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optimization problem that allows to compute the antiwindup gain that
leads to the maximization of an estimate of the basin of attraction.

The obtained stability conditions are based on a modified sector con-
dition, that at our knowledge is new and original. The main advantage
of the proposed approach with respect to the previous ones ([11] and
[12]), is that the conditions are directly in an LMI form. Considering a
criterion associated to the maximization of the stability region (estimate
of the basin of attraction) is then possible to formulate the antiwindup
synthesis problem directly as a convex optimization problem, avoiding
the iterative schemes present in the previous approaches. Furthermore,
it is shown that the results obtained with a classical sector condition
are particular cases of the present one. On the other hand, compared
with the approach that uses polytopic differential inclusions, the pro-
posed condition is less complex. The effectiveness of the approach has
been illustrated in a numerical example. It has also been shown that the
proposed approach can be easily extended to treat systems presenting
time-delays. On the other hand, following the ideas in [12], it should
be possible to extend the approach to consider domains associated to
Lure–Lyapunov functions.
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Output Feedback Tracking: A Separation
Principle Approach

Manfredi Maggiore and Kevin M. Passino

Abstract—We study the practical and asymptotic tracking problems for
nonlinear systemswhen only the output of the plant and the reference signal
are available for feedback. We provide sufficient conditions and a control
topology yielding practical tracking. In the special case when the reference
signal is generated by an exosystem and there exists an internal model sat-
isfying suitable observability properties, tracking becomes asymptotic.

Index Terms—Nonlinear control, nonlinear observer, output feedback,
tracking.

I. INTRODUCTION

Consider the nonlinear system

_x = f(x; u)

y =h(x) (1)

where x 2 n denotes the state of the system, u 2 m is the control
input, and y 2 m is the measurable output. The vector field f and
the function h are assumed to be sufficiently smooth. In this note, we
address the following problem.

Problem 1 (Output Feedback Practical Tracking): Given the dy-
namical system (1), a sufficiently smooth reference trajectory1 r(t) =
[r1(t); . . . ; rm(t)]>, and any real number e0 > 0, find, if possible, an
output feedback

_xc = fc(xc; y; r)

u =hc(xc; y) (2)

with the property that for the closed-loop system (1) and (2), there ex-
ists a positive real number T and a closed set A such that any integral
curve (x(t); xc(t)) leaving from A is defined for all t � 0, bounded,
and ky(t)� r(t)k � e0 for all t � T .

If Problem 1 can be solved with e0 = 0 and T = 1, we say that (2)
solves the output feedback asymptotic tracking problem. Additionally,
if the projection fx 2 n : (x; xc) 2 Ag can be made arbitrarily
large by a suitable choice of the controller, we say that the solution to
Problem 1 is semiglobal.

Problem 1 has been solved globally and asymptotically for systems
in output feedback form [1], [2]. When the reference trajectory is
generated by an exosystem, Problem 1 is included in the more general
class of output regulation problems [3], where exosystem-generated
disturbances and parametric uncertainties are allowed to affect the
plant (our approach does not handle these). It has been shown, for
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special classes of nonlinear systems, how to solve the output regula-
tion problem globally [4] or semiglobally [5], [6]. Other (nonoutput
feedback) approaches to output tracking include differential flatness
[7] and system inversion [8]. See also the more recent work in [9].

In this note, we cast Problem 1 as a nonautonomous stabilization
problem and assume that there exists a smooth feedback stabilizing the
system’s state to the state of the stable inverse of the plant. We use
observers to estimate state and stable inverse of the plant and, in the
spirit of the separation principle in [10], employ the resulting estimates
to define an output feedback controller solving Problem 1. The previous
estimation can be carried out when the system is differentially flat or
when the reference signal is generated by an exosystem and an internal
model exists. In the latter case, we show that asymptotic tracking can
be achieved.

Interestingly, our approach may yield a semiglobal solution to
Problem 1 even when the plant is not globally flat. More precisely, we
show that a loss of relative degree (or a singularity in the coordinate
transformation) yields a restriction on the reference signals to be
tracked, but does not necessarily restrict the domain of operation of
our controller. On the contrary, a loss of relative degree restricts the
domain of operation of input–output linearizing controllers.

Throughout this note, we use col(a; b) to indicate the vector
[a>; b>]>. If v is a n-dimensional vector, vi, i = 1; . . . ; n,
are its components. Given real numbers a; b; c, diag[a; b; c] de-
notes the matrix with a; b; c on the diagonal and zeros elsewhere.
Given matrices A, B, C , we denote by block� diag[A;B;C] the
matrix formed by placing A;B;C on the diagonal and zeros else-
where. Given a function g : n ! p and a smooth vector field
f : n ! n, we denote by Lfg = (@g=@x)f(x) the Lie derivative
of g along f . If g = g(x; y) : n � m ! p, then we denote
Lfg = (@g(x; y)=@x)f(x).

II. ASSUMPTIONS

In this section, we state the assumptions we need throughout the note.
The assumptions are grouped into three categories associated with three
different aspects of our control topology.

A. Stable Inverse Estimation

Assumption A1 (Stable Inverse): Given r(t), there exists xr0 2
n

and a sufficiently smooth and bounded function r(�) : + ! m such
that, when u(t) = ur(t), the integral curve of (1) leaving from xr0,
xr(t), is bounded, defined for all t � 0, and such that r(t) � h(xr(t)).
In other words, for all t � 0

_xr(t) = f (xr(t); ur(t))

yr(t) =h (xr(t))

xr(0) =xr0: (3)

The following is the most restrictive assumption in this note.
Assumption A2 (Compensator): One can find a compensator with

input v

_� = a(�; x; v)

u = b(�; x) (4)

where � 2 q , v 2 m, and a; b are smooth, with the following
properties.

i) There exist �r0 2
q and vr(�) : + ! m such that, when

v(t) = vr(t) and x(t) = xr(t), the integral curve of (4) leaving
from �r0 , �r(t), is bounded, defined for all t � 0, and such that
ur(t) � b(�r(t); xr(t)).

ii) There exists a set of indexes fk1; . . . ; kmg, with ki = n +

q1, such that, for i = 1; . . . ;m, the time derivatives y(j)i , j =
0; . . . ; ki � 1, calculated along the vector field of (1), (4), are
independent of v. Moreover, the map

HX : X !HX(X );X � n � q

(x; �) 7! col y1; . . . ; y
(k �1)
1 ; . . . ; ym; . . . ; y

(k �1)
m

has a smooth inverse H�1
X : HX(X ) ! X .

Letting Xr = col(xr; �r) and

Y r = col r1; . . . ; r
(k �1)
1 ; . . . ; rm; . . . ; r

(k �1)
m

part ii) in A2 implies that, if Y r 2 HX(X ), Xr = H�1
X (Y r).

The condition Y r 2 HX(X ) restricts the class of reference sig-
nals r(t). The following assumption further requires that Y r(t) be con-
tained in a convex compact set contained in HX(X ). This allows one
to use the dynamic projection-based observer in [10] to estimate the
stable inverse of the plant.

Assumption A3 (Reference Trajectory): The reference trajectory
r(t) is such that, for all t � 0

Y r(t) 2 C1 � HX(�)

for some convex compact set C1 whose boundary @C1 is an n + q1 �
1-dimensionalC1 submanifold, i.e. @C1 = fY r 2 n+q : g1(Y

r) =
0g, where g1 : n+q ! is a C1 function for which 0 is a regular
value, i.e., 8Y r 2 @C1, @g1=@Y r 6= 0.

We remark that A3 can be relaxed by requiring that Y r(t) 2 C1 for
all t � T , for some positive real T , without affecting the results of this
note.

B. Nonlinear Stabilization

Consider the change of coordinates ~x = x � xr , rewrite (1) in new
coordinates as

_~x = ~f(t; ~x; u) (5)

and notice that asymptotic stability of the origin of (5) implies asymp-
totic tracking for (1).

Assumption A4 (Stabilizer): There exist a smooth function
�u(x; xr; ur), a C1 function V 0(�x), V 0 : D0 ! +, and a real number
c0 � 1 such that �u(xr; xr; ur) = ur , f~x 2 n : V 0(~x) � c0g
is a compact subset of D0, and the time derivative of V 0 along the
trajectories of

_~x = ~f (t; ~x; �u(x; xr; ur))

satisfies

_V 0 � ��0(~x)

where �0(~x) is continuous on D0 and positive definite on the set f~x 2
n : V 0(~x) � c0g.
This assumption, derived from [11, Ass. ULP], implies that

the smooth feedback �u(x; xr; ur) uniformly asymptotically stabi-
lizes the origin of (5) and any integral curve leaving from the set
f~x 2 n : V 0(~x) � c0g approaches the origin. A4 can be relaxed by
allowing V 0 to depend on time provided it satifies suitable bounding
properties. Also, the results in Section III-B remain unchanged if the
origin ~x = 0 is assumed to be practically stable by requiring �0 to
be positive definite over the set f~x : c0 � V 0(~x) � c0g, for some
c0 2 (0; c0). Next, in preparation for the application of the separation
principle in [10], following the idea of Tornambé in [12], we augment



113 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 1, JANUARY 2005

(1) with m chains of integrators2—one chain for every input channel
ui—of order n1; . . . ; nm, respectively (the indexes ni are defined in
A6),

_� =Ac� +Bcw; � 2 q q2 =
i

ni; w 2
m

u =Cc� (6)

where the triple (Ac; Bc; Cc) is in Brunovsky normal form. Next, using
the stabilizer �u in A4, we seek to design a stabilizer �w for the aug-
mented system (5) and (6). To this end, we need the following.

Assumption A5 (Dynamic Extension): For the system with output
� 2 m

_x = f(x;Cc�) _xr = f (xr; b(�r; xr))

_� =Ac� +Bcw _�r = a(�r; xr; vr)

�(x; xr; �r) = �u (x; xr; b(�r; xr)) (7)

the time derivatives _�1; . . . ; �
(n )
1 ; . . . ; _�m; . . . ; �

(n )
m calculated

along the vector field of (7), do not depend on w and vr .
Recalling that Xr = col(xr; �r), we rewrite the (xr; �r) dynamics

in (7) as

_Xr = F (Xr; vr) r = H(Xr)

with obvious definition of F and H . Since �u(xr; xr; ur) = ur , A5
implies that the time derivatives of ur and

�r
�
= col ur1; . . . ; (u

r
1)
(n �1) ; . . . ; urm; . . . ; (u

r
m)(n �1)

calculated along the vector field F (i.e., for i = 1; . . . ;m; (uri )
(j) =

Lj

F ci, j = 0; . . . ; ni�1), are independent of vr . The following lemma
shows that, under assumptions A4 and A5, there exists a stabilizer for
the augmented system (5) and (6).

Lemma 1: Assume that A4 and A5 hold. Then there exist a smooth
function �w(x; �; Xr), a C1 function V (~x; ~�) : D ! +, with ~� =
� � �r , and a real number c� � 1 such that f(~x; ~�) 2 n � q :
V (~x; ~�) � c�g is a compact subset of D, and the time derivative of V
along the trajectories of

_~x = ~f(t; ~x; ur + Cc
~�)

_~� =Ac
~� +Bc �w(x; �; X

r)� col (ur1)
(n )

; . . . ; (urm)
(n )

satisfies _V � ��(~x; ~�), where �(~x; ~�) is continuous on D and posi-
tive definite on the set f(~x; ~�) 2 n� q : V (~x; ~�) � c�g. Moreover,
if c0 in A4 can be chosen arbitrarily large and V 0 is radially unbounded,
then c� and V have the same properties.

Proof: Omitted.

C. State Estimation

The next few definitions and assumptions are taken from [10]. Con-
sider system (1) and, given a set of indexes fl1; . . . ; lmg, with li =

n, let yx := col(y1; . . . ; y
(l �1)
1 ; . . . ; ym; . . . ; y

(l �1)
m ) (all deriva-

tives are calculated along f ) and define

Hx : x; u1; . . . ; u
(n �1)
1 ; . . . ; um; . . . ; u

(n �1)
m 7! yx

2One may replace the chain of integrators (6) by any stable linear system with
vector relative degree fn ; . . .n g. With appropriate notational changes, the
results of this note still hold.

where the indexes nj , j = 1; . . . ; m indicate the number of time
derivatives of uj that end up appearing in Hx (when Hx does not de-
pend on ui, we set ni = 0). By using the dynamic extension (6), we
have yx = Hx(x; �). For any positive real number c � c�, let


c = (x; �) 2 n � q : V (~x; ~�) � c :

Note that the properties of V in Lemma 1, the boundedness of
(xr(t); ur(t)), and the smoothness of ur(t) imply that 
c is a
bounded set.

Assumption A6 (Observability): System (1) is observable over an
open set O � n � n containing the origin, i.e., there exists a set
of indexes fl1; . . . ; lmg such that the mapping F : O ! Y (where
Y = F(O)) defined by

(x; �) 7! Y :=
yx
�

=
Hx(x; �)

�
(8)

has a smooth inverse F�1 : Y ! O

F�1(Y ) = F�1(yx; �) =
H�1

x (yx; �)

�
: (9)

Assumption A7 (Topology of O): There exists a positive scalar �c �
c� and a set C2 such that

F(
�c) � C2 � Y (= F(O)) (10)

where C2 has the following properties.

i) The boundary of C2, @C2, is an n�1-dimensional,C1 subman-
ifold of n, i.e., there exists a C1 function g2 : C2 ! such
that @C2 = fY 2 C2 : g2(Y ) = 0g, and (@g2=@Y )> 6= 0 on
@C2.

ii) C
��
2 = fyx 2

n : (yx; ��) 2 C2g is convex for all �� 2 n .
iii) 0 is a regular value of g2(�; ��) for each fixed �� 2 n , i.e., for

all yx 2 C
��
2 , (@g2=@yx)(yx; ��) 6= 0.

iv) ��2 C
��
2 is compact.

See [10] for a detailed explanation of A6 and A7.
Condition (10) yields the following implications:

V (~x; ~�)=0, (~x; ~�)=(0; 0)) (xr; �r) 2 
�c
A7
) (xr; �r) 2 C2:

III. PROPOSED SOLUTION

We now provide a solution to Problem 1 using the separation
principle presented in [10]. In Section III-A, we present the control
topology. In Section III-B, we show that systems which are differen-
tially flat (dynamic feedback linearizable) automatically satisfy A1
and A2 and, thus, naturally lend themselves to the estimation of the
stable inverse of the system. Finally, we focus our attention to the case
when the reference signal r(t) is generated by an exosystem. We show
that if an internal model exists, it can be used as the compensator in
A2.

A. Control Topology

Consider the dynamic output feedback controller

_� =Ac� +Bc �w(x̂; �; X̂
r)

u =Cc� (11)
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Fig. 1. Block diagram of the controller solving problem 1.

where X̂r = col(x̂r; �̂r) and x̂ are the states of two estimators

_̂
X

r

=

@H

@X̂

�1

LF HX �
� N (Ŷ )L g

N (Ŷ ) � N (Ŷ )

if LG g1 � 0 and Ŷ r 2 @C1

F1(X̂
r; r)

�
= F (X̂r; 0) + @H

@X̂

�1

�(E1)�1L1 r �H(X̂r)

otherwise

(12)

_̂x =

@H

@x̂

�1
LF Hx �

� N (Ŷ )L g

N (Ŷ ) � N (Ŷ )

if LG g2 � 0 and Ŷ 2 @C2

F2(x̂; �; y)
�
= f(x̂; Cc�) +

@H

@x̂

�1

�(E2)�1L2 (y � h(x̂))

otherwise

(13)

and the various parameters are defined in the table shown at the bottom
of the page (where i = 1; 2). The estimators (12) and (13) incorporate
high-gain parameters �1 and �2 to guarantee convergence and a dy-
namic projection to avoid peaking and confine X̂r and (x̂; �) to within
the observable regions X and O, respectively (see [10] for more de-
tails). Note that the unknown input vr is replaced by 0 in (12). These
estimates are used in �w (see Lemma 1) to replace Xr and x. The re-
sulting control topology is illustrated in Fig. 1. The properties of the
two estimators are summarized in the following lemma.

Lemma 2: Consider (12) and (13) and suppose that 8t � 0,
(x(t); �(t)) 2 
�c. Assume that A1–A3, and A6–A7 hold. Then, the
estimates X̂r and x̂ enjoy the following properties.

i) The sets H�1x (C1) and F�1(C2) are positively invariant for
(12) and (13), respectively.

ii) For all � > 0, there exist ��i and Ti(�i), i = 1,2, such that
kX̂r(t)�Xr(t)k � � for all t � T1(�1) and kx̂(t)�x(t)k � �

for all t � T2(�2), with Ti(�i) ! 0 as �i ! 0, whenever
�i 2 (0; ��i), i = 1; 2. Moreover, for sufficiently small �2,
kx̂(t)�x(t)k ! 0. If the vector field F does not depend on vr ,
i.e., F (Xr; vr) = F (Xr), then kX̂r(t)�Xr(t)k ! 0.

Proof: The properties of x̂ are proven in [10], Theorem 1 and
Lemma 1. A variation of the same proofs can be used to prove the
properties of X̂r .

The following result is a direct consequence of the separation prin-
ciple in [10].

Theorem 1: Suppose A1–A7 hold. Then, for any c 2 (0; �c), there
exist positive real numbers ��1 , ��2 such that, for all �1 2 (0; ��1), �2 2
(0; ��2), the dynamic output feedback controller

_� =Ac� +Bc �w(x̂; �; X̂r)

u =Cc� (14)

solves Problem 1 over the set

A = (x; �; X̂r
; x̂) 2 3n+q +q : (x; �) 2 
c;

X̂
r 2 H�1X (C1); (x̂; �) 2 F

�1(C2) :

Ŷ r = HX(X̂r); Ŷ = F(x̂; �)
G1 = LF HX

G2 = col LF Hx; _�

NY (Ŷ r) = @g

@Ŷ

>

Ny (Ŷ ) = @g

@ŷ

>

E i = block� diag E i1; . . . ; E
i
m

E1j = diag �1; . . . ; �
k

1

E2j = diag �2; . . . ; �
l

2

Li = block� diag Li1; . . . ; L
i
m

L1j Hurwitz (kj � 1)

L2j Hurwitz (lj � 1)

�i = (Si �E i)�1(Si �E i)�>

�E i = block� diag �E i1; . . . ; �E
i
m

�E1j = 1

�
E1j ; �E2j = 1

�
E2j

Si = (P i)

P i satisfies :

A P +P A =�I

A =
0(n+q �1)�1 I(n+q �1)�(n+q �1)

01�(n+q )

�L [1;0 ]
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Sketch of the proof: Since r(t) = h(xr(t)) and h is continuous,
for all e0 > 0 there exists "� > 0 such that for all x 2 n such that
kx� xrk � "�, kh(x)� h(xr)k � e0. Using an argument similar to
that of the proof of [10, Lemma 2] one finds that for any # 2 (0; c),
there exist positive real numbers ��1 , ��2 such that if �i 2 (0; ��i ), i =
1,2, every integral curve (x(t); �(t)) leaving from 
c cannot exit the
set 
�c and converges in finite time to the residual set 
#. Clearly, #
can be chosen so that

(x; �) 2 
# ) kx� x
rk � "

�

thus proving the practical tracking property. From this discussion and
the positive invariance ofH�1

x (C1) and F�1(C2) we get that Problem
1 is solved over the set A.

Corollary 1: Under the assumptions of Theorem 1, if A4 holds for
arbitrarily large c0 and a radially unbounded V 0, and A6 holds globally
(i.e., O = n � q ) with F(O) a convex set, then the solution to
Problem 1 is semiglobal.

Proof: From Lemma 1, if c0 can be chosen arbitrarily large and
V 0 is radially unbounded, c� and V have the same properties. Since
O = n � q and F(O) is a convex set, we have that A7 is satisfied
for an arbitrarily large �c and a sufficiently large set C2 (see [10, Rem.
5]). Thus, the set 
�c can be made arbitrarily large.

Notice that, in order to solve Problem 1 semiglobally, we do not
require X in A2 to be all of n+q . The advantages of this feature
are illustrated in the next section.

Summarizing the results presented in this section, we have found
that if there exists a compensator (4) satisfying A2 and if suitable ob-
servability/stabilizability properties are satisfied, there exists a dynamic
output feedback controller solving Problem 1. When can the compen-
sator (4) be found? A partial answer to this question is provided in the
next two sections.

B. Differentially Flat Systems

Assume now that (1) is differentially flat (dynamic feedback lineariz-
able) with respect to the flat output y (see [7]), i.e., there exists a regular
compensator3 with inputw (referred to as the linearizing compensator)

_� = '(�; x; w) u = 
(�; x; w); � 2 p
; w 2 m (15)

and a set D � n � p such that the plant augmented with such
compensator yields (up to a feedback transformation) the trivial system
in output coordinates, y(m )

i = wi, mi = n + q, and the mapping
T (x; �) : D ! T (D) defined as

T (x; �) = col hhh1; . . .L
m �1
fff hhh1; . . . ; hhhm; . . . ; L

m �1
fff hhhm

where

fff(x; �; w) = col (f (x; 
(�; x; w)) ; '(�; x; w))

hhh(x; �) =h(x)

are the vector field and output function of the augmented system
(1), (15), is a diffeomorphism on D. Assume for the mo-
ment that the output function of (15) is independent of w, i.e.,

(�; x; w) = 
(�; x). It is then clear that A1 holds in that let-
ting Y r = col(r1; . . . ; r

(m �1)
1 ; . . . ; rm; . . . ; r

(m �1)
m ) we have

(xr(t); �r(t)) = T�1(Y r(t)) and ur(t) = 
(�r(t); xr(t)). It is
also clear that (15) satisfies A2. As a matter of fact, part i) in A2 is
implied by the regularity of (15), and part ii) is satisfied with ki = mi,
Hx(�; �) = T (�; �), and X = D. In the general case when 
(�; �; �)
depends on w we just add integrators: _zj = vj , j = 1; . . . ;m,
w = z. Letting � = col(�; z), a(�; x; v) = col('(�; x; z); v),
b(�; x) = 
(�; x; z), and ki = mi + 1, we have that a(�; �; �) and

3For each fixed x the map 
(�; x; w) : (�;w) 7! u is a submersion, in other
words (�;w) can be uniquely determined from (x; u), see [13].

b(�; �) satisfy A2 on X = D � m. The previous considerations are
summarized in the following.

Fact 1: A sufficient condition for A2 to hold is that (1) is differen-
tially flat (dynamic feedback linearizable) with respect to y.

However, differential flatness is not a necessary condition for A2 to
hold, as it is shown in the next section.

When (1) is differentially flat, so that in output coordinates the
system is in Brunovsky normal form, one can design an input-output
linearizing controller which employs the derivatives of the output
and the reference signal to yield tracking. Such derivatives can be
estimated by means of high-gain observers and thus Problem 1 can
be solved, in the spirit of Teel and Praly [14] or Khalil et al. [15],
[16], by replacing the derivatives by their estimates and saturating
the control input. On the other hand, even when (1) is differentially
flat, the control topology presented in Section III-A does not rely on
input–output linearization and the linearizing compensator is used
only for the estimation of the stable inverse of the plant. Would it not
be better to use input–output linearization rather than the technique
presented in this note? We use an example to answer this question.

Example 1: The nonlinear system

_x1 =x2

_x2 =x
2
1 + u1

_x3 =x4 � u1 � x
2
1

_x4 = � x3 � x4 + x4u2

y =col(x1; x3) (16)

is differentially flat (dynamic feedback linearizable). A linearizing
compensator is

_�1 = �2 + �3 _�2 = v1 _�3 = v2 u = col(�1; �2):

The decoupling matrix of the augmented system is

1 1

x4 � 1 �1

and, hence, the vector relative degree of the augmented system, {4, 3},
is well defined on the set f(x; �) : x4 6= 0g. Given a smooth reference
signal r(t) such that �r1 + _r2 > 0 (so that xr4 > 0), an input–output
linearizing controller for the augmented system is given by

v =
r
(4)
1

r
(3)
2

�
1

x4

�1 1

1� x4 1
Ke

where eee = col(e1; . . . ; e
(3)
1 ; e2; . . . ; e

(2)
2 ), with e = y � r, and K

a suitable 2�7 matrix. This controller solves Problem 1 over a set A
which does not contain any point (x0; �0) such that x04 < 0, and hence
does not yield semiglobal output feedback tracking.

On the other hand, we now show that semiglobal output feedback
tracking can be achieved using the control topology in Fig. 1. It is
quite clear that A1 holds for any smooth reference signal r(t) satis-
fying �r1 + _r2 6= 0 and that A2 holds with k1 = 4, k2 = 3, and
X = f(x; �) : x4 6= 0g. Consequently, since the set f(x; �) : x4 > 0g
is already convex, the set C1 satisfying A3 can be taken to be any convex
inner approximation with smooth boundary. Letting ~x = x � xr , the
stabilizer

�u(x; xr; ur) =
ur1 + (xr1)

2 � x21 +M ~x

ur2
; M = [�1 � 1 0 0]

satisfies A4 globally (i.e., c0 = 1) with

V
0(~x) =

1

4
~x>

29 9 7 7

9 27 �1 2

7 �1 6 2

7 2 2 4

~x:
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Letting yx = col(y1; _y1; y2; _y2) we have yx = Hx(x; u1) =
col(x1; x2; x3; x4 � x21 � u1). Since the mapping F : (x; u1) 7!
(yx; u1) is a global diffeomorphism, A6 is satisfied with l1 = 2,
l2 = 2, n1 = 1, n2 = 0, and O = 4 � . It follows that A7 is
satisfied by an arbitrarily large c� and a sufficiently large set C2. Since
n1 = 1, n2 = 0, we need the following dynamic extension:

u1 = � _� = w1 u2 = w2:

It is easy to see that _�u1 is independent ofw and vr , and hence A5 holds.
From Corollary 1, we conclude that the controller (11), (12), (13) yields
semiglobal output feedback tracking. 4

Returning to the question posed earlier, this example shows that
semiglobal output tracking may be achieved even when the plant is
not globally differentially flat. In other words, in our framework global
differential flatness is not a necessary condition for semiglobal output
feedback tracking. When the system is not globally flat because either
the relative degree of the augmented system (1), (15) is not everywhere
well-defined or the change of coordinates T (�; �) is not a global diffeo-
morphism, we restrict the class of reference signals to be tracked (in the
example we imposed �r1+ _r2 > 0). However, since the linearizing com-
pensator is only employed for estimation, one may well find a global
(or semiglobal) stabilizer yielding a semiglobal solution to Problem
1. On the other hand, the input–output linearization approach employs
the linearizing compensator as a dynamic controller. In this framework,
the domain of operation of the closed-loop system is unnecessarily re-
stricted and, hence, Problem 1 cannot be solved semiglobally.

A further advantage of the technique proposed here is that it naturally
lends itself to the estimation of input disturbances. This topic has been
investigated in [17].

C. Tracking With an Exosystem

Assume that the reference signal is generated by a neutrally stable
exosystem (see [3]) _w = s(w), r = q(w), where w 2 r , and
s(�); q(�) are smooth. We now show that if there exists an internal model
with suitable observability properties, then A1 and A2 are satisfied and
the controller (11), (12), (13) yields asymptotic tracking. The notion of
internal model we use in the next assumption is due to Isidori (see [3,
Sec. 8.4]).

Assumption A8 (Internal Model):

i) There exist mappings x = �(w), u = c(w), with �(0) = 0,
c(0) = 0, satisfying the regulator equations

@�

@w
s(w) = f (�(w); c(w)) 0 = h (�(w))� q(w)

and such that the autonomous system _w = s(w), u = c(w)
is immersed into a system (the internal model) _� = a(�), u =
b(�), with � 2 q , i.e., there exists a smooth mapping � :
r ! q such that

@�

@w
s(w) = a (�(w)) c(w) = b (�(w))

c(w1) 6= c(w2)) b (�(w1)) 6= b (�(w2))

for all w 2 r .
ii) There exists a set of indexes fk1; . . . ; kmg, with ki = n+q1,

such that the map

(x; �) 7! col y1; . . . ; y
(k �1)
1 ; . . . ; ym; . . . ; y(k �1)

m

is a diffeomorphism on X � n � q .

The solvability of the regulator equations in A8 implies the ex-
istence of a stable inverse, which is given by (xr(t); ur(t)) =
(�(w(t)); c(w(t))). Moreover, the internal model can be used as the

compensator (4) in A2 with v = 0. To see why this is true, notice
that (i) in A2 is satisfied with �r0 = � (w(0)), while ii) in A2 directly
follows from property ii) in A8 and the fact that the internal model is
an autonomous system. The previous considerations are summarized
in the following.

Fact 2: A sufficient condition for A2 to hold is that there exists an
internal model satisfying A8.

As remarked earlier, this fact shows that differential flatness is not a
necessary condition for A2 to hold. We now turn our attention to the
asymptotic tracking problem.

Corollary 2: Suppose A3–A8 hold. Then, for any c 2 (0; �c), there
exist positive real numbers ��1 , ��2 such that, for all �1 2 (0; ��1), �2 2
(0; ��2), the dynamic output feedback controller (11)–(13) solves the
output feedback asymptotic tracking problem over the setA defined in
Theorem 1.

Proof: From A8 and Fact 2, we have that A1 and A2 are satis-
fied and the vector field F does not depend on vr , i.e., F (Xr; vr) =
F (xr). Thus, from Lemma 2, X̂r(t) � Xr(t) ! 0 as t ! 1, so
that, in the proof of Theorem 1, # = 0 and the origin (~x; ~�) is attrac-
tive. Thus, in particular, by the continuity of h(�) we have h(x(t))�
h(xr(t))! 0 as t!1.

IV. CONCLUDING REMARKS

We presented an approach, based on a separation principle, to solve
the output feedback practical tracking problem for systems which are
not affected by uncertainties or disturbances. When the reference signal
is generated by an exosystem and an internal model satisfying suit-
able assumptions exists, this approach yields a solution to the output
feedback asymptotic tracking problem. Since this approach relies on
the online estimation of the stable inverse of the plant, it is susceptible
to degradation in performance when uncertainties or disturbances are
present.
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Global Robust Output Regulation for Output
Feedback Systems

Zhiyong Chen and Jie Huang

Abstract—The global robust output regulation problem for the class of
nonlinear systems in output feedback form has been studied under the as-
sumption that the solution of the regulator equations is polynomial. This
assumption essentially requires these systems contain only polynomial non-
linearity and is due to the failure of finding a nonlinear internal model to
account for more complex nonlinearities than polynomials. Recently, it was
found that a nonlinear internal model can be constructed under some as-
sumption much milder than the polynomial assumption. In this note, we
will apply this type of internal model to solve the global robust output reg-
ulation problem for the class of nonlinear systems in output feedback form.

Index Terms—Nonlinear control, output regulation, robust control.

I. INTRODUCTION

A systematic framework for tackling the robust output regulation
problem for general uncertain nonlinear systems was given in [9],
which was evolved from the approach in [1] which deals with the
local robust output regulation problem by output feedback control.
This framework addresses the robust output regulation problem in
two steps. First, convert the robust output regulation problem for a
given system into a robust stabilization problem of an augmented
system. The augmented system consists of the given system and a
class of appropriately defined dynamic systems called internal model
candidates. Second, solve the robust stabilization problem of the
augmented system. The accomplishment of the first step depends on
the existence of what is called the steady-state generator in [9] which
is a special internal model candidate. A linear steady-state generator
always exists if the solution of the regulator equations is a polyno-
mial in the exogenous signal. However, the polynomial assumption
is restrictive as it essentially limits the nonlinear systems to be of
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polynomial type. Recently, it was found that a nonlinear steady-state
generator can be constructed when the polynomial assumption does
not hold [3], [9]. As a result, the robust output regulation problem
for a much larger class of nonlinear systems can be converted into a
robust stabilization problem of an augmented system even without
the polynomial assumption. The accomplishment of the second step
depends on whether or not there exists an appropriate internal model
candidate such that the augmented system is stabilizable in some
sense. Such an internal model candidate is called an internal model.

The solvability of the global robust output regulation problem for
the class of the nonlinear systems in output feedback form has been
studied in [17] under the assumption that a linear internal model ex-
ists. In this case, the corresponding augmented system is still in output
feedback form. Thus, the stabilization of the augmented system does
not post a special difficulty than that of the given system. In this note,
we will further study the same problem without assuming the existence
of a linear internal model. Thus, our result can apply to nonpolynomial
nonlinear systems in output feedback form. We will see that, in the ab-
sence of the assumption of the linear internal model, the augmented
system takes a lower triangular form which is more complicated than
the output feedback form. Therefore, the stabilization of the augmented
system is more challenging than the case studied in [17]. As a result,
instead of the conventional backstepping method as adopted in [17],
we have to rely on the small gain method to deal with the problem.

The rest of this note is organized as follows. In Section II, we apply
the framework established in [9] to convert the robust output regulation
problem of the output feedback system into a stabilization problem of
an augmented system. In Section III, we give the main result together
with an illustrative example. Finally, we close this note by some re-
marks.

II. OUTPUT REGULATION VS. STABILIZATION

The class of nonlinear systems considered in this note are modified
from the class of systems called output feedback systems [15], and are
described by

_z =F (w)z +G(y; v; w)y +D1(v;w)

_y =H(w)z+K(y; v; w)y + b(w)�1 +D2(v;w)

_�i = � �i�i + �i+1; i = 1; . . . ; r � 2

_�r�1 = � �r�1�r�1 + u

e = y � q(v;w) (1)

where col(z; y) 2 <
n and � = col(�1; . . . ; �r�1) 2 <

r�1 are the
states, y 2 < is the output, u 2 < is the input, e 2 < is the tracking
error, w 2 <N is the plant uncertain parameter, and v 2 <q is the ex-
ogenous signal representing the disturbance and/or the reference input,
produced by an exosystem described by

_v = A1v v(0) = v0 (2)

where A1 is a matrix with all eigenvalues simple with zero real parts.
It is assumed that all the functions in the setup are sufficiently smooth
and D1(0; 0) = 0, D2(0; 0) = 0, and q(0; 0) = 0.

Briefly, the global robust output regulation problem aims to design a
state or output feedback control law such that, for all uncertain param-
eter w 2 W � <

N and all exogenous signals v(t) 2 V � <
q with

W and V being any known compact sets of the respective Euclidian
spaces, the solution of the closed-loop system starting from any ini-
tial state of the plant and the controller exists and is bounded, and the
tracking error approaches 0 asymptotically.

To study the solvability conditions for this problem, let us first state
some standard assumptions as follows.

0018-9286/$20.00 © 2005 IEEE


