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An Optimal Volume Ellipsoid Algorithm
for Parameter Set Estimation

Man-Fung Cheung, Stephen Yurkovich, and
Kevin M. Passino

Abstract—In this note, a recursive ellipsoid algorithm is derived for
parameter set estimation of a SISO linear time-invariant system with
bounded noise. The algorithm objective is in seeking the minimal volume
ellipsoid bounding the feasible parameter set. Cast in a recursive frame-
work, where a minimal volume ellipsoid results at each recursion, the
algorithm extends a result due to Khachian in 1979 in which a technique
was developed to solve a class of linear programming problems. This
extension and application to the parameter set estimation problem has
intuitive geometric appeal and is easy to implement. Comparisons are
made to the Optimal Bounding Ellipsoid (OBE) algorithm of Fogel and
Huang, and the results are demonstrated via computer simulations.

1. INTRODUCTION

The concept of parameter set estimation in system identifica-
tion has evolved over the past two decades. The motive in
parameter set estimation is to identify a feasible set of parame-
ters which is consistent with the measurement data and the
model structure used. One can interpret the set estimate as
some nominal parameter estimate accompanied by a quantifica-
tion of the uncertainty, either parametrically or nonparametri-
cally, around the nominal model. An important feature in the
parameter set estimation is the guaranteed inclusion of the true
plant which is not exactly known.

In this note, an optimal recursive ellipsoid algorithm for
parameter set estimation is developed. This result is based on
the Khachian ellipsoid algorithm [1] developed for solving the
linear programming problem. At each recursion, the smallest
volume ellipsoid bounding a convex polytope defined by the
bounded noise is found. This result is distinct from the innova-
tive OBE algorithm due to Fogel and Huang [2] in that every
new ellipsoid in the course of updating is optimal under no
constraints. This is in contrast with the OBE algorithm in which
the optimization is subjected to the constraint that the center of
the ellipsoid is a “modified” recursive least squares estimate.
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Though both the present algorithm and the OBE algorithm have
similar recursive equations for implementation, the optimal
bounding algorithm of this note gives an appealing geometrical
interpretation of the ellipsoid bounding the convex set of inter-
est and ultimately results in the true minimum volume bounding
ellipsoids.

The main contribution of this note is the extension of the
single hyperplane cut in Khachian’s ellipsoid algorithm to the
parameter set estimation problem where the feasible set of
estimates are constrained between two parallel hyperplanes.
Khachian’s ellipsoid algorithm handles multiple constraints
sequentially whereas here, multiple constraints are handled pair-
wise. In fact, our algorithm can be reduced to Khachian’s
ellipsoid algorithm. The algorithm derived in this note offers 1)
careful and correct development for the parameter set estima-
tion problem, with example and convergence result; 2) an entirely
different proof, offering more geometrical insight into the prob-
lem, than the algorithms which have appeared in [3], [4] for
solving linear programming problems. Moreover, the similarities
between our algorithm and the OBE algorithm in [2] are noted,
and a qualitative comparison is included.

II. PROBLEM STATEMENT
Consider a SISO ARX model

n m
Ve=— Ly + Lbue+u &)

i=1 j=0
= 07, + v, 0

where 87 = [a,,*,a,, by,**, b,] is the parameter vector to be
estimated; ¢, = [~Yi— 1, ~Ve—nllir" s Ui—m]’ 15 the regres-
sion vector containing the past inputs, u(-), and outputs, y(-); n
and m are the number of system poles and zeros, respectively;
v, is a sequence of bounded disturbances /noise corrupting the
system output with |v| < y for all k£ > 0. It is assumed that #,
m, and y are known a priori.

Let € R"*™*! be a set such that all § € F are feasible
parameter estimates of the plant which are consistent with the
measurements. That is

F={0:ly,— 0% /< v,k=0,,N}. 3)

The problem of parameter set estimation is to find # explicitly
in the parameter space. In general, & is an irregular convex set,
so we wish to find a more manageable convex set to over-bound
& for the purpose of system analysis and control. Ellipsoids are
commonly used to bound # for their simplicity in mathematical
representation and manipulation in computation. It is therefore
desired to find the smallest ellipsoid to contain the set # where
the hyper-volume of an ellipsoid is used to measure “smallness.”

III. THE OVE ALGORITHM

In this section, Khachian’s ellipsoid algorithm is extended to
the problem of parameter set estimation. For convenience, we
will refer to the new algorithm as the Optimal Volume Ellipsoid
(OVE) algorithm. For the set of inequality constraints in &
defined in the last section, consider a pair of constraints

Yis1 = 0%bpral < v (CY)
and let the set %, , be defined as follows:
Fer1 =102 1y6s1 — 0%l < 7). 5)
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Geometrically, %, is the region between the two parallel
hyperplanes defined in (4). The set estimation problem is then
stated as: Given an ellipsoid E, find another ellipsoid E,,,
with minimal volume, such that E,, contains E, N, ,, for
k = 0,---, N, where N is the number of data records. Mathemati-
cally, the optimization problem becomes

min {vol (E; , ): E;,, DE, NF,,}.

Define E, and E,_ , as

E ={0:(6-0)"P{(6-6)<1: o0&} (6

and
Eevy= {91 (-6, D) PL(6-6,)<1; o€ §R’} @)

where r=n+m+1 and 6, is the center estimate of the
ellipsoid at time k.

In the derivation of the OVE algorithm, an affine transforma-
tion [1],

0=106,+Jb ®)

is used to simplify the analysis where 6 € R’ is any vector in the
parameter space, 6 is the parameter vector in the affine trans-
formed coordinate and P, = J/7. Through this transformation,
the ellipsoid E, is mapped to the unit radius hypersphere
centered at the origin. The set estimation problem for a specific
value of k reduces to finding the minimal volume ellipsoid
containing the intersection between a unit radius hypersphere
and two parallel hyperplanes defined by %, the affine transfor-
mation of %, ;. Let

F=1{6:6% <1} )
and
. [, #% ikl
= 0-¢.—A1/—<a and %20—2[3 10
(6% (¢'9)

where ¢ is the transformed ¢re1, and a, B are parameters
defining the location of the two parallel hyperplanes defined in
# which are 28 (B > 0) apart (we will define these parameters
later as related to the original parameter set estimation prob-
lem). In what follows, we wish to find an ellipsoid

, nsn AT A . an A
E-= {e:(o— 60) A-1(6-b,) < 1} an
such that #NF cE and the volume of E, vol(E), is

minimized.
For the purpose of analysis, define

579
1'71 = {é ‘45‘—1/2 < Ot}
($$)

H,= {6 % 2
2= Bw_a—ﬂ.

If we denote the superscript * as the boundary, then from these
definitions, % is the region between the two hyperplanes, HF b
and H;‘ are the two hyperplanes 28 apart with Hf at a
distance « from the origin of ., and the vector & is orthogonal
to both the hyperplanes. Fig. 1 depicts the scenario. Before we
proceed, we need the following lemma and theorem.

Lemma 1: Given that % N.% is symmetrical about the 01 axis
(one of the coordinate axes in § system), achieved by adding one
more rotation to the affine transformation to align $ with the
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Fig. 1. Ellipsoid bounding the intersection of a hypersphere and two

parallel hyperplanes.

coordinate axis él, the minimal volume ellipsoid containing
&N % must also be symmetrical about the 61 axis.

Theorem I: Given & and %, the minimum volume ellipsoid E
bounding £ N must satisfy the following conditions:

HfnS=H!NE and HFf nS=H}nE (12
Essentially, these conditions imply that E*, the surface of E,
must pass through the intersecting points between F* (the
surface of %) and the two parallel hyper-planes, H¥ and HF.
Qualitatively, since PN is symmetrical about d:, the smallest
volume ellipsoid must also be symmetrical about &, and given
any ellipsoid symmetrical about ¢ and containing FNF but
not satisfying (12), a smaller ellipsoid can be constructed such
that it not only contains R r'\ﬂ?, but also satisfies (12). For the
proof of Lemma 1 and Theorem 1 (as well as for subsequent
proofs), the reader is referred to [5]. We now state the main
result for the OVE algorithm.
Theorem 2: For the sets & and %, if || < 1and 28 — a < L
then the following parameters will result in a minimal volume E
that contains . N.%

by = 19/ (13)
rAT
A=sl1- ﬂ) (14)
%
provided o > 0 where
D if a# B:
_ G+ D(B-a)—r(l+a)2B—a—1) a5
T+B-«a
-T
and 7 is the real solution of
- 1
(r+ Dr2+ {(1 i “);"‘_ 2P L g+ 11}7

+ra(a—-28)+1=0 (7
such that ¢ — 28 < 7 < @;
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ii) if a = 8:
r
0=——010-p8%» (18)
r-1
1-rB2
o= W (19)
T=0. (20)

In the above, note that 7 is an r by r identity matrix and
r=n+m+ 1; moreover, if ¢ < 0, the minimal volume £ is &
itself.

Proof: The proof is divided into two parts: i) the parameters
required for a minimal volume E to contain A NS and
HY N, i) the condition for £ to actually contain &N .7,
Details of the proof appear in [5).

Remarks:

1) When |af < 1, it means that H}¥ must cut, or at least
touch, the hyper-sphere .%°, whereas 2B — a| < 1 means that
HF must cut, or at least touch the hyper-sphere . The case
a>1or 28— a> 1 means that H} or H¥ does not cut &,
respectively. In the first case, B can be reset to B—(a-1)/2
and then reset o to 1 if a > 1 to make up a new hyper-plane
parallel to HY but touching ., In the second case, B is set to
A+a)y2if28 —,&> 1 to make up a hyper-plane paralle] to
HY but touching .,

2) If2ﬁ—a=l,then7'=1—(2rﬁ/r+1),andifa=l,
then = 2rB/(r + 1) ~ 1 for a minimal volume ellipsoid. These
special cases are equivalent to those using the Khachian algo-
rithm in [6].

Theorem 3 (The OVE Algorithm): For the system in (2) with
the bounded noise constraint (3), the equations for 0., and
P, ., that result in the minimal volume ellipsoid E; , ; bounding
the intersection between the given %, , and E, defined in (5)
and (6), respectively, are as follows:

TP bresn
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Okpr = O + ——————>
(G 1P ir 1)

Pk¢k+1¢l{+1Pk
P, =§|P, - op—m—— L
R T P,

where 7, 8, o), are, respectively, equivalent to 7, § and & in
(15)~(17) or (18)-(20) depending on the values of @ and B
in Theorem 2. These values of a and B are given by

Y a=}’k+1+7“¢1{+10k

——=———— and =
V P+ 1P i Vs 1Pebiia

If @>1,reset B to B— (a— 1)/2 and then reset o to 1; on
the other hand, if 28 — & > 1, reset B to (1 + a)/2. The
algorithm can be initiated with a sufficiently large E, containing
the feasible parameter set, where 6, = 0 and Py = (1/€)I (with
0 < e < 1) are typical starting values.

Proof: Consider the affine transformation discussed earlier
and let P, =JAJ” and ¢,,, =J~%, then E, is mapped to
& and E, ., is mapped to E. Through some algebraic mani-
pulations, the result follows [5].
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IV. OVE CONVERGENCE
Theorem 4: Consider the OVE Algorithm and define the
Lyapunov function ’

Vi = det P,
and
b, = 6%~ 6,
where 6* is the true parameter vector. Then
D Vi <V

i) legl<yask»w
iii) 1913 < F(P,) where 3(P,) denotes the largest singular
value of P,.
Further, if there exists an integer N, (>r, the number of
unknown parameters), and positive real numbers ¢; and ¢, such
that

k+ N,
al< Y ¢l <c,d
i—k+1
for all £, then
492N,
0% ~ gl < ——
51

as k — o,
Proof: Details appear in [5] and are omitted here.

V. COMPARISONS TO OBE

The OBE algorithm in [2] is based on the result in [7] to find
an ellipsoid to contain the intersection of another two ellipsoids,
and a modified RLS type update of the center of ellipsoids is
adopted. The derivation of the OVE algorithm takes on a
different approach based on a geometrical point of view. The
similarities in the form of the expression for P, indicate that
E;., in both the OVE and OBE algorithms have the same
orientation with one of the axes parallel to ¢ in the affine
transformed coordinate, given the same E,. From the geometri-
cal viewpoint, if E, is mapped to a unit radius hypersphere .
and E,,, to £ through an affine transformation, it is seen that
the center of ellipsoid £ in the OBE algorithm does not
necessarily lie on the vector ¢ because of the dependence of
041 on Py, whereas in the OVE algorithm the center of £
always lies on ¢. The main difference, and this is of paramount
importance, is the location of the center of the ellipsoid. The
extra RLS type constraint that is imposed on the center estimate
of the ellipsoids in the OBE algorithm essentially precludes the
satisfaction of the necessary condition for a minimal volume
ellipsoid E,,; to contain E, NS, where E.NFE, =
Eyyy NFY, | in which ¢, , is the boundary of %, ,.

The OVE algorithm also applies to the case when one of the
hyperplanes does not cut the recursive ellipsoid which may be
crucial when the goal is to find the smallest set; this is also
studied for the Modified OBE (MOBE) algorithm in [8]. Essen-
tially, OBE and MOBE are equivalent except when one of the
hyperplanes does not cut the recursive ellipsoid. Both the OVE
and OBE algorithms update estimates selectively according to
the received data. .

As a final note on comparing the OBE and the OVE algo-
rithms, the numbers of multiplication and addition operations
required in the information evaluation are on the order of r? for
both algorithms where 7 is the number of unknown system
parameters. However, for updating estimates the OBE algorithm
requires 672 multiplications whereas in the OVE algorithm, only
5r% multiplications are required (and no more additions are
required for the OVE algorithm). The extra computation for the
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OBE algorithm is basically due to the need to compute P, .
The performance of both algorithms is compared by way of
examples in the next section.

VI. SIMULATION RESULTS

Consider a second-order system which represents a flexible
structure truss model containing only the first x-bending mode
[9] with the following discretized transfer function

0.1156(z — 1)

Y(z) =
(D)= 55, + 08267

U(z)

1
t 155+ 08
In the simulation, lv,| < 0.05 and the S/N is 20 dB, N = 100
data points are taken. To compare the OVE and OBE algo-
rithms, the same input sequence and noise sequence are used in
the two simulations. The following notation is adopted: 6,,,, is
the true estimate, P57 is the center estimate of the ellipsoid
associated with the OBE algorithm and 62"% is the center
estimate of the ellipsoid associated with the OVE algorithm at
time k; the parameter interval associated with the ellipsoids are
denoted as I9%F and I°VF accordingly for the final ellipsoids.
The results of the two algorithms are as follows

@

[-1.55 ]
| o0.8267
O = | 01156 | @2
| —0.1156 |
[ ~1.538 —1.5455
OBE _ 0.8226 OVE _ 0.8244
fx 0.1155 On 0.1157 @)
| —0.1158 | —-0.1182
and the parameter intervals are
' —1.72 s
oBE _ | 06702 o 09751
I 0.1004 o 01311 | @4
| -0.1405 &  —0.0905 |
[-1.6596 < —14341]
IOVE _ 0.7223 « 0.9266 (25)
0.1062 o 0.1253 |
| -0.1347 & —0.1016 |

Note that both of the intervals contain the true parameters. Fig.
2 shows the volume of ellipsoids, EQY®, EQ®E and EMOBE due
to the OVE algorithm and the OBE algorithm, respectively, over
100 data points. It is clear from the figure that ellipsoids from
the OVE algorithm are always smaller than that from the OBE
or MOBE algorithm (they are always less than half of the
volume of the OBE ellipsoids). The MOBE algorithm improves
only slightly over the OBE algorithm. However, all these algo-
rithms guarantee monotonic nonincreasing volume of the ellip-
soids, consistent with the theory.

Moreover, from the viewpoint of the parameter interval, by
putting an orthotope which is orthogonal to the parameter axes
and tightly overbounding the ellipsoid, Fig. 3 shows the interval
for each parameter at each iteration for the two algorithms. In
the plot, the upper and lower intervals of each parameter are
indicated for each algorithm. It can be seen that the OVE
algorithm almost always gives tighter parameter bounds than
does the OBE algorithm. Exceptions to this occur when the size
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Fig. 3. Parameter intervals for both algorithms.

of some of the axes of an ellipsoid are reduced, while other axes
are expanded to contain a certain convex set, possibly causing a
larger bound in some of the parameters at early iterations.
Eventually, tighter bounds are noted in the recursion as in Fig. 3
and (25).

VII. CONCLUSION

In this note, the Khachian ellipsoid algorithm for the linear
programming problem is extended to the problem of parameter
set estimation with bounded noise. We first showed that a
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minimal volume ellipsoid bounding the intersection between a
hypersphere and two parallel hyperplanes must tightly contain
the intersecting points between the surface of the hypersphere
and the hyperplanes. Using this result, we derived the minimal
volume ellipsoid containing the intersection between a hyper-
sphere and two parallel hyperplanes, resulting in the new recur-
sive algorithm, OVE, for parameter set estimation. Convergence
results of the OVE algorithm are also given. It is noted that the
OVE algorithm has similar form to the well known OBE algo-
rithm. The OVE algorithm possesses several attractive features
in comparison to the OBE algorithm: 1) the OVE algorithm is
rich in geometrical interpretations; 2) the formulation of OVE
algorithm is flexible enough to accommodate the case when one
of the hyperplanes defined in %, does not cut the ellipsoid
E;; 3) the OVE algorithm requires no additional computational
complexity than the OBE algorithm; 4) The OVE algorithm
results in the smallest volume ellipsoid E, , bounding E, N
F+1 Without any constraints. Several extensions to the OVE
algorithm for parameter set estimation and control are under
investigation, including an application to interconnected systems
[10], time-varying noise bounds, input synthesis, and ARMAX
models with measurement noise [11].

With regard to other similar results which have recently
appeared, the OVE algorithm offers correct development for
the parameter set estimation problem in a geometrical approach

" with example and convergence result, as distinct from the results
in [3], [4]. Moreover, the note by Pronzato, ef al. [12], alludes to
the EPC (parallel cut) algorithm for bounded etror estimation,
which is in fact equivalent to the OVE algorithm (as opposed to
the OBE algorithm), in that both were derived from the Khachian
algorithm. However, we have developed the OVE algorithm
entirely from a geometric point of view, with convergence results,
and offer the novel application to the parameter set estimation
problem in this note.
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Optimal Use of an Extra Server in a Two Station
Tandem Queueing Network

Timothy M. Farrar

Abstract—Consider a two station tandem queueing system, with given
numbers of customers initially at each station and no arrivals. There is
a fixed server at each station, but also an additional server that can be
dynamically allocated to wherever its use will do most good. There are
differing linear holding costs at each station, arid the aim is to use the
extra server-to minimize the expected total holding cost incurred until
the system empties. We show that if either the extra server may be
switched between the two stations at any time, or if it is restricted in use
to just one station, where it may be turned on or off, then the optimal
use of the server is such that after a service completion at one station,
the effort devoted there never increases, and the effort devoted to the
other station never decreases.

L. INTRODUCTION

Consider a system of two queues in tandem, with no arrivals
after time zero. Linear holding costs, of ¢, and ¢, per customer,
are incurred at the first and second stations, respectively. There
is a fixed server at each of the stations, and an additional server
that may either be switched off, or whose effort may be dynami-
cally allocated between the stations. The objective is to minimize
the expected total holding cost until the system empties, subject
possibly to the constraint that the extra server may not be used
at one of the stations. This is an example of what have been
called clearing systems. Service times of customers served by the
two fixed servers and the additional server are exponentially
distributed with parameters u,, u, and pu, respectively. All
service times are independent. We assume that movement of the
additional server may take place instantaneously and without
penalty, and that no cost is imposed for use of the servers. Thus,
we have three possible cases to consider: a) the additional server
is constrained so that it may be used only at the upstream queue
or not at all; b) the server is constrained to operate only at the
downstream queue; and c) the allocation of the server is unre-
stricted. In Fig. 1, these correspond respectively to the con-
straints @, = 1, a; = 1 and a, + a, = 1. We see that case b) is
trivial, as the additional server will never be idle while it is
possible to reduce the instantaneous holding cost, and in case c)
it is also never optimal for the extra server to be idle, so the
decision problem is simply whether it should be working at
station 1 or 2.

Control of ‘a two station tandem queueing systemi was first
discussed by Rosberg, Varaiya and Walrand [5]. In the context of
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