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Stable adaptive control of feedback linearizable time-varying non-linear systems

with application to fault-tolerant engine control

YIXIN DIAOt and KEVIN M. PASSINOZ*

Stable indirect and direct adaptive controllers are presented for a class of input—output feedback linearizable time-
varying non-linear systems. The radial basis function neural networks are used as on-line approximators to learn the
time-varying characteristics of system parameters. Stability results are given in the paper, and the performance of the
indirect and direct adaptive schemes is demonstrated through a fault-tolerant engine control problem where the faults are

naturally time-varying.

1. Introduction

Adaptive control has been employed in situations
where little a priori knowledge of the plant is known.
Adaptive control has also been used to compensate for
on-line system parameter variations, which may arise
due to changes in operating points, component faults,
plant deterioration, etc. The general methodology of
adaptive control for time-varying systems is to treat
the effects of parameter variations as un-modelled
perturbations so that it turns into a robustness problem
(Ioannou and Sun 1996). This methodology has been
applied in linear time-varying systems, where the
parameters vary slowly and smoothly, or discontinu-
ously (i.e. jumps) but the discontinuities occur over
large intervals of time (Middleton and Goodwin 1988,
Wen 1994, Watkins and Kiriakidis 1998, Zhang and
Chai 1998). In a monograph Tsakalis and Ioannou
(1993) presented a major work on the topic of adaptive
control for linear time-varying systems using model
reference adaptive control or adaptive pole placement
control schemes, which also appeared in earlier publica-
tions (Tsakalis and Ioannou 1987, 1989, 1990, 1992).
The assumption of slow parameter variations may also
be relaxed if some information about the rapidly varying
parameters is available a priori (Marino and Tomei
1998, 1999).

Adaptive control for non-linear time varying systems
has also been studied by some researchers, but only
restricted classes of systems are considered and only
limited results exist so far. In Tao (1991) a high-order
non-linear plant was remodelled to be a lower-order
linear time-invariant plant with an uncertainty which
is bounded by a bounding signal, and global stability
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and minimal tracking error were guaranteed using
reduced-order adaptive feedback controllers with
regular or variable structure. Marino and Tomei
(1993) designed a robust state feedback control for a
class of non-linear time-varying systems

X = f(x,00)) + g(x)u
= f(x) + q(x,6(0)) + g(x)u
¥ =h(x)

with unknown unmodelled time-varying parameters
(or disturbances) with 6(r) whose bounds are known.
It was assumed that the nominal system (f, g) is locally
(globally) feedback-linearizable and that the uncertain
term ¢(x,6(¢)) satisfies triangularity conditions so that
the above non-linear system can be transformed into
the strict feedback form

Zy =25 + ¢1(21, 0(2))
Zy = z3+ Pa(z1, 22, (1))

Z.n =v+ ¢n(zla s Zps 9(0)

This result was extended to adaptive control in Marino
and Tomei (1998) (and Marino and Tomei (1997) by
adaptive output feedback control) but the class of
non-linear systems is restricted to be linear with respect
to unknown time-varying parameters

P s
X =/(x)+ g+ Y00 g(x) + Y _ di) ry(x)
i=1 j=1

y = h(x).

The class of non-linear time-varying systems in the strict
feedback form was also studied in Wu and Chou (1999)
and Lin (1997) using the backstepping design method.
In addition, another class of time-varying non-linear
systems with an underlying strict feedback structure
has also been considered, and the control law is desig-
ned using the backstepping methodology (Ordonez and
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Passino 1999, 2000 a). This class of systems consists of
an interpolation of non-linear dynamic equations

i ($](X) + ¥ (X)xi41)

i) (G1(Xn) + V(X )u)

where X; = [x1,.. .,x,-]T and v is an exogenous sched-
uling variable. The result has also been extended to
both indirect and direct adaptive control (Ordonez and
Passino 2000b, c).

In this paper we consider a more general class of
non-linear time-varying systems, which is input—output
feedback-linearizable, and present stable adaptive con-
trol approaches using the on-line learning capabilities
of radial basis function neural networks. This class
of systems is large enough so that it is not only of theo-
retical interest but also of practical applicability.
Meanwhile, on-line approximation-based stable adap-
tive neural/fuzzy methods, as covered in a recent text
(Spooner et al. 2001), have been widely used in adaptive
control for non-linear systems and been significantly
impacted by the work in Narendra and Parthasarathy
(1990), Polycarpou (1991), Polycarpou and Ioannou
(1991), Sanner and Slotine (1992), Yabuta and
Yamada (1992), Liu and Chen (1993), Sadegh (1993),
Chen and Liu (1994), Rovithakis and Christodoulou
(1994), Yesildirek and Lewis (1995), Fabri and
Kadirkamanathan (1996), Farrel (1996), Lewis et al.
(1996) and Polycarpou and Mears (1998) using neural
networks as approximators of non-linear functions; the
work in Su and Stepanenko (1994), Wang (1994a,b),
Hsu and Fu (1995), Chen et al. (1996), Lee and Wang
(1996) and Spooner and Passino (1996) using fuzzy
systems for the same purpose; and the work in
Narendra and Parthasarathy (1990) and Rovithakis
and Christodoulou (1994) using dynamical neural
networks. The neural and fuzzy approaches are most
of the time equivalent, differing between each other
mainly in the structure of the approximator chosen.
Indeed, to try to bridge the gap between the neural
and fuzzy approaches several researchers (e.g., in
Spooner and Passino 1996) introduce adaptive schemes
using a class of parameterized functions that include
both neural networks and fuzzy systems. As to the
approximator structure, linear parameter approxima-
tors are used in Polycarpou and Ioannou (1991),
Sanner and Slotine (1992), Sadegh (1993), Su and
Stepanenko (1994), Carelli et al. (1995), Hsu and Fu
(1995), Chen et al. (1996), Farrel (1996), Fabri and
kadirkananathan (1996), Polycarpou (1996) and
Spooner and Passino (1996) and non-linear in
Narendra Parthasarathy (1990), Yabuta and Yamada

(1992), Liu and Chen (1993), Chen and Liu (1994),
Yesildirek and Lewis (1995), Lewis et al. (1996) and
Polycarpou and Mears (1998). Finally, most of the
papers deal with indirect adaptive control, whereas
very few authors face the direct approach (see, however,
Rovithakis and Chistodoulau 1995, Spooner and
Passino 1996).

This paper is organized as follows. The spatially
localized model architecture of radial basis function net-
works is discussed in §2, and in §3 the details of the
problem formulation for input—output feedback linear-
izable time-varying non-linear systems are given. The
adaptive algorithms and system stability analysis are
presented in § 4 and 5 for the indirect and direct cases.
At the end of those sections we will comment on the
relationships between the work here and the most rele-
vant work discussed above. In this way we will further
clarify the theoretical contribution of this paper.
Simulation examples for a fault-tolerant engine control
problem are given in § 6 to demonstrate the effectiveness
of the proposed adaptive schemes. Actually, the jet
engine provided the motivation for this research: faults
are naturally time-varying phenomena so that existing
on-line approximation-based approaches were limited in
their applicability and hence the application dictated
the need to generalize existing approaches to the time-
varying case.

2. Radial basis function neural networks

In neurobiological studies, the concept of localized
information processing in the form of receptive fields
has been known and demonstrated by experimental
evidence (e.g. locally tuned and overlapping receptive
fields have been found in parts of the cerebral cortex,
in the visual cortex, and in other parts of the brain),
which suggests that such local learning offers alternative
computational opportunities to learning with ‘global
basis functions’, such as the multilayer perceptron
neural network with sigmoidal activation functions
(Schaal and Atkeson 1998). Inspired by these biological
counterparts, the radial basis function neural network
model has been presented, which can be defined by

M
V= Fup (x,0) = ) biRi(x) (1)
i=1

where y is the output of the radial basis function
network, x =[x;,X,,...,x,] holds the »n inputs,
i=1,2,..., M represent M receptive field units, and 6
holds the parameters of the ‘receptive field units’, which
consist of the ‘strength’ parameters b; and possibly the
parameters of the ‘radial basis functions’ R;(x). There
are several possible choices for the receptive field func-
tions R;(x). Typically, Gaussian-shaped functions are
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used for analytical convenience, that is
1
R =exp(- 5 0= ) D =) @)

where ¢; = [c},¢5, ..., ¢]" parameterize the locations of
the receptive fields in the input space, and

2 2 2
o= (3)(3) ()
1 2 n

determine the shapes (or relative widths) of the receptive
fields. Note that rather than computing the output
of the radial basis function network with the simple
sum as in (1), there are also alternatives, for instance,
by computing a weighted average

Zz 1 DiR; (‘C)
Zi:l RI(X)

Moreover, it is also possible to further define the
strength parameters b; to be parametric functions

bi(x) =a; o+ a; 1 Xy + -+ a; , X, “4)

where a;;, i=1,2,....M and j=1,2,...,n, are
strength function parameters, so as to improve the
modeling flexibility of the radial basis function network.

By having the tunable parameter vector 6 composed
of strength function parameters ¢, ; only, and specifying
the radial basis function parameters ¢; and D; in
advance, we will have a linear in the parameter radial
basis function network

¥ = Fup(x,0) = 0" ¢(x). Q)

Note that the linear in the parameter radial basis func-
tion networks also have capabilities of forming an
arbitrarily accurate approximation to any continuous
non-linear function, so that in the following adaptive
mechanisms we use them as on-line approximators to
learn the time-varying dynamics of the system. This
will facilitate the derivation of adaptive laws and the
analysis of system stability. It is worth mentioning that
even though radial basis networks are used in this paper
as on-line approximators, other linear in the parameter
approximators such as B-spline neural networks and
Takagi—Sugeno fuzzy systems, are also applicable.

y = Frbf ()C 9) (3)

3. Input—output feedback linearizable time-varying
non-linear systems

Consider the following single-input single-output
non-linear time-varying system

x=f(x,0) +g(x, u (6)
y = h(x,1) (7
where x = [x,X,,...,x,]" is the state vector, u is the

(scalar) input, and y is the (scalar) output of the system.

The functions f: D x [0,00) — X", g: D x [0, 00) — R"
and i: D x [0,00) — 9N are smooth time-varying func-
tions, and D C K" is a domain that contains the origin
x = 0. For convenience we assume that if u = 0,Vs > 0,
the origin is an equilibrium point at 7 = 0 and for all
subsequent times, that is, f(0, #) = 0,V¢ > 0. There is no
loss of generality in doing so because any non-zero equi-
librium point (or, more generally, a non-zero solution
of the system) can be transformed to the origin via
a change of variables. To see this, suppose x(7) is a
solution of the system x = f(x, ¢) defined for all # > 0,
and consider the change of variables z = x — x(f). We
have

=1 (x,0) = x(1)
=1 (z+ %0, 1) — [ (X(1), 1)
=f(z1

where if z = O,f_(O, t) = 0 for all ¢ > 0; that is, in the new
variable z, the system has equilibrium at the origin.
Therefore, we may determine the stability of the solution
of the original system by studying the stability of the
origin as an equilibrium point for the transformed
system.

Note that the standard Lie derivative and strong
relative degree for time-invariant systems (Khalil 1996)
are not adequate for time-varying systems, and modifi-
cations need to be made to explicitly account for the
time variability of the system. Let l_,jfh(x, t) be the dth
Lie derivative of h(x, t) with respect to f(x, 7). In par-
ticular, define

lwun—%+@@f<) ®)

and, for example

_ - aha
Lite.t) = L Ly (e, 0] = = +< )f()

©)

Note that the modified Lie derivative L_}lh(x, t) for time-
varying systems is a straightforward extension of the
standard Lie derivative th(x) (so that no specific
definition is typically given in differential geometry).
Particularly, define x, = ¢ and consider the ‘extended’
vectors X = [xq, X1, X, ...,X,] and F(X)=[1,/(X)"]"
(note that xy = = 1), so that we have

Loty = (20) e =2 (%) e = Lo

Next, we define the ‘strong relative degree’ of the
time-varying system. A system is said to have a strong
relative degree d, 1 < d < n, in a region Dy C D if

Loh(x, 1) = LyLh(x,0) = -~ = L,L{ *h(x,1) = 0 (10)
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and
L,L{™ h(x,1) # 0 (11)

for all xeD, and t€[0,00). Note that we use both
the standard and the modified Lie derivatives above to
provide a compact representation of the definition.

Under the above definitions, if the system defined by
(6) and (7) has a strong relative degree d, then

h /
SEL (“)[fur»+groﬂ

.
= B’Z+ (gi) Sx, t)] + [(22) g(x, I)}u

= L h(x, 1)
L h  (OL
y=7§-<a;)wun+ﬂxw1
oL h (3L, h\ ' oL h\ '
_ | 9yn AR Lsh
=% +< o ) flx, 0| + <8x ) g(x,0) |u
= L7h(x, 1)

and so on, so that the system dynamics may be written
in the normal form as

£ =& = Ly h(x, 1)
£y =& = ijgh(xy 0

£ =& = L_f“h(x, 1)
£ = L{h(x, 1) + L LY ' h(x, u = a(E, . 1) + BE, 7, Hu
7= fo(5, 7, 1)

with &€ € R, 7 € W7, and & = y. This transformation
of the model form can be taken by a change of variables

i wl (X, t) ]
Valx, 1) Wx 1) ¢
z = T(x’ [) = ... = ... = | ...
o1(x, 1) o(x, 1) T

_¢n—d.(x> t) _

(12)
where ¥(x, ) and ¢(x, t) are given by

V(6 1) = hx, 1) (13)
mﬂuﬂ———+( )ﬂ Do (4)

<%)(x0— (15

fori=12,....,d—-1,j=12,...,.n—d, Vx € D, and
vVt € [0,00), so that T'(x,¢) is a diffcomorphism (both
the map 7(-) and its inverse 7~ '(-) are continuously
differentiable) on a domain D, C D,. It has been
shown in Palanki and Kravaris (1997) that if the system
(6) and (7) has relative degree d < n in a domain D, for
all ¢ € [0, 00), then there exist functions ¢; to ¢,_, that
satisfy (15) and make T7(x,fr) a diffeomorphism. A
‘global’ normal form can be obtained if and only if
the conditions (13), (14) and (15) hold for all x € R"
and T is proper, that is, lim_ o | T(x, 1)|| = 00

For convenience, we assume that x =0 is an equi-
librium point of the original system and y vanishes at
x =0, that is, f(0,7) =0 and A(0,7) =0, Vt> 0. By
choosing ¢(x, t) such that ¢(0, #) = 0, V¢ > 0, the equilib-
rium point of the transformed system is defined by
£ =1[h(0,1),0,...,0]" =0 and 7 = ¢(0, 1) = 0.

The normal form decomposes the system states into
an external part £ and an internal part 7. For the exter-
nal part, if we let y(d) denote the dth derivative of y, it
may be rewritten as

P = [(0) + a(x, O] + [Bi(D) + Blx, D] (16)

where o4 (f) and Bi(f) are ‘known’ dynamics of the
system (which are assumed to be bounded if x is
bounded), and «(x,?) and B(x,?) represent non-linear
time-varying dynamics of the plant that are unknown.
We assume that for some known By > 0, we have
|Bi() + B(x, 1)] = By so that it is always bounded away
from zero (for convenience we further assume that
Bi() + B(x, t) > 0, however, the following analysis may
easily be modified for systems which are defined with
Bi(t) + B(x,1) < 0). The external part may be stabilized
by the control u (which we will show later), while the
internal part is made uncontrollable by the same con-
trol. By having £ =0 in the inner part, the ‘zero
dynamics’ of the system are given by

7 = fo(0, 7, 7). 17)

If the plant is of relative degree d = n, then there are no
zero dynamics. Alternatively, if the relative degree
d < n, we assume that the zero dynamics are uniformly
exponentially attractive so that we have

nlzl® < v, 0 <yl (18)
v av
5+(1)ﬁwn0< —nlrl 19
V1
— 2
) <l (0)

for some positive constants y;, y», ¥3, and yy. If £5(0, 7, 1)
is Lipschitz in &, then | fo(&, 7, 1) — f5(0, 7, )| < k||l
for some positive k;. Now, if we have some control u
so that ||&|| <k, where k, is some positive constant,
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we have

8v1 8v1 T
Vi = E*’ (g) fo(éana Z)

_ 8v1 8v1 T
5+ (5) Ao

aVl T
; (—) Lfol6. 7. 1) — fo(0. 7,1

o

A

< —ysllzll® + yaky IEN I

—ysl7l? + vak Kl

IA

Therefore, v; <0 if |z|| > ysk1ky/y3. This ensures
boundedness of 7 uniformly.

4. Indirect adaptive control

The on-line learning abilities of neural networks are
considered here to approximate the time-varying
dynamics of the non-linear system. In particular, the
linear in the parameter radial basis function networks
are in the form of

Q(x, 1) = Oy ()a(x) (1)
Blx, 1) = 05 (Dp(x) (22)

where the parameter vectors 6,(7) and 64(¢) are updated
on-line and are assumed to be defined within the com-
pact parameter sets €2, and g, respectively. In addition,
we define the subspace S, € " as the space through
which the state trajectory may travel under closed-loop
control (we are making no a priori assumptions here
about the size of S,). We also define the actual system as

a(x, 1) = 65 ()a(X) + (. 1) (23)
Blx, 1) = O (p(x) + wp(x, 1) (24)

where

(sup |6y o () — ax(x, r)|> (25)

05(f) = arg min
(1) g min sup

o«

0j(1) = arg min (sup 105 $p(x) — B, r)|) (26)
ﬂE

B\ xeS,

are the optimal time-varying parameters and w,(x, )
and wg(x,7) are approximation errors which arise
when «a(x, ) and B(x,t) are represented by finite size
approximators. We assume that

|we (X, )] < W(x) 27
|wg(x, )] < W(x) (28)

where W,(x) and Wy(x) are known state-dependent
time-invariant bounds on the errors in representing the

actual system with approximators. We also define
parameter errors to be

0o (1) = 0,(1) — 03(1) (29)
B5(1) = 04(1) — 65(0). (30)

We view adaptive control to be a tracking problem,
that is, to design a control system which will cause the
output y(7) and its derivatives 3(7), ..., ) (7) to track a
desired reference trajectory y,,(f) and its derivatives
YO, ..., yfff)(t), respectively, which we assume to be
bounded. The reference trajectory may be defined by a
reference signal whose first d derivatives are measurable,
or by any reference input r(¢) passing through a refer-
ence model, with relative degree equal to or greater than
d. In particular, a linear reference model may be

Ym(s) _ @ _ q0

= = 31
R(s)  p(s) s+ pags™ 4+ 4po Gh
where p(s) is the pole polynomial with stable roots.
The indirect adaptive control law
U= U + Uy (32)

comprises a ‘certainty equivalence’ control term u,,
(based on the approximated system dynamics) and a
‘sliding mode’ control term u,; (to compensate for
approximation errors). Let the tracking error be
e(t) = y(t) — y(¢) and a measure of the tracking error
be ey(t) = V(1) + kg2 (1) + - - + Kkyé(r) + koe(?),
that is, in the frequency domain, e (s) = L(s)e(s) with
Ls)=s9"Y 4k, 5 s“P4+... 4 k;s+k, whose roots
are chosen to be in the (open) left half plane. Also, for
convenience below we let e (f) = e (f) — e(d)(l). Notice
that our control goal is to drive e,(f) > 0 as t — oo
and the shape of the error dynamics is dictated by the
choice of the design parameters in L(s). The certainty
equivalence control term is defined as

1
B + B(x. 1)

where B,(?) + ,3(x, t) is bounded away from zero (which
will be ensured later using projection) so that u,, is well
defined, and

(=(a(0) +a(x, ) + (@) (33)

uce

w(t) = ¥ + ney + &, (34)

with n > 0 as a design parameter. Consider the update
laws

Ou(1) = =05 pu(¥)e (35)
04(1) = =05 dp(x)egite, (36)

where Q, and Qg are positive definite and diagonal and
serve as adaptation gains for the parameter updates.
Note that the above adaptation laws do not guarantee
that 6, € Q, and 05 € Q4 so that we will use a projection
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method to ensure this, in particular, to make sure that
Bi() + B(x,1) > By. Additionally, the sliding mode
control term is defined as

_ (Wl + Wylel)

Uy = :30 gn(es)~ (37)

To develop a stable adaptive controller for non-
linear time-varying systems, some assumptions about
the form of the model and other technical conditions
are necessary. Here we give several possible assumptions
on the characteristics of time-varying dynamics and
summarize the stability results in the following
theorems.

4.1. Bounded parameter variations

Similar to linear time-varying systems (Tsakalis and
Ioannou 1993), a common assumption with respect to
non-linear time-varying systems is to assume the bound-
edness of parameter variations, that is, we assume 6,
and 97; are bounded.

Theorem 1: Consider the non-linear time-varying system
(6) and (7) with strong relative degree d. Assume that (1)
(1) and Bi(t) in (16) are bounded if x is bounded, (i)
Bi() + B(x, 1) > By for some known By >0, (iii)
lwg(x, )| < Wo(x) and |wg(x, )] < Wﬁ(x) with known
Wy (x) and Wg(x), (iv) p,, (), Yin(0), . . ., ym )(Z) are measur-
able and bounded, (v) x(1),y(t), 7(t), ..., V(@) are
measurable, (vi) 1 < d < n with the zero dynamics uni-
formly exponentially attractive or d =n, and (vii) 6
and 07; are bounded. Under these conditions there
exist indirect adaptive control laws (Narendra and
Parthasarathy 1990, Sanner and Slotine 1992,
Polycarpou and Mears 1998) and update laws (Yabuta
and Yamada 1992, Sadegh 1993) such that all internal
signals are uniformly bounded and the tracking error e
is ‘small in the mean’.

Proof: Consider the Lyapunov function candidate
| G
Vi(es, 04,08, 1) = 56 + §9a Qo + 59/3 Ogp  (38)

which quantifies both errors in tracking and in par-
ameter estimation. It can be easily seen that

1

E s = V(é’j,@a, 95» [) —63 +m (39)
for some m > 0 according to the boundedness of 6, and
0. Hence, V; is positive definite and decrescent. Using
vector derivatives and following Spooner and Passino

(1996) and Diao and Passino (2001), the time derivative
of (38) is

Vi = esés + éo;rQaéa + é,;—Qﬁéﬁ

Note that &,() = é,(7) — ¢“)(¢) and the dth derivative of
the output error is ) = yf,‘f) y(d) so that
&) =&, + ¥4 — 'V
and from (16), (32), (33) and (34)
ey(1) = e,(t) + [v(1) — ne; — e;] — [(ar (1) + (x, 1))
+ (B(6) + B(x, D))t + uy)]
= e, + V(1) — o (1) — (Bi(1) + BCx, D)u]
—a(x, 1) + (B(x, 1) — BCx, O)itge — (Br(D) + B(x, D)u;
= —ne, + [v(t) — (1) + (e (1) + a(x, 1)) — v(1)]
—a(x, 1) + (B(x, 1) — BCx, D)tge — (Br(D) + Bx, D)
= —ney + (@(x, 1) — o(x, 1) + (B(x, 1)
- IB(X’ t))uce - (ﬂk(t) + IB(Xa [))usi
also from (21) and (22), (23) and (24) and (29) and (30)
we have
&y = =11, + (6 §o(x) — 0o (x, 1) + (B B(x)
- wﬁ(xa Z))uce - (IBk(l) + ﬂ(x, l))usi‘
Substitute the above equation into (39) and sub-
stitute (35) and (36) into (39)
Iki = es[_nes + (éo;rqba(x) - wot(xa [)) + (é;;r¢ﬂ(x)
- wﬂ(xa t))uce - (ﬂk(t) + IB(Xa t))usi]
+ 6, Q=05 du(x)e,] + 05 Qpl— 05 pp(x)esutce]
— [0, 0 + 65 040]
= —ne; — (0,(x. 1) + wp(x, D, e
— (Bi(t) + BCx, uge, — [0, Qub + 05 0405].

Note that we did not consider projection modification
to the update laws above. Clearly, since 6 € Q, and
9,3 € Qg, when the projection is in effect it always results
in smaller parameter errors that will decrease V; so that

Vi = —7795 - (woz(x’ Z) + wﬂ(xa t)uce)es - (ﬂk(l)

+ BCx D)uge, — [0 Qb + 65 0485

6. Qubl + 85 0465]
reflects the effect of time-varying parameters. Since 6,
and Gﬂ are bounded according to parameter projection,

0O, and Qg are constant matrices, and g and 9,3 are
bounded under the above assumption, we have

[0 Qufs +57 04 = W, (40)

Note that the combined term

for some W, > 0 (which is a constant measuring the
boundedness of parameter variations but does not
need to be known) so that

Vi < —nej — (wy(x, 1) + wp(x, Dt )ey
- (/3/(([) + /3()6, t))usies + Wy-
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Substitute (37) into the above equation and also
note that _(wa(xa [) + wﬂ(xa t)uce)es = (Ia)a(x, [)| +
|lwg(x, Duel) el < (Wo(x) + We(X)lueelesl,  Br(t) +
B(x,t) > By, and |e;| = e;sgn(e,) (except at e, = 0)

Vi < —ne; + (Wy(x) + W)t Dles| — (Bi(0)

(Wo(x) + We(X)|ueel)
Bo

< —nes + (Wo(x) + Wy(x)ltg|)leyl

_ (B(0) + B(x, 1)
Bo

< —nef + W,

Thus, V; is negative definite for |e,| > ./ W, /n, that is,
the measure of the tracking error e, is uniformly
bounded. As ey(s) = L(s)e(s) and L(s) is a stable function
with the degree of d — 1, we know that the tracking
error and its derivatives e,é,...,e D are uniformly
bounded. Since the reference trajectory y,, and its deri-
vatives y,,, ..., yﬁ,‘fﬁl) are assumed to be bounded, the
system output y and its derivatives yp,..., y(d_l) are
bounded. Hence, & is uniformly bounded and thus x is
uniformly bounded. Besides, the fact that V; is negative
definite also implies that parameter estimations 6, and
6 are uniformly bounded (noting (29) and (30) and the
boundedness of 6, and 6.). Therefore, the boundedness
of &(x, 1), B(x, 1), a;(¢), and By () assures that u,, and u
and hence u are uniformly bounded.
V, <0 for |e,| > VW, /n also assures that

t+T 1 t+T . 1 t+T
/ eﬁdtg——/ V,~dz+—/ W, dt
‘ nJ: nJ:

1 W,
=~ (V)= Vit + T)+—LT
n n

that is, the tracking error ¢, is ‘small in the mean’. []

+ e sente) e, + W,

(Wo(x) + W) |ue|)les| + W,

Remark: Note that n is a design parameter and that by
choosing it large we can obtain smaller mean in the
above result.

4.2. Bounded parameter rate of change

Note that for the time-varying systems, although we
can guarantee that all internal signals are bounded uni-
formly, under the above assumption about the bound-
edness of parameter variations, we can only show that
the tracking error ¢, is small in the mean and ¢, € L,
may not be established. In order to obtain the uniform
asymptotic stability of the output we may need a
stronger assumption such as

165,11 < Kles (41)
165,11 < kle] (42)

where 6;‘; ; and 6'7;, ; are components of the vectors of
0, and 65, respectively, and k is a positive constant.
This assumption is reasonable because the tracking
error is usually large if the plant parameters vary
fast (on the other hand the condition may be difficult
to verify in specific applications). Under the above
assumption we get

—[6. Q.0; + 64 0405] < W, le,l (43)

for some known constant W, >0 indicating the
bounds of parameter rate of change with respect to
le,]. In addition, we redesign the sliding mode control
term as

(Wa(x) + W/S(x)lu(?el)
Ug =
Bo
where the first term is the same as (37) to compensate for

approximation errors and the second term is added to
compensate for the time-varying dynamics.

W
sgn(e,) +— " sgn(e,)  (44)
Bo

Theorem 2:  Consider the non-linear time-varying system
(6) and (7) with strong relative degree d. Assume that
(1) ay(?) and Bi(t) in (16) are bounded if x is bounded,
(1) Bi(t) + B(x,t) = By for some known By >0, (iii)
lwe(x, )] < Wo(x) and |wg(x,1)| < We(x) with known
Wo(x) and Wg(X), (V) Y (8), Y(D), . . ., yfff) (t) are measur-
able and bounded, (v) x(1),y(t), 70, ...,y V(@) are
measurable, (vi) 1 <d <n with the zero dynamics
uniformly exponentially attractive or d =n, and (vii)
165.| < kle,| and |65 ;| < kle,|. Under these conditions
there exist indirect adaptive control laws (32), (33), (44)
and update laws (35) and (36) such that all internal signals
are uniformly bounded and the tracking error e is uni-
formly asymptotically stable.

Proof: Consider the Lyapunov function candidate
| N
Vi(es, 6y, 0p.1) = 76 + 590, 040, + Eeﬁ O (45)
and its time derivative
Vi = [ess + 0, 0uby + 05 040;] — [0 Qui + 64 0403].
(40)

Use the same derivation procedure as in the proof of
Theorem 1 to get

I./i =< —773.% - (wa(xa t) + (,()'3()6, t)u(?e)ex - (ﬂ/c(t)

+ IB(x7 [))usies - [éo;rQaé: + é;QﬂGE]

Substitute (43) and (44) into the above equation and
also mnote that —(wu(x,?)+ wg(x, Dug e, < (Jwy(x, 1)
'Ha)ﬂ(xa t)uc'e|)|es| = (Wa(x) + Wﬂ(x)|uce|)|es| and ﬂk(l)
~|—,3(X, Z) > :30'
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Vi < —nes + (Wy(x) + Wa()lugles| — (Bi(t) + B(x, 1))
y ((Wx) + W)l )
Bo

W.
sgn(e,) + —~ sgn(es)> e
Bo
+ W, lel
< —ne; + (Walx) + Wp(0)lueeDlesl
(B + Bx, 1)
Bo
(Bl0) + B, 1)
Bo

(Wa(x) + Wﬁ(x)|uce|)|€x|

W lesl + W, el

< —ne;.
Thus, V; is negative definite, and we can obtain the uni-
form boundedness of all internal signals using a similar
analysis as in the proof of Theorem 1. Furthermore,
noting that

/ " edi < — f TVl = V) - Vico)  (47)
0 0

this establishes that e, € Ly (L, = {z(1): [;° (1) < o0})
since V;(0) and V;(c0) are bounded. Since ¢, and ¢, are
bounded and e, € L,, by Barbalat’s Lemma we have
uniform asymptotic stability of e;, which implies uni-
form asymptotic stability of the tracking error e (i.e.,

lim,_, o, e = 0). Ol
Alternatively, we may assume that

161 < re™™ (48)

65,1 < re™ (49)

where 6 ; and 9'2, ; are components of the vectors of 6
and 6}, respectively, and r>0 and k>0 are some
constants. This assumption may be used to represent a
class of time-varying systems, such as the systems
with incipient faults or jump-like faults, where the
time-varying effects fade as the time goes to infinity.
Again, although this is a reasonable assumption (e.g.,
see Goodwin er al. (1984) for linear time-varying
systems), it may be difficult to verify it in practice.

Theorem 3: Consider the non-linear time-varying system
(6) and (7) with strong relative degree d. Assume that
(1) ai(t) and Bi(t) in (16) are bounded if x is bounded,
(i) Bi(t) + B(x,t) = By for some known B, > 0, (iii)
e (X, )] < Wo(x) and |wg(x,1)] < We(x) with known
Wo(x) and Wy(X), (V) Y (8), Y (D), - - -, yf,‘f )(t) are measur-
able and bounded, (v) x(1),y(t), 70, ...,y V(@) are
measurable, (vi) 1 < d < n with the zero dynamics uni-
formly exponentially attractive or d =n, and (vii)
|é§,i| <re " and |9'Z7j| <re . Under these conditions
there exist indirect adaptive control laws (32), (33) and
(37) and update laws (35) and (36) such that all internal
signals are uniformly bounded and the tracking error
e is uniformly asymptotically stable.

Proof: Under the above assumption we obtain
—[0. 0o + 65 0485 < We ™. (50)

Similar to the stability analysis procedure in Theorem 1
we get

Vi

IA

—ne; — [64 Qub + 65 0]
—ne; + W, e .

IA

Therefore

00 o0 . o0
[ nedr < —/ Vde + Wy/ e ds
0 0 0

|74

= Vi(0) — Vi(c0) +Ty

which establishes that e, € L,. Thus, by Barbalat’s
Lemma we have uniform asymptotic stability of the
tracking error e. ]

(51

Remark: Our work on stable adaptive control of feed-
back linearizable time-varying non-linear systems is
motivated with the fault-tolerant engine control prob-
lem. Most existing studies on fault diagnosis and fault-
tolerant control have relied on a linear nominal model
of the plant. However, in practical situations plants are
non-linear and the faults often force plants away from
local behaviours that are locally linear into a non-
linear operating region. Furthermore, the existing
work in the literature mainly considers fault-tolerant
control in the context of time-invariant systems as if
a fault has already occurred, while the reality is that
both incipient and abrupt faults are naturally time-
varying phenomena. Therefore, existing work on
using on-line approximation approaches for non-linear
time-invariant systems (Spooner et al. 2001) and using
robust adaptive control for linear time-varying systems
(Tsakalis and Ioannou 1993) are not applicable. One
method to address the problem of adaptive control for
non-linear time-varying systems is to use the backstep-
ping design methodology for the class of systems in the
strict feedback form (Marino and Tomei 1997, 1998,
Ordonez and Passino 2000 b, c). However, the actual
plant may not fit this form (and, in particular, the
engine does not). Here we consider a more general
class of non-linear time-varying systems, which is
input—output feedback linearizable. This class of
systems is large enough so that it is not only of theor-
etical interest but also of practical applicability (e.g. to
our fault-tolerant engine control problem). The adap-
tive control law is designed to generalize the existing
robust adaptive fuzzy/neural control method (Spooner
and Passino 1996, Diao and Passino 2001) to the
time-varying cases by taking into account uncertain
time-varying parameters (with known bounds)
(Marino and Tomei 1998). Furthermore, a stronger
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stability result, uniform asymptotic stability of the
output, can be obtained by assuming boundedness of
parameter rate of change.

5. Direct adaptive control

In addition to the assumptions we made in the indi-
rect adaptive control case, we require S;(f) = oy (t) =0
for all > 0, and that there exist positive constants S,
and B such that 0 < By < B(x, ) < B;. Also, we assume
that we can specify some function B(x) > 0 such that

B ().
E—F (a) X
for all x € S,. We know that there exists some ideal
controller

1B(x, )] = < B(x)

alx, 1) + v(t 52
" = oy (e +(0) (52
where v(7) is defined the same as that in the indirect
adaptive control case (34). We also define the ideal con-
troller (in the form of the ideal approximator) as

' =0 (D, (x, V) + (D) + o, (x,v. 1) (53)

where u; is a known part of the controller (e.g. one that
was designed for the nominal system), the parameters

u \ES veS

efa)—«ugggg( sup WJ¢AXA0—%ﬁ*—L%N> (54)
are the optimal time-varying parameters of the approx-
imator, and w,(x,v,f) is the approximation error.
We assume that |w,(x, v, )] < W,(x,v), where W,(x,v)
is a known bound on the error in representing the ideal
controller. The approximation of this ideal controller
can be represented by

u= 6J¢tl(xr 1)) + uk(t) (55)

where the parameter vector 6,(¢) is updated on-line and
the parameter error is

Bu(1) = 0,(1) = 6,(1). (56)
Consider the direct adaptive control law
u=u+uy (57)

which is the sum of the approximation to the ideal
control law # and a sliding mode control term

i = (P4 W Jsente) (59
0
and we use the update law

0,(1) = Qi pu(x. v)ey(0) (59)

where Q, is positive definite and diagonal. We also use a
projection method to ensure that 6, € Q,,.

5.1. Bounded controller parameters

Analogous to indirect adaptive control, a reasonable
assumption regarding to stable direct adaptive control
of non-linear time-varying systems is to assume the
boundedness of controller parameter variations 6,
which may result from the bounded time-varying
characteristics of the plants.

Theorem 4:  Consider the non-linear time-varying system
(6) and (7) with strong relative degree d. Assume that
1) 0<pBy=<PB(x,t)<py for some known positive
constants By and By, (i) |B(x, 1)| < B(x) for some known
Sfunction B(x) = 0, (iil) |w,(x, v, )| < W,(x,v) with known
W, (x,v), (V) ¥,,(), Y (0), ..., yfff )(t) are measurable and
bounded, (V) x(1), y(2), (1), ..., ¥~ (t) are measurable,
Vi) 1 < d < nwith the zero dynamics uniformly exponen-
tially attractive or d = n, and (vii) 6" is bounded. Under
these conditions there exist direct adaptive control laws
(57), (55) and (58) and update laws (59) such that all
internal signals are uniformly bounded and the tracking
error e is ‘small in the mean’.

Proof: Analogous to Spooner and Passino (1996), con-
sider the following Lyapunov function candidate

Vd 2/3( )es + 0 Qu u- (60)

It can be easily seen that

—e z—l—m

1
< Vi<
28, =28,

for some m>0 according to the boundedness of B(x, 1)
and 6,. Hence, V, is positive definite and decrescent.
Take the time derivative

. e . Px.pe
V1= B 0% T 280

¢(7) and the dth derivative of
so that

+6,0.6,. (6]

Note that e (7) = é,(1) —
the output error is ¢/) = &) — @)
&) = &0+ =
and from (16), (34), (52) and (57) and by assuming

o (t) = B(t) = 0
és(t) = Es(t) + [U([) — neg — és]
= [ (1) + e(x, ) + (Bi() + Blx, D)@ + usq)]
= —ne, + (1) — alx, 1) — Blx, Nu']
— B(x, (@ — u*) — B(x, gy
= —ne, — Bx, (@ — u") — B(x, gy
also from (53), (55) and (56) we have

é,(1) = —ney — Bx, DO, ¢ (x,v) — w,(x, v, 1)) — (X, )ity
(62)
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Substitute the above equation into (61) and substitute
(59) into (61)

;e - - )
Vd - ﬂ(x, l)[ neg ,B(X, t)(@u (bu(X, p) Cl)u(x, v, t))
B(x, t)ef

- IB(X, Z)usd] - 2,32()(?, Z)
- éi;rQueﬁ

5 .
= ﬂ?)f:t) - <0~J¢u - a)u(x7 v, [) + f/(;;é;)’et; - éJ(bu)es
— Elsg — éJQuQ;
e (B(x, 2
B 2B, 1)

~T -
— ClUgg — eu Queu-

+6, 0,10, ¢ (x. v)e (D]

—w,(x,v, l)) e,

After we consider the projection modification to the
update law we have

) .
y nes ﬁ(x’ t)es
V=g~ (2/32<x, n

~T -
— €lUgq — 61{ Qu9u°

w,(x, v, t)> e, 63)

Note that the term —6, 0,0 reflects the effect of time-
varying parameters. Since 6, is bounded according to
parameter projection, Q, is a constant matrix, and 6}
is bounded under the above assumption, we have

-6, 0,65 < W, (64)

for some W,>0 indicating the boundedness of
parameter variations (but which do not need to be
known) so that

5 .
y 77€s ,B(X, t)es
V=g (2ﬂ2<x, 'R

w,(x, v, l)) ey — egugg + W,
(65)
Substitute (58) into the above equation and note that

(B ey
(2/32()6, )

w,(x, v, t)) e
- <|B(x, Dlle|
N\ 28%(x, 1)

< (B wien e

and 0 < By <B(x) < B; so that we have

+ lo,(x, v, t)|>|€s|

2
vV, < —”ﬁ—ef+ W, (66)

Thus, V, is negative definite for |e,| > /B, W, /n.
Similar to Theorem 1, we may find that all internal sig-
nals are uniformly bounded and the tracking error e is
‘small in the mean’. O

Remark: To get the mean smaller we could tune the
controller design parameter by having a larger 7.

5.2. Bounded rate of change of controller parameters

Again, analogous to the assumption made in § 4.2, in
order to obtain the uniform asymptotic stability of the
output we assume that

16 i1 < kleg] (67)

where 9.2‘;,- are components of the vectors of 6 and k is
a positive constant, since the tracking error is usually
large if the controller parameters vary fast.

Theorem 5: Consider the non-linear time-varying system
(6) and (7) with strong relative degree d. Assume that (1)
0 < By < B(x,t) < By for some known positive constants
Bo and By, (i) |B(x, )| < B(x) for some known function
B(x) >0, (@) |w,x,v,0)|<W,(x,v) with known
W, (x,v), (V) ¥,,(), YD), ..., y,(f{l )(t) are measurable and
bounded, (v) x(t), y(t), (1), ..., y(d_])(t) are measurable,
Vi) 1 < d < nwith the zero dynamics uniformly exponen-
tially attractive or d = n, and (vii) |9.;’1-| < kle,|. Under
these conditions there exist direct adaptive control laws
(55) and (57) and

_ (BO)lel
Usqg = Zﬂ%

for some known constant W, > 0 (indicating the bounds of
controller parameter rate of change) and update laws (59)
such that all internal signals are uniformly bounded and
the tracking error e is uniformly asymptotically stable.

+ W, V)) sgn(ey) + W, sgn(e;)  (68)

Proof: Under the above assumption we get

~0, 0.0, < W,e,]. (69)
Therefore
T By 2B )T ()
— eyligg + WV|€S|.
Substituting (68) into the above equation we have
V, < ——=. (71)
]

Thus, V, is negative definite and we may obtain the
uniform boundedness of all internal signals and uniform
asymptotic stability of the tracking error e similar to the
analysis in the proof of Theorem 2. ]

Alternatively, we may assume that
6.1 <re”™ (72)

where 6, ; are components of the vectors of 8;;, and r>0
and k>0 are some constants. This assumption
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may be used to represent the situations for a class of
time-varying systems, where the time-varying effects
fade as the time goes to infinity, so that the correspond-
ing controller parameters also tend to be constant.

Theorem 6: Consider the non-linear time-varying system
(6) and (7) with strong relative degree d. Assume that (1)
0 < By < B(x,t) < By for some known positive constants
By and By, (i) |B(x, 1) < B(x) for some known function
B(x) >0, (i) |o,x,v,0)] < W,(x,v) with known
W, (x,v), (V) y,,(2), Y, (1), . .. ,y%)(t) are measurable and
bounded, (v) x(1), (1), y(1), ..., y(d_])(t) are measurable,
(vi) 1 < d < n with the zero dynamics uniformly exponen-
tially attractive or d = n, and (vii) |9;i,-| < re ™. Under
these conditions there exist direct adaptive control laws
(55), (57) and (58) and update laws (59) such that all
internal signals are uniformly bounded and the tracking
error e is uniformly asymptotically stable.

Proof: Under the above assumption we get

—6, 0,0, < W, e ™. (73)
Therefore
5 .
y nes ﬁ(x9 t)es
Vy<-— — — , U, ¢
S eN) (2/32<x, p e )> o
— egltgg + W, e
Substituting (58) into the above equation we have
2
vV, < —”ﬂ—es + W, e (75)
1

so that

/ —efdtg—/ V,dr + Wy/ e M d1
o Bi 0 0 (76)

W,
= V;i(0) — Vi(o0) + T

which establishes that e, € L,. Thus, by Barbalat’s
Lemma we have uniform asymptotic stability of e;. [

Remark: Note that most of the papers (Narendra
and Parthasarathy 1990, Polycarpou and Ioannu 1991,
Sanner and Slotine 1992, Yabuta and Yamada 1992, Liu
and Chen 1993, Sadegh 1993, Chen and Liu 1994,
Rovithakis and Christodolou 1994, Su and Steparenko
1994, Wang 1994 a, b, Hsu and Fu 1995, Yesildirek and
Lewis 1995, Chen et al. 1996, Farrel 1996, Fabri and
Kaderkananathan 1996, Lee and Wang 1996, Lewis
et al. 1996, Palycarpou 1996, Polycarpou and Mears
1998) deal with indirect adaptive control, whereas very
few authors (e.g., Rovithakis and Christodoulou 1995,
Spooner and Passino 1996) face the direct approach,
because it is not always clear how to construct the con-
trol law without knowledge of the system dynamics.
Here, we design the direct adaptive control law based

on the feedback linearizing law (Spooner and Passino
1996) and then generalize it to the time-varying case.
Uniform asymptotic stability of the output has also
been obtained by assuming boundedness of rate of
change of controller parameters. Compared to indirect
adaptive control, direct adaptive control usually shows
better transient behavior because it may learn and
adapt faster (probably due to the fact that it has fewer
parameters to be tuned).

6. Simulation examples: fault-tolerant engine control

To study the effectiveness of the proposed adaptive
control methods, we apply them to the component level
model simulation of an aircraft jet engine (General
Electric XTE46). The General Electric XTE46 engine
is a simplified, unclassified version of the original
IHPTET engine (Adibhatla and Lewis 1997). The com-
ponent level engine cycle model of the XTE46 engine is a
thermodynamic simulation package, where each engine
component is simulated. The CLM executes one pass
within the digital control’s sampling time, and thermo-
dynamic states are assumed to be in equilibrium after
each pass through the simulation. The operating con-
dition of the engine is defined by the altitude (ALT),
mach number (XM), difference of temperature
(DTAMB), and throttle setting represented by power
code (PC). The health of the engine is described by ten
‘quality parameters’ which include the flows and efficien-
cies of the fan, the compressor, and turbines. The model
has three state variables, including the fan rotor speed
(XNL), the core rotor speed (XNH), and the tempera-
ture at combustor inlet (TMPC). There are six actua-
tors, but the major control variables are the combustor
fuel flow (WF36), the exhaust nozzle area (AS8), and the
variable area bypass injector area (A16). For simplicity,
we assume that the fundamental dynamic characteristics
of the CLM can be represented by a single-input single-
output system in the form

x=f(x,u,c,p) (77)
y = h(x,u,c,p) (78)

where x = [XNL, XNH]T is the state vector, u = WF36
is the input variable, y = XIN2 is the output of the engine,
¢ =[ALT, XM, DTAMB, PC]" represents the operating
condition of the engine, p = [ZSW2, SEDM2, ZSW7D,
SEDM7D, ZSW27, SEDM27, ZSW41, ZSE41, ZSW49,
ZSE49]" represents the quality parameter vector, f(-)
denotes the unknown function representing the non-
linear characteristics of the engine, and A(-) = XNL
because the output variable XN2 is just the measure-
ment of the state variable XNL.

To develop a computational model for the XTE46
engine, we perform non-linear system identification to
approximate local engine dynamics (specified by fixed
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values of operating conditions and quality parameters),
followed by interpolating these local models to generate
the ‘global’ model (actually, it is a ‘regional’ model valid
in the ‘climb’ region) (Diao and Passino 2001, 2004).
The general form of the model can be described as

x=f(x,¢,p) +g(x, ¢, pu (79)
y=Xx (80)
where

- — Zi]\ilf(x7 civpi)ﬂi(cﬂp) 81
S(x,¢.p) SV akep) (81)

o) — Zi] g(x, c;, ppi(e, p) 82
g(x,¢,p) SV o) (32)
e ) SRl o(cinp) + a1 (i pi)xy + aj 2 (¢, pi)Xalp (1)

X, ¢, pi) =
! S ()
(83)
R
g(x’ Ci,pi) _ Z/:l aj,}(cl’pt)ﬁj(xl) (84)

PIARYRES)

where = WF36 and x =[x}, x,]" = [XNL,XNH]"
which is positive since the fan speed and the core
speed cannot be negative and x € S, (a valid speed
region). The value of ¢ is the known operating condition
vector, p is an unknown quality parameter vector, and
¢;,p; are specified nodes where we establish node

models. Also, / =[f1./2]". ¢ =[g1.]". f =[f1.f2]".
and g = [gl,gz]T are 2 x 1 function vectors, @ ,a; i,
a;,,a;3 are 2x 1 vectors of linear parameters of
Takagi—Sugeno fuzzy systems, u;(c,p) are membership
functions of fuzzy interpolation between different
operating conditions and quality parameters, and
u1.(x;) are membership functions describing the non-
linearity with respect to x;. By inspecting the para-
meters that result from the identification process we
f(fund that a}’3(ci,p,~)>a_i3(ci,pi)>0 and a_,%z(c[,pi)<
ai»(c;,pj)<0 for any i=12,...,N,j=12,....R
Thus, we know that the “‘relative degree” of the engine
is 1 and the engine zero dynamics are uniformly expo-
nentially attractive (Diao and Passino 2001).

6.1. Indirect adaptive control

Consider the engine in the form of

)} :fi(x’ C,p)+gl(xa C»P)“ (85)
= [ak(C’Poa l) + O{(X, C,p)]
+ [/Bk(cap07 [) + ,B(X, Cvp)]u (86)

where x(7) and y(r) are measurable according to the
properties of the component level engine model. By
studying dynamics of the developed non-linear model
we know that g(x,c,p)>0.32 so that we can set
Bo =0.32. We use our developed engine model to

represent the nominal model dynamics o (c, py,?) and
Bi(c, po, 1) by setting the quality parameters to be the
nominal value py, and they are bounded if x is bounded
since the model is in the form of a Takagi—Sugeno fuzzy
system. The unknown dynamics «(x, ¢, p) and B(x, ¢, p)
describe both the model uncertainty caused by nominal
model inaccuracy and system changes (time-varying
characteristics) due to the fault effects. They will be
approximated by two radial basis function networks a
and B with 11 receptive field units for each. The inputs
to the neural networks include two state variables (XNL
and XNH), and the parameters are updated on-line to
capture the unknown time-varying dynamics affected by
model inaccuracy and faults so that fault tolerance can
be achieved. Note that the stable adaptive controller will
ensure the stability of x;, and the uniform exponential
attractivity of the engine zero dynamics will ensure the
stability of the uncontrollable state x,. Since the relative
degree of the system is 1, the error dynamics are simple
(ey(?) = e(t) and ey(t) = 0). As we cannot explicitly know
the model uncertainty, the parameters W, and Wy are
treated as design parameters and tuned by trial and
error to achieve good control performance. Here, we
have W, =0.01 and Wy =0.01. As for the parameter
W, in (44), since its effect on the sliding mode control
term is the same as that of W,, we just treat it as
part of W, and do not tune it explicitly. In addition,
the adaptation gains are tuned to be Q' =5¢—8
and Q;l = le— 17, and the design parameter n = 1.
The reference trajectory is defined by passing a
reference signal through a linear reference model
Y,.(s)/R(s) =3/(s+3) so that y,(©) and y,(¢) are
measurable and bounded. Since the time-varying
dynamics caused by both incipient faults and jump-
like faults satisfy the assumptions on the bounded
parameter variations and bounded parameter rate of
change, we could apply the stable adaptive control
method developed above to solve the fault-tolerant
engine control problem.

We let the component level engine model run at
the operating condition of ALT=15000, XM =0.7,
DTAMB = 0, and PC=46. For engine quality
parameters, we set the initial engine variation to
be piy = [0.1%,0.1%,0.2%,0.1%, —0.1%,0, —0.3%,
0.2%, —0.1%,0.1%], and the engine deterioration
index to be I; =0.1. Figure 1 shows the control
performance of indirect adaptive control for a multiple
fault scenario, where an incipient-type fault evolves
from no fault to a large fan fault over 20s, and an
abrupt large compressor hub fault occurs at 7, = 6.
The occurrence of the abrupt large compressor
hub fault affects the system performance drastically
(as indicated by arrow 1), whereas after a period of
time for learning the effects of the fault on system
dynamics, the adaptive controller accommodates for
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the fault quite well (as indicated by arrows 2 and 3)
by modifying the control action (as indicated by arrows
4 and 5). As for the incipient fan fault, since its effects
are not so significant compared to the fault accommo-
dation ability of the adaptation scheme, no apparent
control performance deterioration can be seen.

The effectiveness of the proposed stable adaptive
controller can be demonstrated through comparing
its performance with that of a nominal controller. By
removing on-line approximators (21) and (22) and
turning off the sliding mode control term (37), the
nominal controller is in a kind of state feedback form

(=a(c, po, 1) + (1)) (87)

! ﬁk(cap()a Z)
where o (c,py,t) and Bi(c, po,t) represent nominal
model dynamics. The control performance of this nom-
inal controller, as shown in figure 2, is much worse than
that of the adaptive controller. Since no adaptation
scheme is involved, the controller could generate good
performance when the faults are not too significant (e.g.,
for the first 2s in figure 2), but results in deteriorated
performance when the faults become serious and thus
the system dynamics leave far away from the nominal
dynamics. The effectiveness of the adaptation
scheme can be further clarified by noting that, as
shown in figure 3, if we keep the on-line approximators
but turn off the sliding mode control term, the adaptive

10
Time (sec.)

12 14 16 18 20

Performance of indirect adaptive controller.

controller is still able to achieve fault accommodation
abilities even though the control performance is not as
good as in figure 1. However, if we keep the sliding
mode control term but remove the on-line approxima-
tors, as shown in figure 4, the faults are not accommo-
dated for.

6.2. Direct adaptive control

We also apply the direct adaptive control scheme
to the fault-tolerant engine control problem. For
direct adaptive control scheme, the nominal engine
model cannot be used. Instead, we define the known
controller to be a proportional-integral (PI) controller
(e = ky(e+1/T; [edr), k, =5,T; =0.2). By studying
dynamics of the developed non-linear model, we know
that g;(x,c, p) < 0.38 and its rate of change is smaller
than 1.5 so that we can set 8; = 0.38 and B =1.5. The
ideal controller is approximated by one radial basis
function network with 11 receptive field units. The
inputs to the neural network include two state variables
(XNL and XNH) as well as the variable v, and the
parameters are updated on-line to compensate for
the unknown time-varying dynamics affected by model
inaccuracy and faults. By trial and error, the model
uncertainty is described by W, =200, the adaptation
gain is 0, ' = 2¢ — 7 and the design parameter is chosen
to be n = 1.
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Figure 2. Performance of the state feedback controller.
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Figure 3. Control performance without the sliding mode control term.
Compare the results of the direct adaptive controller, the direct adaptive controller seems to learn and adapt

as shown in figure 5, with those of the indirect adaptive faster than the indirect adaptive controller (probably
controller (in figure 1) for the same fault scenario. because it has fewer parameters to be tuned).

Generally, even for other choices of design parameters, However, note that there is more oscillation in the direct
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Figure 4. Control performance without on-line approximators.

1085 x10° XN2, Engine output (solid), reference input (dotted) and reference trajectory (dashed)
. T T T T T T T T T

1.08
1.075 '
1.07

1.065

1.06
0

WF36, output of stable adaptive controller
11000 T T T T T T T T T

10000

9000
8000
7000 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (sec.)

Figure 5. Performance of the direct adaptive controller.
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case compared to the indirect case. This is because the
direct adaptive controller cannot use a priori knowledge
of the engine from the nominal engine model. Instead,
it uses a known controller which is not good enough,
so that the control action relies more heavily on the
adaptation scheme.

7. Conclusions

Fault-tolerant system design for non-linear time-
varying systems can be quite challenging. Most existing
studies on fault diagnosis and fault-tolerant control
have relied on a linear nominal model of the plant. In
practical situations, however, plants are non-linear and
the faults often force plants away from local linear behav-
iours into non-linear operating regions. Furthermore,
the existing work in the literature mainly considers
fault-tolerant control in the context of time-invariant
systems as if a fault has already occurred, but the reality
is that both incipient and abrupt faults are naturally
time-varying phenomena. In this paper we have
presented on-line approximation-based stable adaptive
neural/fuzzy control methods for a class of input—output
feedback linearizable time-varying non-linear systems.
This class of systems is large enough so that it is not
only of theoretical interest but also of practical applic-
ability (e.g. to the fault tolerant control problem of
the General Electric XTE46 engine that we encountered
in a project funded by NASA). The adaptive control
problem has been reformulated in the time-varying
context and new adaptive control laws have been
designed to generalize the existing robust adaptive
fuzzy/neural control method to time-varying cases by
taking into account uncertain time-varying parameters
(with known bounds). Uniform boundedness of all
internal signals and ‘small in the mean’ tracking of
a reference signal have been obtained under the assump-
tion of bounded time-varying parameters. Uniform
asymptotic stability of the system output can be further
achieved by assuming boundedness of parameter rate of
change. Both indirect and direct adaptive control
methods have been studied for this class of non-linear
time-varying systems, while the direct method is, to the
best of our knowledge, the first such kind of approaches
of adaptive control for non-linear time-varying systems.
The effectiveness of the adaptive control methods
proposed in this paper has been demonstrated using
the component level model simulation of the XTE46
engine. Unlike the typical engine models that are used
in some of the literature, this XTE46 simulator has been
developed by GEAE to be very complicated and accu-
rate so that the simulation conducted on this simulator
is very close to that on the real engine for actual flights.

There are several issues in the proposed research that
could be further studied. One of them concerns our
assumptions about having a bounded parameter rate
of change in adaptive control in order to obtain the
uniform asymptotic stability of the system output.
These assumptions may be reasonable (e.g. the tracking
error is usually large if the plant parameters vary fast).
However, these conditions may be difficult to verify in
specific applications. Thus, it is still an open problem to
find necessary assumptions easy to be verified and still
capable of guaranteeing uniform asymptotic stability.
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