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Stable Social Foraging Swarms in a Noisy
Environment
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Abstract—Bacteria, bees, and birds often work together in
groups to find food. A group of robots can be designed to coordi-
nate their activities to search for and collect objects. Networked
cooperative uninhabited autonomous vehicles are being developed
for commercial and military applications. Suppose that we refer
to all such groups of entities as “social foraging swarms.” In order
for such multiagent systems to succeed it is often critical that they
can both maintain cohesive behaviors and appropriately respond
to environmental stimuli (e.g., by optimizing the acquisition of nu-
trients in foraging for food). In this paper, we characterize swarm
cohesiveness as a stability property and use a Lyapunov approach
to develop conditions under which local agent actions will lead to
cohesive foraging even in the presence of “noise” characterized
by uncertainty on sensing other agent’s position and velocity, and
in sensing nutrients that each agent is foraging for. The results
quantify earlier claims that social foraging is in a certain sense
superior to individual foraging when noise is present, and provide
clear connections between local agent-agent interactions and
emergent group behavior. Moreover, the simulations show that
very complicated but orderly group behaviors, reminiscent of
those seen in biology, emerge in the presence of noise.

Index Terms—Biological systems, foraging, multiagent systems,
stability analysis, swarming.

I. INTRODUCTION

SWARMING has been studied extensively in biology [1],
[2], and there is significant relevant literature in physics

where collective behavior of “self-propelled particles” is
studied. Swarms have also been studied in the context of engi-
neering applications, particularly in collective robotics where
there are teams of robots working together by communicating
over a communication network [3], [4]. For example, the work
in [5] on “social potential functions” is similar to how we view
attraction-repulsion forces. Special types of swarms have been
studied in “intelligent vehicle highway systems” [6] and in
“formation control” for robots, aircraft, and cooperative control
for uninhabited autonomous (air) vehicles. Early work on
swarm stability is in [7], [8]. Later work where there is asyn-
chronism and time delays appears in [9]–[11]. Also relevant
is the study in [12] where the authors use virtual leaders and
artificial potentials.

In this paper, we continue some of our earlier work by
studying stability properties of foraging swarms. The main
difference with our previous work is that we consider the effect
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of sensor errors (“noise”) and errors in sensing the gradient
of a “resource profile” (e.g., a nutrient profile). We are able
to show that even with noisy measurements the swarm can
achieve cohesion and follow a nutrient profile in the proper
direction. We illustrate that the agents can forage in noisy
environments more efficiently as a group than individually,
a principle that has been identified for some organizms [13],
[14]. The work here builds on the work in [15] and [16] where
the authors provide a class of attraction/repulsion functions
and provide conditions for swarm stability (ultimate swarm
size and ultimate behavior), and [17] that represents progress
in the direction of combining the study of aggregating swarms
and how during this process decisions about foraging or threat
avoidance can affect the collective/individual motion of the
swarm/swarm members (i.e., typical characteristics influencing
social foraging). Additional work on gradient climbing by
swarms, including work on climbing noisy gradients, is in [18].
There, similar to [17], the authors study climbing gradients,
but also consider noise effects and coordination strategies for
climbing, something that we do not consider here.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce a generic model for agents, interactions,
and the foraging environment. Section III holds the main re-
sults on stability analysis of swarm cohesion. Stability analysis
of swarm trajectory following is done in Section IV. Section V
holds the simulation results and some concluding remarks are
provided in Section VI.

II. SWARM AND ENVIRONMENT MODELS

A. Agents and Interactions

Here, rather than focusing on the particular characteristics of
one type of animal or autonomous vehicle we consider a swarm
composed of an interconnection of “agents,” each of which
has point mass dynamics given by

(1)

where is the position, is the velocity, is
the mass, and is the (force) control input for the th
agent. It is assumed that all agents know their own dynamics.
For some organizms like bacteria that move in highly viscous
environments you can assume that and if you use a
velocity damping term in for this you get the model studied
in [15]–[17]. There, the authors view the choice of as one
that seeks to perform “energy minimization” which is consistent
with other energy formalisms in mathematical biology. Here,
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we do not assume . Moreover, we will assume that each
agent can sense information about the position and velocity of
other agents, but possibly with some errors (what we will call
“noise”), something not considered in [15]–[17].

Agent to agent interactions considered here are of the “at-
tract-repel” type where each agent seeks to be in a position
that is “comfortable” relative to its neighbors (and for us all
other agents are its neighbors). Attraction indicates that each
agent wants to be close to every other agent and it provides the
mechanism for achieving grouping and cohesion of the group
of agents. Repulsion provides the mechanism where each agent
does not want to be too close to any other agent (e.g., for animals
to avoid collisions and excessive competition for resources).
There are many ways to define attraction and repulsion, each
of which can be represented by characteristics of how we define

for each agent. Attraction here will be represented by a term
in like where is a scalar that repre-
sents the strength of attraction. If the agents are far apart, then
there is a large attraction between them, and if they are close
there is a small attraction. For repulsion, we let the two-norm

and use a repulsion term in of the form

(2)

where is the magnitude of the repulsion, and
quantifies the region size around the agent from which it will
repel its neighbors. When is big relative to the
whole term approaches zero. The combined effect of repulsion
and attraction terms influence the so-called “equilibrium of at-
traction and repulsion” that represents that two agents are at a
“comfortable” distance from one another. Many other types of
attraction and repulsion terms are possible; see the references
cited earlier.

B. Environment Model

Next, we will define the environment that the agents move in.
While there are many possibilities, here we will simply consider
the case where they move (forage) over a “resource profile”
(e.g., nutrient profile) , where . We will assume that

is continuous with finite slope at all points. Agents move
in the direction of the negative gradient of (i.e., in the di-
rection of ) in order to move away from
“bad” areas and into “good” areas of the environment (e.g., to
avoid noxious substances and find nutrients). That is, they will
use a term in their that holds the negative gradient of .

Clearly there are many possible shapes for , including
ones with many peaks and valleys. Here, we simply list two
simple forms for as follows.

• Plane: In this case, we have where

where and is a scalar. Here, .
• Gaussian: In this case, we have where

where , and are scalars, and .
Here,

.
Here, we will assume that each agent can sense the gradient,
but only with some errors, which we will refer to as “noise.”
When we want to refer to agent as following a possibly dif-
ferent profile than agent , , we will use, for example,

, , and for the plane profiles. Throughout this paper, we
will in fact study this case where agents follow different plane
profiles, since these are simple yet representative. Moreover, lo-
cally, typical profiles will have a constant slope.

III. STABILITY ANALYSIS OF SWARM COHESION PROPERTIES

Cohesion and swarm dynamics will be quantified and ana-
lyzed using stability analysis of the swarm error dynamics that
we define next.

A. Controls and Error Dynamics

First, assume there are agents in the environment and let

be the average position and velocity of the swarm, respectively.
The objective of each agent is to move so as to end up at and

; in this way an emergent behavior of the group is produced
where they aggregate dynamically and end up near each other
and ultimately move in the same direction at nearly the same
velocity (i.e., cohesion). The problem is that since all the agents
are moving at the same time, and are time-varying; hence,
in order to study the stability of swarm cohesion we study the
dynamics of an error system with

Other choices for error systems are also possible.
The error dynamics are given by

(3)

We assume that each agent can sense its own position and
velocity relative to and , but with some errors. In particular,
let and be these sensing errors for agent ,
respectively. We assume that and are any trajectories
that are sufficiently smooth and fixed a priori for all the time
(but below we will study the stability for the case when the
and trajectories can be any of a certain class). We will refer
to these terms somewhat colloquially as “noise” but clearly our
framework is entirely deterministic. Thus, each agent actually
senses
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and below we will also assume that it can sense its own velocity.
It is important to highlight here our motivation for studying the
addition of noise. On the one hand it adds another element of
realism to have a sensor for and might operate and the
results below will help quantify the effects of the noise on co-
hesion. We also view our approach as progress in the direction
of not requiring that each agent can sense the variables of all the
other agents or even the accurate values of and .

The th agent will also try to follow a plane nutrient profile
defined earlier. We assume that it senses the gradient of , but
with some sufficiently smooth error that is fixed a priori
for all the time (as with and we will allow below to
be any in a certain class of trajectories) so each agent actually
senses

In fact this can be viewed as either sensing error or “noise” (vari-
ations, ripples) on the resource profile.

Suppose the general form of the control input for each agent
is

(4)

Here, we think of the scalars and as the “at-
traction gains” which indicate how aggressive each agent is in
aggregating. The gain is a “repulsion gain” which sets
how much that agent wants to be away from others and rep-
resents its repulsion range. The gain works as a “ve-
locity damping gain”(note that we use the same such gain for
all agents). The last term in (4) indicates that each agent wants
to move along the negative gradient of the th resource profile
with the gain proportional to that agent’s desire to follow
its profile. Obviously if for all , there is no sensing
error on repulsion, and a repulsion term of the form explained
in (2) is obtained. The sensing errors create the possibility that
agents will try to move away from each other when they may
not really need to, and they may move toward each other when
they should not. Similarly, the attractions gains and dictate
how the attraction forces operate but the presence of the noise
results in additive noise terms to that are multiplied by
and . Hence, raising the attraction gains also has a negative
influence on in that it results in more noise entering the con-
trol and hence poor aggregating decisions by individuals (e.g.,
if is small but is relatively large, noise will set
the control value). Clearly, this complicates the situation for the
whole swarm to achieve cohesiveness.

Note that by writing the repulsion term as in (4), we are
assuming each agent can also sense the positions of all other
agents relative to ; however, the sensed values for other
agents are only needed in the repulsion term and any term
corresponding to a distant agent will be close to zero due to
the exponential term. Alternatively, we may construct this term
by replacing with , with and defined as
the noise-contaminated positions of agent and , respectively.

Then, we have , being the
measurement noise. In physical sense, these two options of
constructing the repulsion term are significantly different from
each other since different variables are required to be measured.
But note that

It turns out that in our proof, we will obtain the same stability
properties with either option. A quick explanation is that the
repulsion term is bounded by the same constants (in both direc-
tions), whether we adopt or . This will become
more clear by inspecting the proof in Section III-B. From now
on, we will use the one in (4) throughout the paper.

To study stability properties, we will substitute the above
choice for into the error dynamics in (3). First, consider the

term of and note that

(5)

Define and . Since

we have

Similarly, define and , so we have

. Then, substituting into and we have

(6)

Define and .
Since

from (5) and (6) we have

(7)
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where

(8)

(9)

(10)

which is a nonlinear nonautonomous system. With an
identity matrix, the error dynamics of the th agent may be

written as

(11)

Note that any matrix

with , has eigenvalues given by the roots of
, which are in the strict left half plane. Thus,

the matrix above is Hurwitz with , and .

B. Cohesive Social Foraging With Noise

Our analysis methodology involves viewing the error system
in (11) as generating trajectories for a given and the
fixed sensing error trajectories , , and , .
We do not consider, however, all possible sensing error trajec-
tories. We only consider a class of ones that satisfy for all

(12)

where , , , and are known nonnegative con-
stants for . So we assume for position and velocity
the sensing errors have linear relationship with the magnitude
of the state of the error system. Basically the assumption means
that when two agents are far away from each other, the sensing
errors can increase. The noise on the nutrient profile is un-
affected by the position of an agent. By considering only this
class of fixed sensing error trajectories we prune the set of pos-
sibilities for trajectories and it is only for that pruned set that
our analysis holds.

1) Uniform Ultimate Boundedness of Interagent Trajecto-
ries:

Theorem 1: Consider the swarm described by the model in
(3) with control input given in (4). Assume that the nutrient
profile for each agent is a plane defined by and
the noise satisfies (12). Let

(13)

for . If for all we have

(14)

and the parameters are such that

(15)

for some constants , where

then the trajectories of (11) are uniformly ultimately bounded.
Proof: To study the stability of the error dynamics, it is

convenient to choose Lyapunov function for each agent

(16)

with a matrix and (a positive–definite
matrix). Then, we have

(17)

Note that when and , the unique solution
of has and as needed.

Choose for the composite system

where is given in (16). Since for any matrix
and vector

where and denote the minimum and max-
imum eigenvalue of , respectively, from (16) we have

It is easy to show that the function
, with any
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real vector, has a unique maximum value of
which is achieved when [15]. Defining

(18)

we have for . Define

Then, substituting (11) into (17), and using (18) and the fact that
we have

(19)

with , and constants and

Obviously, , , and if we have

(20)

where

then .
Before we proceed, note that in (20), we want to be as

small as possible so that the system may tolerate noise with the
largest possible bounds ( and ) while keeping stability.
Notice that we can influence the size of the by the choice of

. In fact, we can show that . To see this,

note that from [19], is minimized by letting with
a free parameter, and it can be proven that

(21)

Thus, from (20) and (21), if (14) holds, then by choosing
, the corresponding constant for (19) is positive.

Now, for simplicity, we choose for all (so )
and use (21), so , and of (19) are simplified to become

(22)

(23)

(24)

Now, return to (19) and note that for any ,

(25)

where and . This implies
that as long as , the first two terms in (19) combined
will give a negative contribution to .

Next, we seek conditions under which . To do
this, we consider the third term in (19) and combine it with the
above results. First, note that the third term in (19) can be over-
bounded by replacing by where

(26)

which were defined in the statement of the theorem via (24).
Next, we consider the general situation where some of the
are such that and others are not. Accordingly, define
sets

and

where and are the size of and , respectively, and
. Also, and

. Of course, we do not know the explicit sets and ; all
we know is that they exist. The explicit values in the sets clearly
depend on time but we will allow that time to be arbitrary so the
analysis below will be for all . For now, we assume ,
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that is, the set is nonempty. We will later discuss the
case. Then using analysis ideas from the theory of stability of
interconnected systems [20] and using (19), (25), and (26), we
have

where we use the fact that for each fixed , there exist positive
constants , , and such that

(27)

Let (the composition of
this vector can be different at different times) and the
matrix be specified by

(28)

so we have

For now, assume that in the above equation and, thus,
. We then have

(29)

So, when the for are sufficiently large, the sign of

is determined by and
. This analysis is valid for any value of , ;

hence for any the system is uniformly ultimately
bounded if , so we seek to prove that next.

A necessary and sufficient condition for is that its
successive principal minors are all positive. Define as the
determinants of the principal minors of , .
Then, we can show that

Since for , to have all the previous
determinants positive, we need

that is

for all . Since , the equation
above is satisfied when (15) is satisfied and thus, for all

. Hence, when is sufficiently large,
and the uniform ultimate boundedness of the trajectories of the
error system is achieved.

To complete the proof, we need to consider the case when
. Note that when , for all . If we

have persistently, then we could simply take as
the uniform ultimate bound. If otherwise, at certain moment the
system changes such that some , then we have

immediately, then all the analysis above, which holds
for any , applies. Thus, in either case we obtain
the uniform ultimate boundedness. This concludes the proof.

Remark 1: Uniform ultimate boundedness is obtained when
(14) and (15) are satisfied. Note that these conditions do not de-
pend on and ; these two parameters can affect the size of
the ultimate bound but it is the attraction gains and and
damping gain that determine if boundedness can be achieved
for given parameters that quantify the size of the noise. The con-
ditions also do not depend on and , but these too will
affect the size of the ultimate bound. The conditions do not de-
pend on , and since our error system quantifies swarm
cohesiveness, not how well the resource profile is followed.

Remark 2: From (13), if both and are fixed, when
is sufficiently large, increasing will increase , which

means and have to be decreased to satisfy (14). This
means that although we may expect a large to dampen the
error system faster, it could make the system more vulnerable
to noise.

Remark 3: Note that when all other parameters are fixed,
goes to infinity when either goes to infinity or approaches
zero. Thus, when is the only free parameter, there exists some
upper bound for beyond which (14) can never hold what-
ever is. This is because when is large enough, has
to be sufficiently small to decrease the product in (14),
while the corresponding to this sufficiently-small will be
so large that (14) cannot be satisfied. Basically this means that
if is too large and leads to potential instability, it cannot be
remedied by merely tuning . In comparison, if is a free pa-
rameter with other parameters fixed and sufficiently small,
then for any arbitrarily large , we can always find some
such that (14) still holds. This is because and always ap-
pear together in and, thus, for any large , we are free to
decrease such that the product of is small.

Remark 4: We can see that the smaller is,
meaning and are closer to each other for all
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and , the easier it is to meet the condition specified by (15).
This means better approximations of the agent parameters may
facilitate the boundedness of the error system. In fact when all
agents are identical, the sufficient condition (15) can be imme-
diately simplified to

by letting , , , and

for all . Note the term is zero

now since and for all . Furthermore, when
for all , the conditions (14) and (15) will

always hold. This means when agents are identical and noise
is constant or with constant bound, the trajectories of the error
system are always uniformly ultimately bounded. Also, note
that since the agents are in general not identical and have dif-
ferent parameters, the conditions stated by the theorem are ac-
tually quite conservative.

Remark 5: Although we start with plane profiles, the nutrient
profile can actually be extended to more general cases. In fact
any profile that is smooth and has finite slope at all points, pro-
vided the upper bound of its slope is known, can be fit into the
framework. To see this, denote the slope upper bound by
for agent , and replace all “ ” in the system with “ ,”
then all the proofs follow.

Remark 6: Note that with a repulsion term of the form defined
in (2), collision avoidance is not guaranteed. Theorem 1 does not
say anything about collision avoidance either. However, as we
have found that larger and , meaning stronger repulsion ef-
fect, will result in larger swarm size, we expect they may also help
reduce collisions between the agents. See additional discussions
on this point in Section V-A. Moreover, as in [12], [16] it is pos-
sible to extend the results of this paper to consider a “hard repel”
case by using a different form for the repel term.

2) Ultimate Bound on Inter-Agent Trajectories: So far, we
have shown that the swarm error system is uniformly ultimately
bounded when certain conditions are satisfied. We have shown
that the bound exists but have not specified it. If we define the
bound as , then the set

is attractive and compact. One such bound is given by the Corol-
lary that follows. Before we state the Corollary, some new no-
tation needs to be introduced. Notice that for each given ,

, the set can have types
of compositions, where is the number of combinations
of choosing members from a set with members. (Note
that the special case of will be considered separately
at the end of the proof for the Corollary.) Let be the set

corresponding to the th composition, .
Let the matrix be specified in the same way as

, defined in (28), but corresponding to the th composition,
. Define for

where , , and are defined in (27), and

with defined in (26). Note that in Theorem 1 we do not
highlight the difference between compositions because it does
not matter, while in the proof for the Corollary below it will
make things more clear to do so. Also note that and are
not affected by the composition because we may choose ,

, , and in such a way that (27) always holds for any
composition with (and, thus, ).
In the following Corollary and proof, all notation is the same as
those in Theorem 1 unless otherwise specified.

Corollary 1: Define , with defined in
(25) via some set of that satisfy (15). When the conditions in
Theorem 1 are all satisfied, there exists some constant

such that the uniform ultimate bound of the trajectories of the
error system is

where

(30)

with , , and are all constants and

for and .
Proof: Note that when the conditions of Theorem 1 are

all satisfied, a set of constants exists and can be found. Also
recall that both and are constants, then and

, defined in (25), are constants for all and
can be found. Thus, numeric values of , , and can be
found in terms of known parameters. Now we will first show
that this Corollary applies to a fixed with a particular
composition .

With defined in Theorem 1, for and ,
from (29), we have

(31)

with , and all positive constants. Notice we want to find
a bound such that so long as there exist some

, . Before we start to solve for this ,
note that in (31) can be visualized by Fig. 1, where is
a parabolic function with respect to and crosses axis
at two points and , respectively. To have , one
possibility is such that and thus, for all

. (Note that due to the nature of our problem, we do
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not consider the case of , though this also results in
.) We call this situation the “best situation.” While in a

more general case, we have some while all the other
, and we call such a situation the “normal

situation.” For the best situation case, each just needs to
be a little bigger than to achieve , which means

is just a little bigger than . In comparison, to get
for the normal situation, generally it means those that

satisfy have to be further to the right on axis
(i.e., much bigger than ) to counteract the “positive” effects
brought in by those with , meaning needs
to be much bigger than . With this idea, we can see that the
worst happens when there is only one , call it , free
to change while all the other , with and

, are fixed at their respective maximum (or most “positive”
value). Basically this depicts a situation when there is only one
agent having its norm of error slide along axis (to
the right) to bring down to negative value while all other
agents in stay in positions as bad as they can (in the sense
of keeping stability).

From (31), we can see that each achieves its maximum
of with . Then, based on the previous
analysis, we can solve for the by letting all
except for . From (31), for some constant we
have

where

Note that in setting to get , we
may violate the prerequisite of since it may happen
that for some . However, this violation
only adds more conservativeness to the resultant and does
not nullify the fact that is a valid bound. Specifically, when

for some , the corresponding become
“less” positive, as seen from Fig. 1, and thus, the actual bound
will be smaller than the obtained above. Hence, is still a
valid (upper) bound.

Since with defined in (30), and the positive con-
stant , we have when

. Now, note that the choice of and composition
in the above proof are in fact arbitrary (except that )

and can be time-varying. So we actually have for
any and any composition at any time . That is,
the proof above is actually valid for the general case when

and the composition are time varying.
To complete the proof, we need to show that is also a valid

bound for the case of , i.e., an empty set . Notice

Fig. 1. F vs kE k.

that means for . Also notice
that for all . Then, by definition, as
long as , the trajectories of the swarm error system stay
within the bound . This concludes the proof.

Remark 7: The value of is affected by two components:
and . We will discuss first. It is easy to see from (30)

that increasing helps to decrease . Notice is a function
including many parameters, so it is difficult to provide clear rela-
tionships to their effects on . But we may get some ideas based
on intuition. Note that is related to the minimum eigenvalue
of matrix defined in (28), where the components ,

, on the main diagonal reflect the stabilizing effect
of the isolated parts of the composite system, while the cross
terms reflect the destabilizing effect of the interconnec-
tion parts of the composite system. (By abuse of notation, above
we use instead of as in (28). This
is because we are discussing the general case and each can
be any value from 1 to . Similarly, in this Remark and the next
Remark, we do not tell the difference of and , since both

and range from 1 to .) So, the larger magnitude those main
diagonal components have (or relatively, the smaller magnitude
those cross terms have), the “more stable” the composite system
is and, thus, we may expect the larger is. Based on this anal-
ysis and (22), since smaller and gives larger and,
thus, larger in magnitude (implying “better stability”), it may
render larger and thus, smaller . When are relatively big,
from (24), we may deduce that smaller and thus, larger
(implying “worse stability”) may lead to smaller and thus,
larger .

Remark 8: Note that is affected by via ,
. Larger may lead to larger and

thus, a larger bound . This is consistent with the analysis in
the previous remark. Similar conclusions may be drawn by
inspecting since it includes , which is affected by . It
is interesting to note that from (30), smaller means smaller

, while in the previous remark we mention that smaller
may lead to larger and, thus, larger . These seemingly
contradictive conclusions in fact make sense intuitively. Too
large does not help reducing because with each agent de-
siring to keep certain distance from others, large means large
swarm radius. Too small does not always help reducing
because the effect of noise becomes more significant when
is small. In the other words, with smaller , the swarm cannot
“average” out the noise and thus, the bound on the trajectories
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is not reduced. This “noise-averaging” idea will become more
clear in Section III-C, when we deal with identical agents, and
later in other simulations.

Remark 9: The value of is also affected by . Note that
is determined by and for all . Specifically, smaller

and larger are helpful in decreasing . Then from (22) and
(23), we can see that all the noise bounds ( , , , ,
and ) affect . Smaller noise bounds help decrease and
thus, may decrease . So do smaller , and . All these
are consistent with the previous remarks.

Remark 10: Similar to Theorem 1, lots of conservativeness
is introduced into the deduction of Corollary 1 . One example
is, , , , and thus, and , are actually functions of

. When increases, and will generally decrease.
This fact is not considered in the above deduction because of
the complexity that originated in the use of both heterogeneous
swarm agents and resource profiles in the environment.

C. Special Case: Identical Agents

Here, we will study the stability of the system when all the
agents are identical (i.e., with , , ,

, and , for all ), but with different types of
noise and nutrient profiles. Equation (4) becomes

(32)

Also, in (11) for all . Note that with all agents being
identical, we have and for all . Also

Let , ,
, and . Then, (6) can be

simplified to

(33)

and

(34)

where , , and are, respectively

(35)

(36)

(37)

Using the idea of deriving (18), we have

(38)

1) Noise With Constant Bounds: In this case, we assume that
and are sufficiently smooth and bounded by some

constants for all

(39)

where and are known constants. The sensing
error on the gradient of the nutrient profile is assumed to be
sufficiently smooth and bounded by known constant
such that for all

(40)

Theorem 2: Consider the swarm described by the model
in (3) with control input given as in (32). Assume that
the nutrient profile for each agent is a plane defined by

. Also, assume the noise satisfies (39) and (40).
Let . Then, the trajectories of the
swarm error system are uniformly ultimately bounded, and
for all will converge to the set , where

(41)

is attractive and compact, with

and

Moreover, there exists some finite and constant
such that

and

with .
Proof: To find the set , from (17) and (34) to (38), we

have

Following the idea in Theorem 1, we have by letting ,
as the counterpart of in Theorem 1. So we have

(42)

That is, if . So, the set

is attractive and compact. Also, we know that within a finite
amount of time, . This means that we can guarantee
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that if the swarm is not cohesive, it will seek to be cohesive, but
only if it is a certain distance from cohesiveness as indicated by
(42).

To study the boundedness of , choose a Lyapunov func-
tion

defined on for some , and we
have

with defined in (33). Since for all , we have

. Similarly, and

. Thus, we have

If for all , all and some positive constant
, then it can be proven that for all and some

finite we have

and

Since this holds globally we can take so these equa-
tions hold for all .

Remark 11: The size of in (41), which we denote by ,
is directly a function of several known parameters. If there are
no sensing errors, i.e., , then reduces
to the set representing the no-noise case. For fixed values of ,

, , , and if we increase each agent has a larger region
from which it will repel its neighbors so is larger. For fixed

, , , , and if we let , then as we
expect due to the repulsion.

Remark 12: It is interesting to note that in some swarms
is very large and when there is no biasing of sensing errors, we
have . This reduces the bound defined by

. Also when is decreased, implying that is closer to
for all and , then is smaller. In the special case when

all are the same, we have and the set is
minimized with respect to resource profiles. This means when

is large, the agents pursue resource profiles that are far
different from each other and the swarm is spread out, while
when those profiles are equal to each other, all the agents move
along the same profile and smaller swarm size is achieved.

Remark 13: If and are fixed, with increasing
decreases faster for and has smaller bound for .
If gets larger with and fixed, has larger bound for

; hence if the magnitude of the noise becomes larger this
increases and hence there can be larger magnitude changes
in the ultimate average velocity of the swarm (e.g., the average
velocity could oscillate). Note that if in (33) (e.g., due
to noise that destroys the directionality of the resource profile

), then the above bound may be reduced but the swarm could
be going in the wrong direction.

Remark 14: Regardless of the size of the bound it is inter-
esting to note that while the noise destroys the ability of an indi-
vidual agent to follow a gradient accurately, the average sensing
errors of the group are what changes the direction of the group’s
movement relative to the direction of the gradient of .
In some cases when the swarm is large ( big) it can be that

since the average sensing error is zero and
the group will perfectly follow the proper direction for foraging
(this may be a reason why for some organizms, large group size
is favorable). In the case when (i.e., single agent), there
is no opportunity for a cancellation of the sensor errors; hence an
individual may not be able to climb a noisy gradient as easily as
a group. This characteristic has been found in biological swarms
[13], [14].

Remark 15: Note that there is an intimate relationship be-
tween sensor noise and observations of biological swarms (e.g.,
in bee swarms) that there is a type of “inertia” of a swarm. Note
that for large swarms (high ) there can be regions where the
average sensor noise is small so that agents in that region move
in the right direction. In other regions there may be alignments
of the errors and hence the agents may not be all moving in
the right direction so they may get close to each other and im-
pede each other’s motion, having the effect of slowing down the
whole group. With no noise the group inertia effect is not found
since each agent is moving in the right direction. The presence
of sensor noise generally can make it more difficult to get the
group moving in the right (foraging) direction. Large swarms
can help move the group in the right direction, but at the expense
of possibly slowing their movement initially in a transient pe-
riod.

2) Constant Errors: In this case, we assume each agent
senses the velocity and position of other members and the
nutrient profile with some constant errors.

Theorem 3: Consider the swarm described by the model in
(3) with control input given as in (32). Assume that the nu-
trient profile for each agent is a plane defined by .
Also, assume the noise , , and are time-invariant for

each agent so that , ,
, and are constants.

Then, the error dynamics of the swarm system are uniformly
ultimately bounded and , , will converge to the
attractive and compact set defined by

(43)

where is defined in Theorem 2 and

Moreover, and

(44)

for all as .
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Proof: We may obtain the set by following the method
in Theorem 2 , as the counterpart of in Theorem 2.

To find the ultimate velocity of each agent in the swarm, we
consider and a Lyapunov function
with

(45)

where the constant

. Note that this Lyapunov func-

tion is not positive definite, but . Here, we think of
the swarm moving so as to minimize with the agent
trying to minimize . Agents try to place themselves at
positions to reduce the first term in (45), achieve a velocity to
reduce the second term, and move to a distance from each other
to minimize repulsion quantified in the last term. There is a
resulting type of balance that is sought between the conflicting
objectives that each of the three terms represent.

Using (34), we have

Hence, on for any
compact set . Choose so it is positively invariant, which is
clearly possible, and so where

From LaSalle’s Invariance Principle, we know that if
then will converge to the largest invariant subset of .
Hence as . From (33), we have

as since in this case is a constant with respect to
time. Thus, approaches this value also for all as .

Remark 16: From (44), we can see that all agents will ulti-
mately be moving at the same velocity despite the existence of
constant errors. Contrast this with the earlier more general cases
where it is possible that and ultimately, for example, oscil-
late. Next, note that even if for all and , the presence
of , , and represent the effects of sensor errors and they
can result in the swarm not properly following the direction of
the profile even when they all intend to go in the same direc-
tion. In the case when we have with large
enough, then all those agents will be following the “averaged”
profile . That is, due to the desire to stay together, they
each sacrifice following their own profile and compromise to
follow the averaged profile. In the special case when or

for all (no resource profile effect), and no sensor er-
rors, both and will go to zero as , representing
the aggregation of the group independent of the environment.
The size of in (43), which we denote by , is directly a

function of several known parameters. All the remarks for the
previous case, i.e., noise with constant bounds, apply here.

IV. STABILITY ANALYSIS OF SWARM TRAJECTORY FOLLOWING

In this section, we briefly analyze the stability of the swarm
error system when each agent is trying to track their respective
trajectories. This is done by applying the same idea as in Sec-
tion III to a slightly reformulated system model. Specifically,
redefine the errors as

where is a sufficiently smooth desired position trajectory for
agent , , and . We assume that there exist
known bounds for and such that

where and are known positive constants. Assume the
nutrient profile for each agent is a plane defined by

. Also let , , , , , and be defined in the same
form as in Section III-A. Then, the error dynamics of the
agent is

(46)

where

(47)

(48)

Let , , and be specified in the same way as in
Section III-B. Then, we have the following theorem.

Theorem 4: Consider the swarm described by the model in
(3) with control input given in (4). Let be defined in The-
orem 1 . If for all we have

(49)

then the trajectories of the error system, specified by (46), are
uniformly ultimately bounded. Furthermore, for all will
converge to an attractive and compact set defined as

(50)

where

(51)

(52)

with . Moreover, if we have for
any and

(53)
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where is a known constant, then the swarm will stay cohe-
sive and

(54)

for all .
Proof: Note that and , defined in (47) and (48),

are bounded by and

, respectively. By following exactly the same method
in the proof of Theorem 1, we obtain

(55)

and define as the Lyapunov function for
the whole error system, as specified in the proof of Theorem 1.
Then the uniform ultimate boundedness of the error system and
the set are easily obtained via (55).

When (53) is satisfied, we can show that the cohesiveness of
the swarm is conserved. To see this, note that for arbitrary and

with

(56)

so, from (50) and (56), we have (54).
Remark 17: Comparing (19) with (55), we can see that the

latter one does not include any cross term. This is because the
errors for the swarm cohesion case are defined as the difference
between an agent and the swarm centers ( and ), which are
affected by all the agents in the swarm, while the errors for the
trajectory following case are defined as the difference between
an agent and the given position and velocity trajectories, which
are not affected by the behaviors of other agents. This absence
of cross term significantly simplifies the proof for the theorem.

Remark 18: By comparing Theorem 1 and Theorem 4, we
can see that Theorem 4 will hold whenever Theorem 1 holds, as
long as and exist. This means cohesion property of a
swarm in a certain environment guarantees the stability of that
swarm in following any bounded trajectory in the same environ-
ment.

Remark 19: Similar to Remark 1, when (49) holds, the uni-
form ultimate boundedness is obtained. This condition only de-
pends on , , , and . Although the remaining param-
eters, including , , , , , , and , do not affect
the boundedness of the error system, they do affect the ultimate
bound. In the special case when for all ,
(49) always holds and, thus, the swarm error system is always
bounded.

Remark 20: Smaller may decrease the bound. Smaller
magnitude of the position and velocity trajectories also help in
decreasing the ultimate bound. Our analysis includes the pos-
sibility that the resource profiles indicate that the agents should
go in the opposite direction that is indicated by . If there

is an alignment between where the resource profiles say to go
and the , then the size of the bound decreases.

Remark 21: In the special case when and all sensing errors
are constant, we have that as for all , meaning

of each agent will be precisely following the given constant
velocity trajectory ultimately in such a case. To see this, let

and construct for all a
Lyapunov function

Note when is constant. Then by following the method
in the proof of Theorem 3, the aforementioned claim holds.

V. SIMULATIONS

In this section, we will show some simulation results for both
the no-noise and noise cases. Unless otherwise stated, in all
the following simulations the parameters, which we refer to as
“normal parameters,” are: , , ,

, , , , and
the three dimensional nutrient plane profile

for all .

A. No-Noise Case

All the simulations in this case are run for 20 s. The position
and velocity trajectories of the swarm agents with the normal pa-
rameters are shown in Fig. 2. All the agents are assigned initial
velocities and positions randomly. At the beginning of the sim-
ulation, they appear to move around erratically. But soon, they
swarm together and continuously reorient themselves as a group
to slide down the plane profile. Note how these agents gradually
catch up with each other while still keeping mutual spacing. Re-
call from SectionIII that for this case for all

as , and this can be seen from Fig. 2(b) since the final
velocity of each swarm agent is indeed .

Next, we change the value of some of the parameters to show
their impact on the system behavior.

Fig. 3(a) and (b) show the results of keeping all normal pa-
rameters unchanged except for increases of to 1000 and
to 1, respectively. Since both and are parameters affecting
the repulsion range of each agent, as expected we find that the
final swarm size becomes larger than in the previous case, while
the swarm velocity and settling speed do not change much. We
also investigated the number of collisions occurring between the
agents. As expected, when and increase, the number of
collisions decreases. Effects of other parameters are also as ex-
pected.

B. Noise Case

Now, we will consider the case when noise exists. In our sim-
ulations the solutions of Duffing’s Equation are used as “noise”
so that the noise is guaranteed to be differentiable. Of course
many other choices are possible, e.g., ones that lead to errors on
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(a)

(b)

Fig. 2. No noise case with normal parameters. (a) Agent position trajectories.
(b) Agent velocity trajectories.

a higher or lower frequency spectrum. Duffing’s equation is in
the form

In the simulations we use , and
so that the solution of Duffing’s Equation demonstrates

chaotic behavior. We will simulate many such equations to gen-
erate noise on position, velocity, and resource profile gradient
sensing. We denote by the solution to the th Duffing’s Equa-
tion that we simulate. Note that the magnitude of is always
bounded by a value of 1.5. Thus, we can easily change the noise
bounds with some scaling factors. For example, in the case of
noise with a linear bound, the position sensing noise is gener-
ated by so that (12) is satis-
fied. In this case, we run the simulations for 80 s. All the normal
parameters used in the no-noise case are kept unchanged except
the number of agents in the swarm in certain simulations, which
is specified in the relevant figures. Figs. 4 and 5 illustrate the
case with linear noise bounds for a typical simulation run. The

(a)

(b)

Fig. 3. No noise case with parameters changed. (a) Agent position trajectories
(K = 1000; r = 0:1). (b) Agent velocity trajectories (r = 1;K = 10).

noise bounds are , , and
, respectively. According to the Grunbaum principle

[13], [14], forming a swarm may help the agents go down the
gradient of the nutrient profile without being significantly dis-
tracted by noise. Fig. 4 shows that the existence of noise does
affect the swarm’s ability to follow the profile, which is indi-
cated by the oscillation of the position and velocity trajectories.
However, with all the agents working together, especially when
the agents number is large, they are able to move in the right
direction and thus, minimize the negative effects of noise. In
comparison, Fig. 5 shows the case when there is only one agent.
Since the single agent cannot benefit from the averaging effects
possible when there are many agents, the noise more adversely
affects its performance in terms of accurately following the nu-
trient profile.

VI. CONCLUDING REMARKS

We have derived conditions under which social foraging
swarms maintain cohesiveness and follow a resource profile
even in the presence of sensor errors and noise on the profile.
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(a)

(b)

Fig. 4. Linear noise bounds case (N = 50). (a) Agent position trajectories.
(b) Agent velocity trajectories.

We also studied special types of noise and the case where all
agents are identical. Although we only studied one type of
attraction and repulsion function, the results can be extended to
other classes using approaches such as the ones in [12] and [16].
Moreover, while we only studied the plane profile, extensions
to profiles with other shapes such as those studied in [17]are
possible. In fact any profile that is smooth and has a known
finite slope can be fit into the framework without changing
our major results except part of Theorem 3. Specifically, the
conclusion that the velocities of all agents approach a constant
[prescribed by (44)] may not hold any more.

Our simulations illustrated advantages of social foraging in
large groups relative to foraging alone since they show that
a noisy resource profile can be more accurately tracked by a
swarm than an individual [13], [14]. Moreover, the simulations
produced agent trajectories that are curiously reminiscent of
those seen in biology (e.g., by some insects). It would be inter-
esting to determine if the model here, with appropriately chosen
parameters, is an acceptably accurate representation for some

(a)

(b)

Fig. 5. Linear noise bounds case (N = 1). (a) Agent position trajectories. (b)
Agent velocity trajectories.

social organizms and whether the predictions of the analysis
would also accurately represent their group-level behavior.
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