and since we take the
maximum with zero in Eq. (3), the lowest value of nectar
profitability Fi(k) that the ith bee will decide to still dance for is
the ‘‘dance threshold’’ F̂

i

tqðkÞ and from Eq. (2), the bee’s scaled
estimate of the total nectar influx. Note that changing b does not

shift the dance threshold. The parameter b will, however, have the
effect of a gain on the rate of recruitment for sites above the dance
threshold. In the case where FtqðkÞ ¼ F̂

i

tqðkÞ ¼ 0 there is no nectar
influx to the hive and it has been found experimentally (Seeley,
1995) that in such cases, if a bee finds a highly profitable site, she
can dance with 100 or more waggle runs. Hence, we choose
b¼ 100 so Lf

i(k)¼100 waggle runs in this case. Then,
Li

f ðkÞA ½0,b� ¼ ½0,100� waggle runs for all i and k.
The dance threshold in Eq. (2) is defined using the parameter d.

What value would we expect a bee to hold for d? Since the nectar
profitability FiðkÞA ½0,1�, d needs to be defined so that F̂

i

tqðkÞA ½0,1�

N. Quijano, K.M. Passino / Engineering Applications of Artificial Intelligence 23 (2010) 845–861848
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so that the dance threshold is within the range of possible nectar
profitabilities. This means that we need

0odr 1
30 ð4Þ

To gain insight into how to pick d in this range notice that d is
proportional to the site abandonment rate: (i) if d� 0, then the
dance threshold F̂

i

tqðkÞ � 0 independent of wait times and so sites
of significantly inferior relative profitability will never be
abandoned, something that does not occur in nature; and (ii) if
d� 1

30 ¼ 0:0333, then almost all sites are not danced for since the
dance threshold is so high and the foraging process fails
completely, something that does not occur in nature. Hence, d
must be somewhere in the middle of the range in Eq. (4); in
simulations we tuned the value of d to match experiments and
found d¼ 0:02.

2.3.3. Dance/no-dance choice

The set of bees that, after dance strength determination as
outlined in the previous section, have Li

f ðkÞ40 are ones that
consider dancing for their forage site. Here, we let prði,kÞA ½0,1�
denote the probability that bee i with Li

f ðkÞ40 will dance for the
site it is dedicated to. We assume that

prði,kÞ ¼
f
b

Li
f ðkÞ

where fA ½0,1� (which ensures that prði,kÞA ½0,1�). We choose
f¼ 1 since it resulted in matching the qualitative behavior of
what is found in experiments. For low nectar influx,
(waggle-dancing) bees will tend to dance and (waggle-dancing
and non-waggle-dancing) bees stay at discovered forage sites. As
nectar influx increases, waggle-dancing bees will only dance for
the most profitable sites, and inferior sites will be abandoned by
all bees. Hence, a bee with an above-threshold profitability is
more likely to dance the further its profitability is above the
threshold as seen in experiments (Seeley, 1995). In this way,
relatively high quality new discoveries will typically be danced
for, but as more bees are recruited for that site and hive nectar
influx increases, it will become less likely that bees (e.g., the
recruits) will dance for it and this will limit the number of dancers
for all sites. Relatively low quality sites are not as likely to be
danced for; however, bees that decide not to dance will still go

back to the site and remain an employed forager for it. If bee i

dances, then it uses a dance strength of Lf
i(k). If it does not dance,

we force Lf
i(k)¼0 and the bee simply remains an employed forager

for its last site. We let Bfd(k) denote the number of employed
foragers with above-threshold profitability that dance.

2.4. Explorer allocation and forager recruitment

2.4.1. Resters and observers

The bees that either were not successful on an expedition, or
were successful enough to get unloaded but judged that the
profitability of their site was below the dance threshold, become
unemployed foragers. Some of these bees will start to rest and
other dance ‘‘observers’’ will actively pursue getting involved in
the foraging process by seeking a dancing bee to get recruited.
Here, at each k we let poA ½0,1� denote the probability that an
unemployed forager or currently resting bee will become an
observer bee; hence 1�po is the probability that an unemployed
forager will rest or a currently resting bee will continue to rest. It
has been seen experimentally (Seeley, 1983) that in times where
there are no forage sites being harvested there can be about 35%
of the bees performing as forage explorers, but when there are
many sites being harvested there can be as few as 5%. Hence, we
choose po¼0.35 so that when all bees are unemployed, 35% will
explore. In Anderson (2001) the author shows how the optimal
proportion of explorers and resters depends on the profitability of
available forage, and the ability to find it.

2.4.2. Explorers and recruits

Here, we assume that an observer bee on the dance floor
searches for dances to follow and if it does not find one after some
length of time, it gives up and goes exploring. To model explorer
allocation based on wait-time cues, we assume that wait-time is
assumed to be proportional to the total number of waggle runs on
the dance floor. Let

LtðkÞ ¼
XBf ðkÞ

i ¼ 1

Li
f ðkÞ

be the total number of waggle runs on the dance floor at step k.
We take the Bo(k) observer bees and for each one, with probability
pe(k) we make it an explorer. We choose

peðkÞ ¼ exp �
1

2

L2
t ðkÞ

s2

� �
ð5Þ

Notice that if Lt(k)¼0, there is no dancing on the cluster so that
pe(k)¼1 and all the observer bees will explore (e.g., Lt(0)¼0 so
initially all observer bees will choose to explore). If Lt(k) is low,
the observer bees are less likely to find a dancer and hence will
not get recruited to a forage site. They will, in a sense, be
‘‘recruited to explore’’ by the lack of the presence of any dance. As
Lt(k) increases, they become less likely to explore and, as
discussed below, will be more likely to find a dancer and get
recruited to a forage site. Here, we choose s¼ 1000 since it
produces patterns of foraging behavior in simulations that
correspond to experiments.

The explorer allocation process is concurrent with the
recruitment of observer bees to forage sites. Observer bees are
recruited to forage sites with probability 1�pe(k) by taking any
observer bee that did not go explore and have it be recruited. To
model the actual forager recruitment process we view Li

f(k) as the
‘‘fitness’’ of the forage site that the ith bee visited during
expedition k. Then, the probability that an observer bee will

L (k)i

F (k)i

F   (k)tq-

F   (k) =    W (k)tq

Slope=

Dance
strength,
number of
waggle
runs

Nectar profitability
for bee i

Nectar influx
increase

Nectar influx
decrease

f

^

^ i

i Dance threshold
for bee i

iδ

β

β

Fig. 1. Dance strength function.
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follow the dance of bee i is defined to be

piðkÞ ¼
Li

f ðkÞPBf ðkÞ

i ¼ 1 Li
f ðkÞ

ð6Þ

In this manner, bees that dance stronger will tend to recruit more
foragers to their site.

To summarize, Algorithm 1 shows the pseudo-code of the
honey bee social foraging algorithm described above.

Algorithm 1. Honey bee social foraging algorithm

1: Set the parameter values.
2: for Fixed number of expeditions do
3: Determine number of bees at each forage site, and

compute the suitability of each forage site.
4: for Each employed forager and explorer do
5: Define a noisy assessment according to the location.
6: if Bee is successful in getting an above profitability

site then
7: if Bee is an employed forager then
8: Stays that way.
9: else if Bee is an explorer then
10: Bee becomes an employed forager.
11: end if
12: else
13: Bee becomes an observer or rester.
14: end if
15: end for
16: Compute the total nectar profitability, and the total

nectar influx.
17: for All employed foragers do
18: Compute wait time Wi, and the noise for unload wait

time ww.
19: Compute estimate of scaled total nectar influx F̂ tq.

20: Compute dance decision function Li
f.

21: if Li
f¼0 then

22: Bee i becomes unemployed.
23: else if Employed forager should not recruit then
24: Li

f¼0. Bee i is removed from those that dance.
25: end if
26: end for
27: Determine Lt. Employed foragers and successful forager

explorers may dance based on sampling of profitability.
28: Send all employed foragers back to their previous site

(after recruiter go to the dance floor) for the next
expedition.

29: for Unemployed foragers do
30: Since the unemployed foragers do not dance, we set

Wi ¼ Li
f ¼ F̂

i

tq ¼ 0.

31: We split the unemployed foragers in resters and
observers.

32: end for
33: Set pe.
34: for Unemployed foragers do
35: if randope then
36: Bee becomes an explorer. Set location for explorer

to go to on the next expedition.
37: end if
38: end for
39: for Unemployed observers do
40: Recruit the unemployed forager by some employed

one, in a proportional manner to how strong the
dancing of that employed forager is relative to how much
overall strength of dancing is occurring on the dance
floor.

41: Recruit the unemployed to a noisy position of the
employed forager.

42: end for
43: end for

2.5. Discussion

We have conducted extensive simulations to validate the
qualitative characteristics of our model of social foraging by honey
bees. In particular, we have shown that the model represents
achievement of the IFD of foragers per relative site profitabilities
(Seeley, 1995) for a range of suitability functions, ‘‘cross-inhibition’’
seen in Seeley et al. (1991) and Camazine and Sneyd (1991) (the
main experiments used in model validation for all other bee foraging
models discussed earlier), reallocation when new forage sites
suddenly appear or disappear, or when site qualities change
(Seeley, 1995; Seeley et al., 1991; Camazine and Sneyd, 1991). In
the interest of brevity we do not include these simulations here
since: (i) our focus is not on model validation (i.e., accurate
representation of numerical data from experiments on honey bee
social foraging) but on bioinspired design based on the main
algorithm features; and (ii) the key qualitative features of the
allocation dynamics are all illustrated in our implementation of the
bee algorithm for multizone temperature control in the next section.

3. Equilibrium analysis of hive allocations

In Section 2 we explained how the honey bee social foraging
algorithm achieves the ideal free distribution (IFD). In this section
we prove that the hives’ IFD is a global optimum point. For that,
some assumptions have to be made. In the previous section we
saw how bees in different roles were allocated to different forage
sites by their behavior in the hive. In the following analysis we
assume that there exists a fixed number of hives n in an
environment, that each hive contains a fixed amount of employed
forager bees Bf

i, i¼1,2,y,n, and that all bees are allocated to N

different sites (i.e., we ignore the components of the process
associated with searching for forage sites).

3.1. The n-hive game

3.1.1. Nash equilibrium

Let xi
j40 denote the number of bees that the ith hive allocates

to the jth (forage) site choice, where i¼1,2,y,n and j¼1,2,y,N.
We assume for simplicity that

PN
j ¼ 1 xi

j ¼ Bf , for all i, is the total
amount of bees the ith hive can allocate. Also, assume that aj40
is the constant quality of site j (e.g., in the classical IFD it is the
input rate of nutrients to the jth site, in applications, this constant
could be proportional to site profitability). Hence, in an n-hive
game each hive has N pure strategies corresponding to choosing
the sites j¼1,2,y,N. But the strategy is the number of bees it
allocates to each site, or for hive i, the strategy is

xi ¼ ½xi
1,xi

2, . . . ,xi
N�
>

where
PN

j ¼ 1 xi
j ¼ Bf , for each i¼1,2,y,n. Notice that xi is an

element of the simplex

Dx ¼ x¼ ½x1, . . . ,xN � :
XN

j ¼ 1

xj ¼ Bf ,xjZ0, j¼ 1,2, . . . ,N

8<
:

9=
;

The strategy x¼ ½x1,x2, . . . ,xn�> is a Nash equilibrium if the
following is valid for all yiaxi, i¼1,2,y,n:

f ðyijx�iÞr f ðxijx�iÞ ð7Þ

N. Quijano, K.M. Passino / Engineering Applications of Artificial Intelligence 23 (2010) 845–861850



Author's personal copy
ARTICLE IN PRESS

where x-i denotes the vector of all other strategies except strategy
xi, and f ð�,�Þ is the fitness payoff. Eq. (7) means that the hive must
allocate the bees using the optimum strategy x so that its gain is
maximum in terms of fitness payoff. Notice that if the inequality
in Eq. (7) is strict, we have what is called a strict Nash equilibrium.

3.1.2. Evolutionarily stable strategies (ESS) for a finite population of

hives

The original formulation of an evolutionarily stable strategy
(ESS) introduced in Maynard Smith and Price (1973) and Maynard
Smith (1982) assumes that the population size (number of hives)
is infinite and hence does not apply here. There have been a
number of studies that treat the ESS concept for a large and finite
population sizes (e.g., Riley, 1979; Neill, 2004; Crawford, 1990).
However, the seminal work is contained in Maynard Smith (1988)
and Schaffer (1988) where the authors state the equilibrium and
stability conditions similar to the ones defined in Hofbauer and
Sigmund (1998). The n-hive game that we set up in this case can
be seen as a game ‘‘against the field’’ (Maynard Smith, 1982), i.e.,
the population size is equal to the contest size. We can define the
ESS for finite populations as follows.

Definition 3.1. Let y be a mutant strategy, and Px,y a population
set made up of n�2 x-strategists and only one y-strategist. Let
f(y,Px) be the fitness of a single y-strategist in a population set Px

of n�1 x-strategists. The mixed incumbent strategy
x¼ ½x1,x2, . . . ,xn�> is one-stable ESS if the following condition
holds:

f ðy,PxÞo f ðx,Px,yÞ ð8Þ

for all yax.

This is what is known as the equilibrium condition for the game
against the field for a finite population size (Schaffer, 1988). It is
clear that this condition only tests if the population of hives
cannot be invaded by only one mutant. If we have more than one
mutant, we have to check another condition. This condition is
usually known as the stability condition, and it says that a
strategy is Y-stable if the incumbent strategy cannot be invaded by
a total of up to Y identical mutant strategists (Schaffer, 1988). It is
said that the ESS is globally stable whenever Y¼n�1. Here, we
assume that there is only one mutant since mutants are rare;
hence, we do not need to check the stability condition.

3.1.3. Hive/bee fitness definitions

Before we show that the IFD is a strict Nash equilibrium, we
need to define the payoff of hive i. First, let us define the
contribution to the fitness of hive i at site j as

f iðjÞ ¼ aj

xi
jPn

k ¼ 1 xk
j

¼ aj

xi
j

xi
jþ
Pn

k ¼ 1,ka i xk
j

ð9Þ

Eq. (9) can be divided into two parts. First, we have the proportion
of bees allocated by the ith hive to site j, with respect to the total
number of bees allocated to that site by all hives. Then, there is
the aj term that can be seen as a constant that is proportional to
the profitability of the site. If aj is in nutrients per second, then
this quantity is the amount of nutrients per second hive i gets for
investing xj

i bees at site j, while the other n�1 hives investPn
k ¼ 1,ka i xk

j bees at the same site. Hence, the fitness (payoff) of
hive i, i¼1,2,y,n, is

f i ¼
XN

j ¼ 1

f iðjÞ ¼
XN

j ¼ 1

xi
j

ajPn
k ¼ 1 xk

j

ð10Þ

The IFD is achieved when the fitness of hives i and i0 are equal, for
all ia i0, as in

f i ¼
XN

j ¼ 1

f iðjÞ ¼
XN

j ¼ 1

f i0 ðjÞ ¼ f i0 ð11Þ

Using Eq. (10), Eq. (11) can be satisfied if the hive allocate bees
equally in every site so that

xi
j ¼ xi0

j ð12Þ

for all i, i0 ¼ 1,2, . . . ,n. If each hive chooses the IFD, then for each
i¼1,2,y,n, for j¼1,2,y,N,

xi
jPN

k ¼ 1 xi
k

¼
ajPN

k ¼ 1 ak

ð13Þ

Notice that since
PN

k ¼ 1 xi
k ¼ Bf for all i¼1,2,y,n, Eq. (12) holds.

Eq. (13) is a generalization of the input matching rule (Parker and
Sutherland, 1986; Parker, 1978) to the n-hive game. In Quijano
and Passino (2007) the authors have shown the equivalence
between the input and the habitat matching rule for a general
case of suitability functions. We can use the same ideas as in
Quijano and Passino (2007) to prove that Eq. (13) can also be
written as

xi
kaj ¼ xi

jak

for all k,j¼1,2,y, N, and i¼1,2,y,n.
Eq. (9) defines the fitness for multiple hives. However, when

there is only a single hive, the definition for the payoff changes.
For that, we can assume that each bee is identical and represented
by a small ex40 so that there is an arbitrarily large (integer)
number n40 of bees in the hive, where

nex ¼ Bf

Given the concept of an individual bee ex40 at site j, j¼1,2,y,N,
we define this bee’s fitness as f ðjÞ ¼ aj=nj. If aj is nutrients
per second, f(j) is the number of nutrients per second that a bee
gets at site j. Notice that

f ðjÞ ¼
aj

nj
¼ ex

aj

exnj
¼ ex

aj

xj
ð14Þ

These ideas will be helpful in Section 3.3.

3.2. The multiple hive IFD is a strict Nash equilibrium and ESS

In the next theorem1 we show that the IFD in Eq. (13) is a strict
Nash equilibrium. This implies by Eq. (8) that the IFD is a one-

stable ESS, because the IFD is the best strategy whenever one

mutant hive plays against n�1 incumbents in an n-hive game.

Theorem 3.1. For the n-hive game if the xj
i, j¼1,2,y,N, i¼1,2,y,n,

are all given by the IFD in Eq. (13), then hives are using a strict Nash

equilibrium strategy to allocate the bees. Hence, the IFD in Eq. (13) is

a finite population one-stable ESS.

This result shows that if the IFD is used by all hives, no hive can
unilaterally deviate and improve its fitness. While the IFD is often
discussed as if it were with respect to a number of animals (e.g.,
bees) being allocated (e.g., see Giraldeau and Caraco, 2000), this
seems to be the first proof that in an n-hive game the IFD is a strict
Nash equilibrium (hence, a one-stable ESS). It is interesting to note
that if we think of achievement of Eq. (13) by each hive as
‘‘individual-level’’ IFD achievement, then for all j¼1,2,y,N,

1 Proofs of all theorems are in the Appendix.
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and i¼1,2,y,n,

xi
j

XN

k ¼ 1

ak ¼ aj

XN

k ¼ 1

xi
k

and if we sum over i,

Xn

i ¼ 1

xi
j

 ! XN

k ¼ 1

ak

 !
¼ aj

Xn

i ¼ 1

XN

k ¼ 1

xi
k

 !

or for all j¼1,2,y,N,Pn
i ¼ 1 xi

jPn
i ¼ 1

PN
k ¼ 1 xi

k

¼
ajPN

k ¼ 1 ak

ð15Þ

Eq. (15) can be interpreted as a ‘‘hive population-level’’ or
‘‘environment-wide’’ IFD. Clearly, however, Eq. (13) is only one
way to achieve this population-level IFD (as the next example will
show). Finally, note that there may be strategies, not all the same
and different from the IFD in Eq. (13), but that the hives could use
and (i) still get the same fitness as each other and as the
fitness achieved at the IFD in Eq. (13), and (ii) achieve the
population-level IFD in Eq. (15). For example, if N¼n¼2, Bf¼1,
a1¼a2¼1, x1

1 ¼ x2
2 ¼

1
4, and x1

2 ¼ x2
1 ¼

3
4, f1
¼ f2
¼1 and this is the

same fitness that results if the xi
j ¼

1
2, j¼1,2, i¼1,2, IFD strategy

from Eq. (13) is used. Also, Eq. (15) holds for the alternative
strategy choice.

3.3. Optimality of the single and multiple hive IFD

The results in Section 3.2 show that the IFD is a local optimum
point in a game-theoretic sense. Here, we show that the
IFD is a global optimum point for both a single hive and multiple
hives.

3.3.1. Single-hive allocation

First, we take the perspective that a single hive wants to
allocate some number of bees Bf to N choices (sites) in order to
optimize its payoff (fitness). We drop the superscript and use xj.
The percentage of the total number of bees to site j is xj=Bf ,
j¼1,2,y,N. Using Eq. (14), the total payoff can be written as

J¼
XN

j ¼ 1

xj

Bf

� �
aj

xj

� �
¼

PN
j ¼ 1 aj

Bf
ð16Þ

Due to the cancellation of the xj in Eq. (16), J is a constant. Hence,
any allocation involving all xj nonzero gives the same total return
to the hive. This is a consequence of the ‘‘continuous input’’
assumption for the IFD formulation that says that all nutrients
arrive at a constant rate and are immediately consumed
(Fretwell and Lucas, 1970). Eq. (16) also shows that a hive cannot
use the strategy of maximizing J in order to determine how to
allocate the number of bees. Does there exist a payoff function
that the hive can try to optimize that does guide it to
maximize its payoff? Next, we show two approaches to answer
this question.

First, assume that aj40, xj40, and note that aj=xj is the return
per investment of xj. Suppose that the hive wants to maximize its
return from each investment, under the constraint thatPN

j ¼ 1 xj ¼ Bf and xj40. One approach is to try to maximize the
minimum fitness as defined by Eq. (14), i.e., solve the optimiza-
tion problem

max min
a1

x1
,
a2

x2
, . . . ,

aN

xN

� �

subject to
XN

j ¼ 1

xj ¼ Bf

xj40, j¼ 1,2, . . . ,N ð17Þ

The terms exaj=xj are the fitnesses for any bee that chooses site j,
j¼1,2,y,N. Consider a single individual ex40. If this bee is at site
j and exaj=xjoexak=xk, jak, then it can move to site k (i.e., change
strategies). The ‘‘max min’’ represents that multiple bees
simultaneously shift strategies to improve their fitness since at
least some bees with lowest fitness shift sites (and if
exaj=xj ¼ exak=xk for some j and k the min can be achieved at
multiple sites). It has been shown in Quijano and Passino (2007)
that the hive should invest its effort according to an IFD as it is the
global maximum for that optimization problem and hence will
maximize the hive’s payoff.

Second, viewing the hive’s effort allocation strategy as being
adaptive (i.e., shaped by natural selection) it makes sense that it
would be appropriately modeled as the optimization of some
payoff (fitness) (Stephens and Krebs, 1986). However, could other
payoff functions be used besides the one in Eq. (17)? Generally,
the answer to this question should be yes. Eq. (17) relates decision
variables xj to payoff J and other equally valid relationships
between these two could lead to optimal effort distributions,
possibly even the IFD. To illustrate this point in a concrete way we
introduce another candidate payoff function J.

To develop this J suppose that aj40 and xj40 for j¼1,2,y,N,
and note that xj=aj is the amount of bees allocated to site j per the
return from site j. For instance, if aj is in units of nutrients
per second, and a hive allocated xj in units of ‘‘bees per second’’ it
takes of the nutrients, then xj=aj is in units of bees per nutrients. A
hive wants to invest as few as possible bees, yet get as much
return as possible. Hence, it wants to allocate bees so that it gets
as many nutrients per bee as possible. If xj=Bf is the percentage of
the total number of bees allocated to site j, and if the hive tries to
minimize

J¼
XN

j ¼ 1

xj

Bf

� �
xj

aj

� �
¼

1

Bf

XN

j ¼ 1

x2
j

aj
ð18Þ

then it will maximize its return on investment by minimizing its
losses. Or, from another perspective, it minimizes the average
number of bees per nutrient across all sites. The next result shows
that if a hive seeks to minimize J in Eq. (18), then it will achieve an
IFD.

Theorem 3.2. The point

xj ¼
ajBfPN
k ¼ 1 ak

is the global minimizer for the constrained optimization problem

defined as

minimize J¼
1

Bf

XN

j ¼ 1

x2
j

aj

subject to
XN

j ¼ 1

xj ¼ Bf

xj40, j¼ 1,2, . . . ,N

3.3.2. Multiple hive allocations

Theorem 3.2 shows that the IFD is achieved for a single-hive
allocation. Now, we want to prove that the IFD is also reached for
the case when we have multiple hives that want to allocate bees
across different sites. From the proof of Theorem 3.1 it should be
clear that there are an infinite number of points xj

i, j¼1,2,y,N,
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i¼1,2,y,n, that result inPn
i ¼ 1 xi

jPN
k ¼ 1

Pn
i ¼ 1 xi

k

¼
ajPN

k ¼ 1 ak

ð19Þ

which is the achievement of an IFD by the aggregate of the
number of bees’ allocation. In the next theorem, we show that the
optimum payoff value is given by what we call the population-
level IFD in Eq. (19).

Theorem 3.3. If the population IFD is achieved by the distribution of

the bees that achieve Eq. (19) then, if one of the n hives deviates and

the others stay the same, the one that deviates cannot improve its

payoff.

The optimization problem can be interpreted as one hive
allocating some number of bees at the site where n�1 hives have
allocated the bees in such a way that they are at the IFD. For each
hive, the total number of bees across the N sites is equal toPN

j ¼ 1 xi
j ¼ Bf , for all i¼1,2,y,n. Since the n�1 are at the IFD, it is

clear that if we add an nth hive, it can allocate all its bees across
the N sites using a strategy that leads to the population-level IFD.
In other words, this last hive that disrupts everybody else’s return
gets the same payoff that all the other hives get if it plays a
strategy such that the population-level IFD is achieved.

3.4. Discussion

The previous analysis is based on the hypothesis that we have
full static information. This means that we did not analyze the
cases where there is noise, lack of information when strategies are
chosen, or when the fitness functions in (9) or (14) have
dynamics. Analysis for these cases remains a (challenging)
research direction. In the next section, we motivate the impor-
tance of addressing these theoretical questions by showing that
multiple poorly informed socially foraging honey bee hives can
achieve an IFD in an application where there is significant noise.

4. Engineering application: dynamic resource allocation for
multizone temperature control

In this section we introduce an engineering application that
illustrates the basic features of the dynamical operation of the
honey bee social foraging algorithm. First, we describe the
hardware used and some implementation issues. Next, we
provide data from three experiments that demonstrate the
achievement of the ideal free distribution and the effects of
cross-inhibition and imperfect information flow.

4.1. Experiment and honey bee social foraging algorithm design

We implemented the multizone temperature control grid
shown in Fig. 2. A zone contains a lamp and a National

Semiconductors LM35CAZ temperature sensor. The temperature
is acquired using four analog inputs with 16 bits resolution each
on a dSPACE DS1104 card. Although we cannot guarantee that the
four sensors have the same characteristics, they have 70:2 3C
typical accuracy, and 70:5 3C guaranteed. The lamps are turned
on or off by the controller using four analog outputs of the DS1104
card and a DS2003 Darlington device that drives the amount of
current necessary to turn on a lamp. The lamps change their
intensities drastically when we apply more than 1.6 V. We added
by software a DC value of 1.25 V, which implies that there is a
range where the lamps are off even if we allocate a small amount
of energy in a zone.

We assume that there is a fixed total amount of voltage Vtot

(the resource) that can be split up and applied to the zones. The
goal is to allocate this fixed amount of voltage in a way that (i)
makes the temperatures in all zones the same, and (ii) maximally
elevates the temperature across the grid. In other words, we want
a maximum uniform temperature. Achievement of this goal is
complicated by interzone effects (e.g., lamps affecting the
temperature in neighboring zones), ambient temperature and
wind current challenges (from overhead vents), zone component
differences, and sensor noise. These effects demand that voltage
be dynamically allocated. For example, if there is an ambient
temperature increase in zone 4 in Fig. 2 the voltage applied to the
lamp in zone 4 should decrease and that voltage should be
allocated across the other three zones.

Given the hardware description and the model, we choose a
honey bee social foraging algorithm as follows:

1. We assume that there are a fixed number of bees involved in
the foraging process, B. Each bee corresponds to a quanta of
energy, which in this case corresponds to a certain amount of
volts, of the Vtot available volts, that will be specified below.

2. We assume that the foraging landscape is composed of four
forage sites, which correspond to the zones j, j¼1,2,3,4.

3. Let Td be a temperature value that cannot be achieved in the
experiment (here we use Td ¼ 29 3C). Let Tj be the temperature
in zone j, and let

ej ¼ Td�Tj

be the temperature error for zone j. We assume that the ‘‘best’’
(most profitable) forage site corresponds to the zone that has
the highest error. Bees (quanta of voltage) that are allocated to
better sites will raise the temperature there. Repetitive
allocation will result in persistently raising the minimum
temperature.

4. We assume that the profitability assessment of each site Fj(k)
is proportional to ej and given by

FjðkÞ ¼

1 if ejðkÞZ1

gejðkÞ if enogejðkÞo1

0 otherwise

8><
>: ð20Þ

Zone 4Zone 3

Sensor

Lamp

Sensor

Lamp

Sensor

Lamp

Zone 2

Sensor

Lamp

Zone 1

Fig. 2. Layout for the multizone temperature control grid experiment.

N. Quijano, K.M. Passino / Engineering Applications of Artificial Intelligence 23 (2010) 845–861 853



Author's personal copy
ARTICLE IN PRESS

We let g¼ 1
8 since given Td the temperature error ejo8 3C so

gejo1 with g¼ 1
8. Then we know that FjðkÞA ½0,1�. We let

en ¼ 0:1 since this means that sensor inaccuracies are not
interpreted as profitability differences and, so that with
Td ¼ 29 3C any temperature error is profitable for allocation.

5. The waiting time defined in Eq. (1) has two tunable
parameters, c and ww. In this case, we have tuned these
values and we chose c¼ 0:25 and ww¼20.

6. We also chose a¼ 1, f¼ 1, po¼0.35, s¼ 1000, d¼ 0:02, and
b¼ 100 to ensure that bees are persistently recruited to
achieve the bee (voltage) allocation and persistently explore
sites for more temperature error. The particular values chosen
were explained in Section 2, and these values did not need to
be retuned for the application.

The experimental results shown below were obtained on different
days with different ambient room temperatures.

4.2. Experiment 1: one hive IFD achievement

In this experiment we seek the maximum uniform tempera-
ture when we have Vtot¼2.5 V of resource available. We assume
that there is one hive that has 200 bees, which are equivalent to
Vtot. In other words, we assume that each bee is equivalent to
0.0125 V. Fig. 3 shows the experimental results for the tempe-
ratures (top plots), and the numbers of bees allocated in each zone
(bottom plots), when the room temperature is Ta ¼ 22 3C.

Fig. 4 illustrates how the bees are allocated to various roles.
The top plot shows how the number of employed foragers Bf

increases drastically at the beginning, but then it drops until it

arrives to a steady-state. The bottom plot shows the number of
explorers Be, and we can see how it stays high to ensure persistent
search for temperature error. From the data obtained, it can also
be seen that many bees get recruited. This implies that these bees
find a site and they do not abandon it, which provides good
temperature regulation.

Fig. 7, which will be used to compare the results of all the
experiments, shows the average temperature (top plot) and the
average number of bees (bottom plot) for the last 100 s. The data
for experiment 1 show how an ideal free distribution is achieved.
As we can see, the final temperature reached by all zones is
around 27 3C. In terms of the average number of bees for the last
100 s, we can see that the voltage allocated is around 1.7 V (DC
offset included), which is equivalent to 35 bees per zone.
However, due to the differences between sensors and lamps,
more bees are allocated in the fourth zone (i.e., zone 4 is more
difficult to heat). This result is consistent with the experimental
results shown below.

4.3. Experiment 2: one hive with disturbances, IFD, cross-inhibition,

and site truncation

The second experiment is similar to the first one, but we add
two disturbances to the system. These disturbances are created by
two extra lamps, one placed next to zone 1 and another placed
next to zone 4. We start the experiment at a room temperature of
Ta ¼ 20:6 3C. Fig. 5 shows the results. The numbers in the top left
and top right plots represent the disturbance types applied to the
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Fig. 3. Temperature and number of bees per zone when there is one hive and no disturbances. The top plots show the temperature in each zone, and the average of the last

100 s (solid constant line). The stems in the bottom plots represent the number of bees that were allocated to each zone.
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Fig. 4. Number of employed foragers Bf and the average of the last 100 s (top plot). The bottom plot shows the number of explorers Be and the average of the last 100 s.
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system:

1. We turn on the disturbance lamp next to zone 4 at t¼850 s,
and we turn it off at 1170 s.

2. We turn on the disturbance lamp next to zone 1 at t¼2160 s,
and we turn it off at 2500 s.

3. We turn on the disturbance lamps next to zones 1 and 4 at
t¼3200 s, and we turn them off at 5400 s.

When we apply disturbance 1, the temperature in zone 4 starts to
increase, and the number of bees allocated in that zone decreases
drastically. At the same time, the number of bees in the other
three zones increases. This is because site number 4 is the least
profitable of all sites, and hence the hive reallocates the bees to
the other three zones; this is why the temperatures in zones 1–3
increase until the disturbance is turned off. At that moment, the
temperature in zone 4 drops drastically, and the hive realizes that
it must allocate more bees to that site. It does that until all four
zones are practically at the same temperature. During the 5 min of
disturbance, the temperatures in zones 2 and 3 remain close to
25:5 3C, while the temperature in zone 1 is around 25:4 3C.
Therefore, zone 1 becomes the most profitable one, and hence
more bees are allocated to that site (around 76 bees were
allocated on average to zone 1, while 37, 41, and 10 bees were
allocated on average to zones 2, 3, and 4, respectively). The same
basic behavior occurs when disturbance 2 is applied to the
system. In this case, the temperature at the first site increases to
27 1C, while the other temperatures were close to 25.6 1C. As in
the previous case, the temperature in zone 4 was close to 25.5 1C,
which implied that more bees were allocated to this site (5, 33, 33,
and 93 bees were allocated on average to zones 1 through 4,
respectively). We highlight the fact that zone 4 has more bees
than the middle zones. As we mentioned in Section 4.2 this is due
to the differences between sensors and lamps. After disturbance 2
is turned off and the temperatures in all zones was practically the
same (i.e., around 25.4 1C), we apply disturbance 3 and for it the
temperatures equilibrate but with a bee allocation where there
are far fewer bees in zones 1 and 4 and more in zones 2 and 3. To
see why this is the case, see the experiment 2 data in Fig. 7. As we
can see in the bottom plot, the average number of bees for the last
100 s is practically the same for the middle zones (34.8 bees), and
there are practically the same number of bees allocated to zones 1
and 4 where there is a disturbance (10 bees). This leads to a final
temperature that is practically the same for zones 1 and 4 (i.e.,
around 28.6 1C) and for the middle zones (i.e., around 28 1C).
However, as we mentioned before, the fact that there are 10 bees
in a zone does not necessarily imply that the lamp is on. In this
case, 10 bees corresponds to 0.125 V, which implies that the lamp
is off (recall that the DC value was 1.25 V). Therefore, the bees
allocated to zones 1 and 4 do not have any influence on the
temperature. Only the disturbances affect these temperatures.
Hence the residual number of 10 or so bees simply represents that
the hive is continually sampling these sites in case they become
profitable.

4.4. Experiment 3: two hives and imperfect information

In this final experiment, we change the conditions and instead
of using only one hive, we assume that we have two hives each
with limited information. The first hive is assumed to only have
access to the temperatures in zones 1–3, while the second hive
has access to the temperatures of zones 2–4. This may happen in
nature if a hive has not discovered a site. In temperature control
applications such sensing restrictions commonly arise due to
sensor or other hardware costs.

Each hive is composed of 200 bees, which implies that the 5 V
that we allocate corresponds to 400 bees (i.e., each bee
corresponds again to 0.0125 V). Fig. 6 shows the results for this
case when the initial temperature in the room Ta ¼ 19:6 3C. The
final temperature is practically the same, around 25.4 1C. The
main difference in this case is that the number of bees in zones 2
and 3 depend on both hives (see the bottom plot of Fig. 6). Hive 1
allocates on average around 50 bees to zones 2 and 3, while the
second hive allocates on average around 20 bees to zones 2 and 3.
However, as we can see in the experiment 3 data in the bottom
plot of Fig. 7, the same total amount of bees are allocated by the
two hives except for zone 4. It is important to notice that the
difference between the initial temperature and the final
temperature in the first experiment is around 5 1C, while in this
case is around 6 1C. Therefore, as we expect, the maximum
temperature reached by the grid is higher than the first one if we
compare the temperatures relative to room temperature. This is
mainly due to the fact that at the end we are allocating more bees
per zone, i.e., more voltage Vtot¼5 V rather than in experiments 1
and 2 where we had Vtot¼ 2.5 V. Finally, another important issue
that arises in this case is the number of bees that are allocated to
zone 4. Besides the fact that there is a difference between sensors
and lamps in zone 4 with respect to the other zones (as it was
seen in the previous experiments), there is imperfect information.
As we can see, hive 1 allocates more bees to zones 2 and 3
compared to the number allocated by hive 2. This implies that the
temperature errors in these zones decrease, while the
temperature in zone 4 seems to be lower than the middle zones
due to sensor differences. Then, the second hive allocates more
bees to the most profitable site (zone 4), and less to zones 2 and 3
(these zones receive more bees from hive 1, and its total value is
similar to the number of bees allocated in zone 1). The bottom
plot in Fig. 6 illustrates this point.

4.5. Discussion

Some of the main concepts described in social foraging
modeling section (Section 2) can be seen in these experiments.
In Section 4.2 we have seen how an IFD is reached by all zones,
and good regulation is obtained even though the search space is
limited (Section 4.4). As shown in Section 4.3, an IFD is also
reached when disturbances are applied to the system. The IFD
obtained is in terms of the number of bees allocated to each of the
zones, depending on whether the disturbance is on or not. In
other words, the middle zones that are not significantly affected
by any type of disturbance increase their temperature to their
maximum possible value. This maximum depends on the amount
of energy available. This energy is practically the same in each
zone, which leads to uniformity in these zones. The other two
zones have a disturbance associated with each of them, which
implies that the number of bees allocated to each of these zones
must be lower than for the middle ones. As we expect, the final
temperature in this case is higher than in the first experiment
because of the disturbances, and the numbers of bees allocated to
the middle zones are higher than in the previous case (see Fig. 7).
If we had reduced the magnitude of the disturbances in zones 1
and 4 then we would have gotten results analogous to those for
disturbances 1 and 2. We chose the particular disturbance
magnitudes in order to illustrate the elimination of zones 1 and
4 as possible sites (site ‘‘truncation’’, Fretwell and Lucas, 1970)
and how the hive can then focus most of its attention on only the
best sites.

Another important idea that is illustrated in these experiments
is the cross-inhibition concept (Seeley, 1995), and this can be seen
in Fig. 5. First, all zones were under the same conditions, and
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practically the same number of bees visited sites 1, 2, and 3 (45,
31, 34 visited on average zones 1 through 3, respectively, while 60
bees where allocated to zone 4 due to sensor differences). When
disturbance 1 is applied, more bees start visiting sites 1, 2, and 3,
while the number of bees in zone 4 reduces drastically. The same
thing happens when disturbances 2 and 3 are applied. It is clear
that in any of these cases one or two zones becomes less
profitable (the temperature increases due to the disturbance, and
hence the error decreases), which implies that the hive has to
reduce the number of bees recruited to these poorer sites. This is
given in the algorithm by a reduction of the number of dances for
those zones where the error is smaller, which leads to a reduction
in the number of bees that are recruited to these sites.

Experiment 3 shows how another IFD is achieved over all
zones, even though there is not perfect information (see Fig. 7).
As we can see in Fig. 6, the final temperature in all zones is prac-
tically the same (taking into account the sensor differences
accuracy). However, as we mentioned before, hive 2 must use
more of its bees to raise the temperature in zone 4, and that is
why the number of bees allocated by this hive to zones 2 and 3 is
small. This problem can be seen also as having a zone with a
disturbance. In this case, zone 4 needs more energy, which
implies that more bees are allocated by the second hive to it. Thus,
the middle zones are not visited as much by the bees since they
are less profitable. They are also not as profitable as zone 1, and
that is why a smaller amount of bees are allocated to zones 2 and
3 by hive 1 (compared to those that are allocated in zone 1 as it
can be seen in the bottom plot in Fig. 6). However, the total
number of bees (those allocated by hives 1 and 2) leads to prac-
tically the same numbers of bees in zones 2 and 3, and the grid
reaches a maximum uniform temperature.

In all these cases, the temperature grid reached an equilibrium.
If we compare the experimental results with the theoretical
results (Section 3), we can see that the equilibrium point for the
first experiment is similar to what is shown in Theorem 3.2. In
this case, the aj can be seen as the temperature error, because it is
clear that the hive will allocate more bees where the error is
higher. For the last experiment a population level type IFD as in
(19) is achieved, again with aj proportional to the temperature
error. We have proven in Theorem 3.3 that the IFD was the
optimum point, and the experiments illustrate that this equili-
brium was reached for n¼2 hives.

5. Conclusions

In this paper we provided a novel bio-inspired resource
allocation method, developed theory to explain key properties
of the algorithm, and studied an application that illustrates the
validity of the theoretical properties. The application that we have
used is a multizone temperature control grid, where the control
objective is to seek the maximum uniform temperature. In
Quijano and Passino (2007) the authors use the same testbed to
show how the replicator dynamics model leads to an ideal free
distribution (IFD). Here, the honey bee social foraging algorithm
gives us similar results, and also helped us to illustrate dynamic
re-allocation, cross-inhibition, and the IFD. We leave as an
important future direction the comparative analysis with the
performance of other methods for the experimental testbed.
Clearly, there are other applications for the social foraging method
for allocation, for instance, in the area of formation control and
task allocation of multiple agents.

The game and optimization theoretic theory that characterizes
properties of the social foraging algorithm is a key contribution of
this paper. One of the most important concepts in this paper is the
IFD concept from theoretical ecology. We have shown that the IFD

is a strict Nash equilibrium for an n-hive game and a one-stable
ESS. In other words, in an n-hive game the IFD is reached
whenever n�1 hives are using it as a strategy and only one hive is
not using it. This hive has to choose the IFD strategy to obtain as
much as the other hives. Since this is only a local concept, we
extend our results to show that the IFD is a global optimum point
for both a single hive and multiple hives. In this case we have
limited our analysis to an optimality perspective. It is our intent to
develop in the future a dynamical model of IFD achievement
(e.g., adaptive dynamics such as a replicator dynamics model,
Hofbauer and Sigmund, 1998).

Finally, it is clear that in the implementation we have limited
our system and drawn some analogies that might not seem real
from a biological perspective. For instance, consider the informa-
tion structure of the algorithm (i.e., what characteristics are
present to provide information to the algorithm and between
components of the algorithm). In a honey bee hive, the forage
allocation process does not need a centralized entity that makes
the decisions and allocates bees to each site, i.e., the hive is a
decentralized system (Seeley, 1995). However, if we analyze the
honey bee social foraging algorithm, and more precisely Eqs. (1),
(5) and (6), it is clear that the algorithm is not totally
‘‘individual-based’’ (e.g., Eq. (5) has to know a noisy version of
the total number of waggle runs in order to decide how many
observer bees will become an explorer). It is our intent to consider
in the future a more fully distributed version that faithfully
respects what is known by individuals. Also, other large-scale
optimization problems will be considered to show the applic-
ability of our algorithm. Finally, it is our hope to in the future
conduct a more complete mathematical and experimental
evaluation of the robustness of our distributed dynamical
control system.
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Appendix A. Proofs of theorems

A.1. Proof of Theorem 3.1

We will show that if xi�
¼ ½xi�

1 ,xi�
2 , . . . ,xi�

N �
>, where

xi�
j ¼ Bf aj=

PN
j ¼ 1 aj for all j¼1,2,y,N, and i¼1,2,y,n, then a single

hive mutant yiaxi� will have a lower fitness for the moment,
when yiADx�@Dx (i.e., strictly inside the simplex). This is
equivalent to show that Eq. (7) is satisfied for all i¼1,2,y,n.
But, it can also be seen as a constrained optimization problem of
the form

maximize f i ¼
XN

j ¼ 1

xi
j

ajPn
k ¼ 1 xk

j

subject to
XN

j ¼ 1

xi
j ¼ Bf , i¼ 1,2, . . . ,n

xi
j40, j¼ 1,2, . . . ,N

N. Quijano, K.M. Passino / Engineering Applications of Artificial Intelligence 23 (2010) 845–861858



Author's personal copy
ARTICLE IN PRESS

xk
j ¼

Bf ajPN
m ¼ 1 am

, ka i, k¼ 1,2, . . . ,n ð21Þ

This is a nonlinear optimization problem that we will solve using
Lagrange multiplier theory (e.g., Bertsekas, 1995).

First, since xi
j40 the constraint is inactive, so it can be ignored.

Second, replace in Eq. (10) the constraint xk
j ¼ Bf aj=

PN
m ¼ 1 am, for

all ka i to get

f i ¼
XN

j ¼ 1

xi
j

aj

xi
jþfj

where

fj ¼
Xn

k ¼ 1,ka i

Bf ajPN
m ¼ 1 am

¼ ðn�1Þ
Bf ajPN

m ¼ 1 am

ð22Þ

The problem in Eq. (21) becomes

maximize f i

subject to
XN

j ¼ 1

xi
j ¼ Bf , i¼ 1,2, . . . ,n

Now, we define the vector x¼ ½xi
1,xi

2, . . . ,xi
N �
> which constitutes

the points for which we want to find an extremizer point.
Let hðxÞ ¼

PN
j ¼ 1 xi

j�Bf . The gradient of fi with respect to x is
equal to

rf iðxÞ ¼
@f i

@xi
1

,
@f i

@xi
2

, . . . ,
@f i

@xi
N

" #>

rf iðxÞ ¼
a1f1

ðxi
1þf1Þ

2
,

a2f2

ðxi
2þf2Þ

2
, . . . ,

aNfN

ðxi
NþfNÞ

2

" #>

Also, @h=@xi
j ¼ 1 for all j¼1,2,y,N. Let l� be the

Lagrange multiplier for this constrained optimization
problem. Then, we have to solve the following set of equations
for xi�

j 40:

a1f1

ðxi�
1 þf1Þ

2
þl� ¼ 0

^

aNfN

ðxi�
N þfNÞ

2
þl� ¼ 0

xi�
1 þxi�

2 þ � � � þxi�
N ¼ Bf

For any i, j ¼ 1,2, . . . ,N we have from the previous equations that

a
i
f

i

ðxi�
i
þf

i
Þ
2
¼

a
j
f

j

ðxi�
j
þf

j
Þ
2

Using Eq. (22),

a2
i

ðxi�
i

PN
m ¼ 1 amþBf a

i
ðn�1ÞÞ2

¼

a2
j

ðxi�
j

PN
m ¼ 1 amþBf a

j
ðn�1ÞÞ2

Since aj40 and xi
j40, j¼1,2,y,N, i¼1,2,y,n, and n41,

a
i

xi�
j

XN

m ¼ 1

amþBf a
j
ðn�1Þ

 !
¼ a

j
xi�

i

XN

m ¼ 1

amþBf a
i
ðn�1Þ

 !

Simplifying, we get that for all i,j ¼ 1,2, . . . ,N,

a
i
xi�

j
¼ a

j
xi�

i

After some algebraic manipulations, this implies that for all
i ¼ 1,2, . . . ,N,

xi�
i
¼

Bf a
iPN

m ¼ 1 am

ð23Þ

In order to see that xi�
i

defined in Eq. (23) is a local maximum
we need to prove the second order sufficiency condition. For that,
we need to analyze the Hessian of fj (because the Hessian of h(x) is
0). In this case,

r
2f jðxÞ ¼

�2a1f1

ðxi
1þf1Þ

3
0 . . . 0

0
�2a2f2

ðxi
2þf2Þ

3
. . . 0

^ ^ & ^

0 0 . . .
�2aNfN

ðxi
NþfNÞ

3

2
666666666664

3
777777777775

It is clear that the Hessian of fi(x) for xj
in, j¼1,2,y,N, i¼1,2,y,n,

in Eq. (23) is negative definite since aj40, xj40, n41 and fj40,
j¼1,2,y,N. Therefore we can conclude that the extremizer points
defined in Eq. (23) are global maximizers (because it is clear that
the cost function is convex on the simplex Dx). Hence, xj

in defined
by Eq. (23) (which is equivalent to Eq. (13)) is a strict Nash
equilibrium. Also, since it is a strict Nash equilibrium, Eq. (8)
holds. Therefore, the IFD is a one-stable ESS for the finite
population in a game against the field.

A.2. Proof of Theorem 3.2

As in the case for the proof of Theorem 3.1, xj40 is an inactive
constraint so it can be ignored. Let hðxÞ ¼

PN
j ¼ 1 xj�Bf . For this

case, we will have that the gradient of h(x) is equal to

rhðxÞ ¼ ½1,1, . . . ,1�>

and the gradient for J(x) is given by

rJðxÞ ¼
2x1

Bf a1
,

2x2

Bf a2
, . . . ,

2xN

Bf aN

� �>

Let l� be the Lagrange multiplier for this constrained optimization
problem. Then, we have to solve the following set of equations for
x�j 40:

2x�1
Bf a1

þl� ¼ 0

^

2x�N
Bf aN

þl� ¼ 0

x�1þx�2þ � � � þx�N ¼ Bf

As in the proof of Theorem 3.1 this implies that

akx�j ¼ ajx
�
k

for all j,k ¼ 1,2, y, N, which implies that

x�j ¼
Bf ajPN
j ¼ 1 aj

ð24Þ

In order to see that xj
n defined in Eq. (24) is a local minimum we

need to prove the second order sufficiency condition. For that, we
need to analyze the Hessian of J (because the Hessian of h(x) is 0).
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In this case,

r
2Jðx�Þ ¼

2

Bf a1
0 . . . 0

0
2

Bf a2
. . . 0

^ ^ & ^

0 0 . . .
2

Bf aN

2
66666666664

3
77777777775

Since, Bf 40 and aj40, j¼1,2,y,N, r2Jðx�Þ is positive definite,
which implies by the second-order sufficient condition that xnj in
Eq. (24) is a local minimizer. However, we know that the cost
function J is defined over a simplex Dx, which is nonempty,
convex, and a closed subset of RN . Using this fact, and since the
Hessian of J(xn) is positive definite, we can conclude that the local
minimum in Eq. (24) is also global (Bertsekas, 1995).

A.3. Proof of Theorem 3.3

From an optimization point of view, the problem that we want
to solve is the same as

maximize f i

subject to
XN

j ¼ 1

xj
i ¼ Bf , i¼ 1,2, . . . ,n

xi
j40, j¼ 1,2, . . . ,N

xi
j ¼

nBf ajPN
j ¼ 1 aj

�
Xn

k ¼ 1,ka i

xk
j , ia i ð25Þ

Let hðxÞ ¼
PN

j ¼ 1 xi
j�Bf , and since xi

j40 that constraint is
inactive, so it can be ignored. Using Lagrange multipliers, we
need to find first the gradient of the cost function and the gradient
of the constraint. In this case, we have

rf i ¼
@f i

@xi
1

,
@f i

@xi
2

, . . . ,
@f i

@xi
N

" #>

where

@f i

@xi
j

¼
aj

Pn
k ¼ 1,ka i xk

j

ðxi
jþ
Pn

k ¼ 1,ka i xk
j Þ

2

The gradient of h(x) is rhðxÞ ¼ ½1,1, . . . ,1�>. Therefore, we have to
solve the following set of equations for xi�

j 40:

a1
Pn

k ¼ 1,ka i xk�
1

ðxi�
1 þ

Pn
k ¼ 1,ka i xk�

1 Þ
2
þl� ¼ 0

^

aN

Pn
k ¼ 1,ka i xk�

N

ðxi�
Nþ

Pn
k ¼ 1,ka i xk�

N Þ
2
þl� ¼ 0

xi�
1 þxi�

2 þ . . . x
i�
N ¼ Bf

Then, for any i,j ¼ 1,2, . . . ,N,

a
i

Pn
k ¼ 1,ka i xk�

i

ðxi�
i
þ
Pn

k ¼ 1,ka i xk�
i
Þ
2
¼

a
j

Pn
k ¼ 1,ka i xk�

j

ðxi�
j
þ
Pn

k ¼ 1,ka i xk�
j
Þ
2

Replacing the constraint in Eq. (25),

a
i

nPa
iPN

j ¼ 1 aj

�xi�
i

 !
n2B2

f a2
j

ð
PN

j ¼ 1 ajÞ
2
¼ a

j

nPa
jPN

j ¼ 1 aj

�xi�
j

 !
n2B2

f a2
i

ð
PN

j ¼ 1 ajÞ
2

which implies that

a
j
xi�

i
¼ a

i
xi�

j

xi�
i
¼

a
i
BfPN

j ¼ 1 aj

ð26Þ

The point in Eq. (26) is an extremizer for the optimization
problem defined in (25). Now, let us prove that (26) is indeed a
global maximizer for this problem. For that, we need to analyze
only the Hessian of our cost function because r2hðxÞ ¼ 0. That is,

r2f iðx�Þ ¼

�2a1
Pn

k ¼ 1,ka i xk�
1

ðxi
1þ

Pn
k ¼ 1,ka i xk�

1 Þ
3

0

^ & ^

0
�2aN

Pn
k ¼ 1,ka i xk�

N

ðxi
Nþ

Pn
k ¼ 1,ka i xk�

N Þ
3

2
66666664

3
77777775

Clearly, since aj40, Bf 40, xi�
j 40,

Pn
k ¼ 1,ka i xk�

1 40, and n41, the
Hessian is negative definite. Therefore we can conclude that
the extremizer points defined in Eq. (26) are global maxi-
mizers (because it is clear that the cost function is convex on
the simplex Dx).

Replacing the optimum point, we can notice that the
constraint becomes xi

j ¼ nBf aj=
PN

j ¼ 1 aj�
Pn

k ¼ 1,ka i
xk

j that is
equivalent to Eq. (19).
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