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Abstract—We introduce a mathematical model for the study of
cooperative control problems for multiple autonomous air vehicles
(AAVs) connected via a communication network. We propose a co-
operative control strategy based on task-load balancing that seeks
to ensure that no vehicle is underutilized and we show how to char-
acterize task-load balancing as a stability property. Then, using
Lyapunov stability analysis, we provide conditions under which
task-load balancing is achieved even in the presence of communi-
cation delays. Finally, we investigate performance properties of the
cooperative controller using Monte Carlo simulations. This shows
the benefits of cooperation and the effects of network delays and
communication topology on performance.

Index Terms—Cooperative systems, distributed control, dis-
tributed decision making, load balancing, mobile robots.

I. INTRODUCTION

THERE is a significant amount of current research activity
focused on cooperative control of autonomous air vehicles

(AAVs). In [1], the authors identify some research directions
and highlight the need for detailed theoretical guidelines and
proofs guaranteeing that decomposed hierarchical systems re-
main stable and solve the correct problems, particularly when
uncertainties are considered. In [2] and [3], the authors address
some of these challenges by presenting hierarchical distributed
control schemes which use Voronoi diagrams for generating
AAV trajectories while minimizing the risk of threats. The con-
troller developed in [3] allows for rendezvous and target classi-
fication. In [4], a receding horizon approach to schedule a group
of AAVs for several targets is considered. Trajectories are gener-
ated by computing solutions to a sequence of optimization prob-
lems. Information about the status of the targets and the vehicles,
which make up the parameters of the cost function, serves as
feedback and updates the cost function after every computation.
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This allows for scenarios where high degrees of uncertainty are
present. Their work, however, differs from ours in part because
even though we consider high uncertainty cases, here once an
AAV is assigned to a specific target, it will pursue it. Moreover,
if network constraints dominate the problem, then optimal co-
operative planning of multiple AAV activities far into the future
in real-time is generally not feasible or even useful. In [5], the
authors combine receding horizon approaches at a lower level
with a high-level task selection, and consider the presence of un-
certainties in future tasks, current tasks, and network informa-
tion. Then, in [6], they study stability properties of a receding
horizon controller. Other work based on receding horizon ap-
proaches can be found in [7].

Other methods that are being used in cooperative control
include what one might call “map-based approaches” as in
[8]–[15]. The more recent work in [13] and [15], defines “rate
of return” (ROR) maps for search, task locations, and priorities
(classification, engagement, verification), threats, and fuel use
and uses these to define “payoffs.” The work here assumes
that there is limited prior knowledge about the terrain, not in a
detailed form as the ROR map or other such maps (e.g., “threat
maps”). We simply assume that we have certain regions that
we are interested in searching called “search points.” While we
do not study the possibility here, probabilistic maps could be
generated that define these search points.

More recent work focuses on cooperative control problems
where there are communication imperfections and high scenario
uncertainties. In this respect two notable studies are in [16],
where the authors consider the problem of dynamic reassign-
ment of tasks among a cooperative group that communicates rel-
evant information asynchronously with arbitrary finite delays,
and [17], where the authors study the synchronization of infor-
mation for cooperative control.

When considering uncertain environments there are different
types of uncertainties one can study. Our approach focuses on
the type of uncertainty encountered when search points are
reached and new tasks like classification or engagement need
to be scheduled online since there is high uncertainty a priori
about whether any given task beyond search needs to be per-
formed. Moreover, we consider the effects of communication
imperfections via unknown but bounded delays involved in
communicating the status of the targets from one AAV to an-
other. We do this via a load balancing approach to cooperative
control, something that has not been considered before. Other
work that considers network delays in an analytical framework
is in [18], where a distributed scheduling approach is used for
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a specific class of cooperative control problems. A description
of our earlier work in this area is provided in [19] and [20].

The main contributions of this paper are as follows. First, in
Section II we introduce an analytical model for a wide class of
cooperative control problems. It defines the problem that we
solve here and provides the research community with a con-
trol-theoretic formulation of many other challenges in this re-
search area. Second, in Section III we introduce the idea of using
task-load balancing strategies from distributed computing [21],
[22] for cooperative control. Indeed, our main theoretical result
(Theorem 1) in Section IV is likely to be of interest in the area
of distributed computing. In [23] and [24], the authors extended
the theory in [21] in several ways including the nondelay dis-
crete load case. Here, we extend the theory to the discrete load
case with delays and where there can, in a certain way, be task
load arrivals and departures (e.g., due to cooperative actions that
have one AAV perform certain tasks for another AAV), some-
thing that has not been achieved before. Third, our results in
Section V show when cooperation between AAVs is beneficial
and how communication imperfections affect system-wide per-
formance levels.

II. PLANT MODEL AND CLOSED-LOOP SPECIFICATIONS

We begin by specifying a plant model that includes the ve-
hicles, targets/threats (“objects”), sensors, actuators, and com-
munication network. The resulting model is “hybrid” and sto-
chastic since the vehicle dynamics result from a continuous-
time system, and yet other aspects are best represented by non-
deterministic automata-type representations (e.g., tasks, task or-
derings/status, and sensor modes). It is nonlinear since we use a
nonlinear kinematic vehicle model and due to the need to use au-
tomata. It is decentralized since the vehicles are separate entities
that can be spatially distributed and connected over a communi-
cation network. Here, we keep the entire model in discrete time
(even the vehicles) to get a finite-dimensional model even when
we have communication delays, and to avoid the typical com-
plications that arise in hybrid model definitions and simulations
that are not essential features of the represented problem (e.g.,
simulating true continuous time and asynchronism on a digital
computer, discontinuities that lead to existence and uniqueness
issues in the ordinary differential equation, and “racing” of au-
tomata that can arise if events can occur an infinite number of
times in a finite time period). We assume that there is a global
clock so all the vehicles can use this time reference, be synchro-
nized with it, and hence with each other (e.g., global positioning
system (GPS) can provide such a time reference).

A. Vehicle and Object Models

Suppose that there are AAVs and that the th
one obeys a continuous-time kinematic model given by

, and , where
is its horizontal position, is its vertical position, is

its (constant) velocity, is its orientation, is its maximum
angular velocity, and is the steering input. We
assume that vehicles will either travel on the minimum turning
radius or on straight lines. It is then possible to analytically
write down the formulas for the vehicle trajectories (e.g., in
terms of arc segments on circles and line segments) [25],

[26]. Next, we quantize these trajectories with a sampling
interval to obtain discrete time sequences that we denote by

and for . Then,
for a given initial and and a final de-
sired location and heading, the code will generate trajectories
between these two points, which are minimum time/distance
trajectories.1 For convenience, let

The environment is modeled as a two-dimensional (2-D)
plane, the upper right quadrant of a Cartesian coordinate system
with axes . The upper boundaries along both axes are
denoted by . In the environment we assume that there can
be a variety of stationary targets, threats, entities that are
both targets and threats, and other entities that may be neither
targets nor threats. For convenience, we will refer to all these
as “objects” of different types. Similarly, a “priority,” that is
proportional to the object’s importance, can be specified. It is
assumed that at most objects are in this square region, but
initially, we know neither where they are nor the number .
We also assume that no objects lie on the boundaries of the
region. The th object has characteristics specified by its state
which is , where , and are
the horizontal position, vertical position, and orientation of
the th object in coordinates. It is assumed that the
objects are at distinct points (i.e., there are no two objects that
are at exactly the same location, but with the same or different
orientations) since then, we can number the objects and thereby
uniquely identify them. Let be a number representing the
type of object for the th object. Finally, represents
the amount of damage to an object due to an attack, with
representing that an object is completely destroyed. For conve-
nience, let and .

B. Sensing, Tasks, and Actions

AAV sensors return the position, orientation, and other
aspects of the objects but do not know their indexing

of the last subsection. Hence, AAV will
number the objects that it finds, in the order it finds them, by

. If more than one object is found by a sensor at
the same time, then the AAV just orders them arbitrarily.

We assume that each AAV has a sensor that can be
commanded to operate in different modes and we let

define the sensor state
of AAV , where

and . The values
of are the levels of search, clas-
sification, attack, and verification certainty (probability),
respectively, by the th AAV for the th object. Initially, we use

1Here, we used the development by AFRL/VA Control Science Center of Ex-
cellence (CSCOE) and the code from the public release of their multi-AAV sim-
ulation to generate the optimal path trajectories in MATLAB.



FINKE et al.: STABLE TASK LOAD BALANCING STRATEGIES FOR COOPERATIVE CONTROL OF NETWORKED AAVs 791

Fig. 1. Area of interest, vehicle, and sensor footprint.

“ ” as a symbol for “not known” and any element of
or could hold such a value. Let .
We assume AAV has a “footprint” , as shown in Fig. 1,
where represents the depth of the footprint, represents
its width, and is the distance from AAV to the center of
its footprint for . For convenience, we assume
that for some positive integer , so we may tile the
region of interest with sensor footprints.

There are four task types that the AAV can perform which
are search (where the object is detected), classification (to de-
termine the type of object that was found via search), attack, and
verification (to evaluate the level of damage after an object is en-
gaged). We will number the task types in the following order: 1)
search; 2) classification; 3) attack; and 4) verification. In order
to perform each of these tasks, the vehicle must be in an appro-
priate position and orientation as follows.

1) Search for Object Detection: Tile (partition) the 2-D envi-
ronment with sensor footprints with search center points

at , for , and assume that
to consider the th cell of this tiled region to be searched
some AAV must, at least at one time, be at one of the four
positions and orientations given by

which correspond to having the vehicle approach the ,
, points from the left, bottom, right, and

top (respectively) at a “standoff distance” (see Fig. 1).
When this position and orientation are achieved, if there
is perfect sensing, the sensor of AAV returns , and

for any object in the sensor footprint . AAV num-
bers the objects according to the order it found them and
then labels the object information with so that it knows

, , and for any object in the sensor footprint,

which coincides with the th cell. At the same time, it re-
turns for each object found in the footprint by AAV
. To avoid pathological cases that arise when objects are

placed right between cells of the tiled region, we assume
that when a cell is searched the search includes the left and
lower boundaries of the cell, but it does not include the two
endpoints lying opposite to where the boundaries join. We
assume that the same object cannot be found by searching
two different cells.

2) Classification: After an object is found via search, it may
need to be classified. Let denote a classification angle.
In order to classify an object, it must be found and for some
AAV

so that the object is in the center of the footprint and the
AAV is approaching from . A typical choice for
might be so that the AAVs will approach from
the side of the object. When classification occurs for object

the sensor provides and .
3) Attack: Let be used to define which angle to attack the

object at and let be the standoff distance from the object
in order to attack it (in some applications ). To attack
object at time , AAV must have

Here, we let so that the AAV approaches from the
head of the object. Upon attack, nothing about the environ-
ment is sensed, but the AAV computes the level of attack
certainty for target .

4) Verification: Let denote a verification angle. To verify
object at time , AAV must have

A typical choice is . When verification occurs, the
sensor provides and .

C. Communication Network

Here, we assume that communication links and the overall
topology are fixed, there is sufficient link capacity to transmit
the required information, and that the only imperfection on a
link is a possible delay in transmitting/sensing information.
These delays should not be thought of as arising only from
delays on network links, but also from processing delays
(e.g., from image processing or coordinated operation with a
human), occlusions and sensing/communication range con-
straints, or temporary loss of a communication link on vehicles
(e.g., via jamming or noise). The communication network
topology is defined via a directed graph , where
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is the set of nodes (the vehicles) and
is a set of directed arcs representing the

communication links. If , this represents that vehicle
can send vehicle information. We assume that

since any local information on a AAV is known to that AAV.
We assume that for all there exists , such that

so all vehicles are connected to the network. Also,
we assume that for any there exists a path along arcs in to
any . Let be the set of AAVs that AAV

can send messages to and receive messages from.
Next, we must represent how information is passed from one

vehicle to another. We assume that the maximum delay between
two vehicles and is given by (this
notation is used for convenience later on). For representation
simplicity, we will simply view each communication link
as a memory that holds the last values of the vectors
of information transmitted between AAVs and . Denote the
vector of information that AAV transmits AAV at time
as . A delay of up to units on a
link can be represented by having each link have a state vector

. Let
be a vector of for all so that it represents all
information received by AAV via communication links. Note
that the first element in is based on the index be-
cause we assume it takes at least one time step to transmit in-
formation. Let . The specific form
of for depends on the design of the cooperative
controller. We will specify in Section III.

To model a deterministic fixed delay
between AAV and AAV , we will only allow the receiving
node to pull the delayed value off the link at
time . An unknown but bounded delay could be represented via
a random choice of which element to pick from the past vectors
that are currently stored (i.e., random choice of

); Here, we assume that
, so that messages are not received out of order.

D. Observation and State Equations

Next, we define the sensor modes, attack mode, and the in-
formation that is gathered from sensing and communications.
Let indicate that AAV should search, classify,
attack, verify, or do nothing, and let . The
AAV controllers will choose these values, and then move to
the appropriate location to perform the task. Next, we define the
observation map for AAV , that is the sensed information at
time for AAV , by

(1)

and let . Hence, each AAV knows its
own position and orientation (e.g., it may obtain this via
onboard sensors and GPS), and sensed information (e.g., levels
of certainty) about objects via its own sensors . Also, we
use to represent what AAV measures at time about
object and . If AAV is in the cor-
rect position and orientation (as define above) to sense object ,

then so that it senses the object
position and orientation. Finally, notice that when a
value is not returned for neither the object type nor the damage
level. We represent this with the “ ” entry in . When

(respectively, ) and AAV is in the correct position
and orientation, we get to classify (verify) object , then
holds ( , re-
spectively). Notice also that , the vector of information
received by AAV from any AAV such that at
time , is the measured value of , and is part of the mea-
sured output for AAV . This means that information in
is always delayed information received at time (at least by one
time step). For example, for delays on link

is a vector of , i.e., received
values from all AAVs connected on the network to AAV ,
but delayed by .

Next, we define how the plant state evolves. The state has
four parts: , and . We have already ex-
plained how to generate . Next, we will, in turn, explain
how to generate , and . Suppose

. To
define , first note that since objects are stationary, the
positions and orientations of all objects stay the same. We also
assume that the objects types do not change. All that remains
are the damage levels of the objects and must rep-
resent this. Here, when any AAV is in the correct position and
orientation it may attack object at time and to model simul-
taneous attacks we let , where

is the amount of damage inflicted at time on object
by AAV (defined so for all ).

Next, consider how to define . Other ways to de-
fine this for different levels of uncertainty are discussed in [20].
Here, we consider the case where there is a high scenario uncer-
tainty, but AAVs have perfect sensor capabilities. In this case,
there is a small enough amount of uncertainty with respect to
task completion so that we do not have to repeat tasks, but
high enough so that upon completion of a task an AAV only
knows whether another task needs to be completed for the ob-
ject, and what task is needed. Hence, upon sensing object
AAV will have or representing its confi-
dence in whether or not it found object . Regardless, we con-
sider the task of searching the region in which object was
found to be completed. Classification is assumed to perfectly
distinguish between the true and false targets and appropriately
indicate whether to attack ( for a false target and it is not
attacked, and for a true target and it is attacked). Upon
attack, we have with equal probability representing a
known successful attack so there is no need for a verification, or

representing that there is uncertainty as to the attack’s
effectiveness, so there is a need for verification. A verification is
performed with the result that and is sensed and
stored for postmission analysis. Hence, once an object is found
by search and classified as a true target, it is attacked. If there is
uncertainty in how good the attack was, the target is then veri-
fied but then ignored for the remainder of the mission. The ini-
tial object type distribution and the effectiveness of the attacks
will determine how many tasks must be completed to finish the
mission.
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Next we must define how is generated. Here, we
simply assume that given

we simply shift the values at each time step. This represents that
at time we can get new transmitted information, and hence
each AAV can get an updated received value from each AAV
with which it communicates.

III. COOPERATIVE CONTROL STRATEGY BASED

ON LOAD BALANCING

According to the model, as the mission progresses AAVs
sense and react to the environment and thereby obtain new tasks
and complete others. One of the main challenges in cooperative
control is how to manage this information that becomes avail-
able as the environment is explored, so that the benefits of feed-
back can be exploited. In this section, we introduce a coopera-
tive controller that uses task-load balancing. For it, AAVs coop-
erate by sharing the work (load) to complete the tasks by passing
tasks and other relevant information over the network.

Load balancing provides a distributed control scheme that
evenly allocates load over the network of vehicles and is a flex-
ible and scalable approach applicable to small or large groups
of AAVs. As the mission progresses load balancing exploits
feedback information about the status of objects and vehicles to
persistently try to maintain a balanced task load, thereby forcing
cooperation. The definition of “load” normally depends on the
mission objective. We assume that the task load on vehicles can
be partitioned into discrete “blocks.” The largest block has size

and the smallest block has size , so that . We also
assume that all vehicles are trying to balance their load within

, which means that the load on neighboring AAVs only
differs by at most . Under these assumptions the best we can
guarantee is that neighboring vehicles (i.e., ones within one
communication link) will balance to within if we use
a distributed balancing policy. Some definitions of load are as
follows.

1) Number of Tasks: In some scenarios vehicles may want to
balance the total number of tasks in order to: a) avoid under-
utilization of some vehicles due to them not having tasks to
perform while others have many to perform and b) to guar-
antee that all vehicles will start heading back to their home
base within a certain number of tasks (time) from one an-
other (which forces cooperation since there is pressure for
noAAVtogohomeuntil everyotherAAVhasonlyonemore
task to complete).

2) Path Lengths/Travel Time: By balancing path lengths (or
equivalentlytravel timeifvelocityisconstant)neededtoper-
form the tasks, we also avoid underutilization in the group of
vehicles and force cooperation. Furthermore, we can guar-
antee that all vehicles will start heading back to their home
base within a certain number of time steps from one another
(e.g., assuming we know the longest time it could take to
travel between any two objects or search points).

To define our cooperative controller we need to specify what
information is passed between AAVs, how tasks are scheduled

on individual AAVs, and who to pass to. We assume that in-
formation that is received can be stored by a AAV so that re-
transmission of the same information is not necessary. For con-
venience in the notation we will, however, indicate retransmis-
sion of an entire vector when only some or no information in
that vector changes. The local controller for the th AAV can be
modeled as a dynamical system

A. Local AAV Controller State and Command Input

First, let from (1) so all measured local infor-
mation is available for making decisions. Let
represent that task type is scheduled to be performed on search-
point or object at step by AAV . We define the state of
the local controller which is
composed of the schedule for AAV which is an ordered list

at time (e.g., is the task on
the schedule at time that is currently being performed using

from ), that is the set of unscheduled tasks, and
(with components ) that is the accumulated informa-

tion on the objects sensed by AAV or ones that other AAVs
communicated to AAV . We assume that tasks belonging to

cannot be passed to neighboring AAVs, whereas tasks in
can. Next, we define the initial state . The list

is the initial schedule and for convenience, here we assume that
the only task type that is scheduled initially is a search task. It
is assumed that the set of search points is given by , where

and an element in holds search-point position and
orientation for search as discussed earlier. This set is fixed
so it is not part of the state. It is simply used in ,
the search task, to specify where it needs to do a search task. It
is assumed that all AAVs hold the same . In some cases,

which would represent an initial task distribution
such that tasks in can be passed to neighboring vehicles
for . Basically, and are defined by a priori in-
telligence about the area of interest. The initial state also
defines so that no information on object lo-
cation has been sensed.

For the task types of classification, attack, and verification
, to specify the meaning of , we need

information that is sensed during the mission about object
(i.e., we need information from ). The information

comes in asynchronously as information is sensed about
the environment. This needs to be stored in the controller to keep
track of all information that AAV has gathered about each ob-
ject . Again, denotes this accumulated information at
time that is stored in the controller for all . Moreover, other
AAVs may send tasks and the associated object information to
AAV and this will also be accumulated in . More discus-
sion on this point follows below.

Next, we change if was
completed at time . In particular, we let

if is completed
otherwise
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where is the null task, and we assume that the task ordering is
appropriately renumbered. Task is completed at
time if for for
for ; or for
The and information comes from in
the vector.

Next, let hold the set of all received infor-
mation at time

where . Let be the set of all the infor-
mation sent by AAV at time defined by

where , and we assume that at any time an
AAV may pass at most one task to any of its neighboring AAVs
(note that it may still pass different tasks to several AAVs at the
same time). This task will be put in for all AAVs

, where represents the set of vehicles AAV passes
load to at time . Suppose that the task being passed is denoted
by which is the task passed from AAV to
AAV such that . Notice that at time , and

so that no messages have been
received or sent. Moreover, if
for all . Notice also that and are not
part of the controller state . They are used to define the set
of unscheduled tasks [which is part of ] and the controller
output , respectively.

Given the information from , in particular , we can
define the new tasks that arrive at the network of AAVs via AAV

at time , which we denote . Here, let the “new” set
of unscheduled tasks be ones that arrive via sensing and actions
[information from ], or the network via , combined
with unscheduled tasks from the last step . Define it as

if

if

if

if

for some

if

for any

Here, the first set is the set of unscheduled tasks, and the next
three sets in the union defining are the set of classifica-
tion, attack, and verify tasks that are added to AAV due to its
own sensors or actions, respectively. The fourth set in

collects all tasks on objects that are known to AAV , that are
received through the network (e.g., AAV may have found the
object and given the classification task to another AAV and then
that AAV could have given the attack task back to AAV ). The
fifth set in the definition is the set of tasks on objects
AAV did not have any information about (this forces its local
object index to increase by 1). Hence, we think of new tasks
that arrive over the network in the same way as we do of new
tasks arising from a AAV using its own sensors and taking ac-
tions. In this way, the AAVs are cooperatively sharing sensed
information.

AAV also passes the accumulated information about object
, its current schedule , and its set of new unscheduled

tasks . Hence, the messages sent over the network, for
has the form

Also, for , but

so that at each time instant, each AAV transmits to its neighbors
its current tasks since this information is used by the other ve-
hicles. Basically, contains information that is required
for the vehicles to cooperate. Here, . In par-
ticular, the output , so it holds
the commands on how to move the vehicle, what task it should
perform at each step, and the information that should be trans-
mitted to its neighboring AAVs at time . Here, if we have
then and are specified.

B. Local Optimal Task Scheduling

Each AAV can compute an optimal task sequence to per-
form all tasks in (we use union to form a set
from the elements in a list and a set). Note that any

holds the location and orientation
of the th object to perform task on. These locations and ori-
entations will then define the distance (cost) to travel from one
object to another and perform the corresponding tasks. Also, the
first element in the list remains the first element in the
optimal sequence (since this is the object AAV is approaching
and we do not allow any task to be passed over
the network). When computing this optimal sequence, we let
the cost from any node (object) to the first element be zero, to
represent the fact that AAV does not care about going back to
where it is currently located.

The optimal sequence can then be found by solving an
asymmetric traveling salesman problem (TSP) [27] or, more
generally, a mixed-integer linear programming (MILP) problem
(which allows multiple constraints to be taken into consider-
ation [28]). Objects are “cities” and costs are distances along
feasible AAV trajectories. For both definitions of load, as the
number of tasks or as the path length to perform tasks, AAVs
use the TSP algorithm to obtain an optimal sequence that is then
used to define , if and .
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In words, TSP specifies the next locally available task (those in
) if all scheduled tasks have been performed. Note that

this local optimization does not affect the proof in Section IV.

C. Task Scheduling, Balancing, and Passing

To complete the definition of , we need to define
, and . This will then precisely define

the distributed decision making strategy since it chooses what
task any AAV should pass (if any), and how its local scheduled
and unscheduled tasks evolve over time.

Let denote the length of a list, the size of a set, or for
scalars, the absolute value. If , there is at least one
task in the unscheduled set of AAV that may stay unscheduled
in , or be sent to any of its neighboring AAVs (since any
task in can be considered for cooperation). If

, we will choose element to be such a task. Recall
that represents the set of vehicles AAV passes load to
at time . Then, if , for

if
otherwise

otherwise, if

if
otherwise

where the element in is determined by having the
TSP algorithm, which we denote by , return the first element
of an optimal sequence of performing all unscheduled tasks, as
we discussed above.

If , then

which arises when nothing has been sensed or attacked, and
no new tasks have been received over the network. If

, then AAV starts returning to the home base at time
.
Let be the measure of the load on AAV

where is a measure of the length of the task schedule of AAV
(e.g., it could be the number of tasks on or the path

length to execute the tasks on ). It is important to no-
tice that the dynamics of the model defined in Section III drive
the dynamics of . It will be the key variable in our analysis
below. Let be the load “perception” AAV has about

AAV at time (i.e., it is the amount of load it thinks holds).
Let denote the load AAV passes to AAV ; it is the
amount of load removed from AAV when passes to AAV .
We also define as the amount of load AAV will
receive due to AAV sending load to at time . Then, the
following conditions define a class of load passing policies for
AAV at time

1) if

2)

3) If for some then

where

4) If for some

then

Any load passing controller that satisfies conditions 1)–4) be-
longs to the class of controllers of interest. Condition 1) says
that AAV may only pass load to AAV if its load perception
about AAV at time is lower than its own load by more than

. Condition 2) limits the amount of load that AAV can pass,
so that the remaining load on AAV after passing some load to
some neighboring AAVs is still larger than the minimum per-
ception of load of all its neighboring AAVs before passing the
load. Condition 3) means that if AAV does not perceive it-
self as being balanced within with all of its neighbors, then
it must pass some load to the least loaded neighboring vehicle

. If , condition 2) implies condition
4) (i.e., if vehicles are trying to balance total number of tasks).
However, if this is not the case, then approaching a given ob-
ject or search point means a different load size for different ve-
hicles depending on their current positions and the location of
other objects that are scheduled to be visited (e.g., if vehicles are
trying to balance total path length, then to visit different objects
means different tours for different vehicles). If , then

. This completes the definition of .

IV. THEORETICAL ANALYSIS OF LOAD BALANCING

So far, we have modeled the plant (vehicles, objects, sensors,
and the communication network) and the cooperative control
strategy based on load balancing. Next, we analyze closed-loop
system properties. For convenience, we assume for
all and that each AAV will have only one locally
scheduled task, that is for all and for all , if there
is a task available.

Here, we are only considering properties of the evolution of a
subset of the state variables of the closed-loop system, i.e., state
variables that represent task load passing and sensing, since we
only seek to verify properties of the load balancing algorithm.
Let this subset of the state be and suppose
it is composed of three “substates.” Let rep-
resent the loads of the AAVs at times
(the current load of all vehicles and all the past load values up to
the maximum delay ). The first column represents the loads
of the AAVs at time , that is , the second
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column represents the loads of the AAVs at time , and so
on. Let represent the loads of the AAVs
at times . The first column rep-
resents the loads of the AAVs at time , the second column
represents the loads of the vehicles at time , and so
on. Let represent all of the loads in transit
between the vehicles at times . The
first column represents the loads in transit at time , the second
column represents the loads in transit at time , and so on.
Then, the state may be represented as

Notice, that since we assume a maximum delay of in both
transmitting and receiving information, must hold the load
of all vehicles from time back to .

For convenience, we define some notation. If is a matrix,
then is equal to the sum of all of the elements of . Further,
let so that the sum of the elements
of column of is equal to the total load of the system
at time . Note that the total load of the system is
not constant as it is in [21] and [23] since load is measured
differently by different AAVs. Therefore, it is possible for AAV

to pass load to some neighboring AAV and increase or reduce
the total amount of the load of the network. However, when AAV

passes some load to AAV , it will always be the case that for
, because we assume that only one

task is passed at a time and we assume there exists a maximum
load size . With this in mind, note that

(2)

since there is only a finite amount of load on the vehicles, and
there is at most one task per object on the network (defined by
how new tasks arrive at the network of AAVs in Section III-A)
at any time , so that . Therefore,
we know that remains bounded at all times.

A. Achievement of Task Load Balancing

Next, we want to define an invariant set, such that any state
that is in the invariant set exhibits the following proper-

ties at time : 1) the load between any two neighboring AAVs
is balanced within and 2) there is no load in transit between
vehicles. Let , and

. If is a matrix, let denote the ele-
ment in row and column of . Choose the set as

and

and

The proof of the following theorems are in the Appendix.

Theorem 1: For a network of AAVs with delays and ve-
hicles persistently trying to balance their load the invariant set

is exponentially stable in the large.
Notice that load balancing condition 1) in Section II is neces-

sary. If condition 1) is removed, then it is possible that vehicles
may pass load to their more heavily loaded neighbors. In this
case, the least loaded vehicle may pass load to some of its neigh-
bors. Hence, the lightest load in the network may decrease and
exponential stability will not hold. If condition 3) is removed,
it is no longer true that the least loaded vehicle on the network
must increase its load after a finite number of time steps. Hence,

is no longer exponentially stable. Condition 4) in Section III
only sets a limit on the rate the total network load may grow at
each time step. This condition can be used to determine a spe-
cific upper bound for the exponential decay, but is not required
for the proof in the Appendix (since assuming a maximum load
size is enough).

B. Vehicle Network Topology Effects

In the last subsection, we did not assume any characteristics
about the topology of the communication network other than
there exists , such that for all . Let

be the maximum numbers of neighbors of any
AAV and let be the maximum number of links that must
be spanned to reach any vehicle from any other vehicle

.
Theorem 2: For any network of AAVs with delays.

1) The least loaded vehicle increases its load by at least

every DSR time steps, where and must be computed
for a particular discrete load network.

2) If we balance the total number of tasks, all ve-
hicles are guaranteed to be balanced after

time steps.
Notice that the number of objects , the number of vehicles ,
and the maximum communication delay , clearly slow down
the rate of convergence (e.g., in a worst case analysis as we do
here). Intuitively, this is what we would expect. Other param-
eters like that appear in the denominator in Theorem 2-1
may be misleading in the sense that a decrease in appears to
accelerate convergence. However, this is not the case since The-
orem 2-1 is just a lower bound. Moreover, some variables are
affected by other parameters of the model. Here, the maximum
number of links that must be spanned to reach any vehicle ,
and the maximum number of neighbors of any AAV , seem to
have a bigger effect on the load dynamics, than the total number
of network links , itself. More discussion on this will follow
later.

V. SIMULATIONS

To measure how well the mission objective (here, mission
time to complete all tasks) is met by the fleet of vehicles, we
first need to choose a particular load-balancing controller. Here,
we assume that at time , AAV passes load to some vehicle

only if , so that ve-
hicle only passes load to the vehicle perceived as least loaded
(if ). If several vehicles are perceived as
least loaded, vehicle chooses which one to pass to arbitrarily.
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Fig. 2. Performance degrades as network delays increase. The error bars show
the standard deviation of every data point which corresponds to the average
mission time of 60 independent mission runs with varying target location.

If the load perception of all neighboring vehicles is higher than
its own load, vehicle does not send any tasks over the net-
work. To determine the initial task distribution among vehicles,
we solve in MATLAB for an optimal task distribution via MILP
that minimizes the mission time if every object were to be vis-
ited once (i.e., not considering scenario uncertainty by tasks that
arise during mission execution).

We will first study the effects of network topology and
random but bounded communication delays between vehi-
cles. We choose a scenario with five objects, a sampling time

s and perform Monte Carlo runs by letting the
maximum communication delay between vehicles vary from
5 to 100 s. The results are shown in Fig. 2. The bottom curve
shows the case where AAVs are fully connected, so they can
all cooperate with each other. The middle curve represents
a ring topology case. For a four vehicle mission this means
that two pairs of vehicles are not connected to each other, and
thus, cannot “directly” cooperate, meaning that a task cannot
be passed directly between these two vehicle pairs. Note that
a task could still be passed between these vehicles via another
AAV, but larger network delays make this less likely. The top
curve represents the case where AAVs use a line topology, so
that there are three pairs of vehicles that cannot directly coop-
erate with each other. Clearly, in all cases the average mission
time goes up as the network delay increases as one would
expect. Note, however, that the delays have a more significant
impact for more sparsely connected communication topologies.
This is due to two reasons. First, if tasks are transferred over
a path of several vehicles, then delays accumulate. Second,
when direct cooperation is not possible, poorer coordination
between subgroups of AAVs occur and mission time increases.
Next, note that network topology seems to have little effect
when small communication delays are present, but becomes
more relevant as they increase. This is due to the fact that
when delays are small travel times have the dominant effect

Fig. 3. Cooperative versus noncooperative case.

on lengthening the mission. As the spatial distribution of tasks
increases, the effects of travel times will become even more
significant. However, if the spatial distribution decreases the
communication delays will have a relatively large impact.

Next, we compare the performance of the cooperative
strategy to a noncooperative strategy. In the noncooperative
case, vehicles distribute their tasks initially in the same way
as for the cooperative controller. As the mission progresses,
however, AAVs do not balance their tasks since there is no
communication network. Due to the lack of communication
each vehicle independently schedules new tasks that arise as
the mission progresses. Fig. 3 shows the performance of both
strategies. The bottom curve shows the average total time to
complete a mission with five, six, and seven objects using load
balancing, and assuming no communication delays. The middle
curve shows how performance degrades when we introduce
a random but bounded delay (30 s maximum) between the
vehicles. The top curve shows the mission time for the nonco-
operative case. Note that communication delays significantly
lower the benefits of cooperation, and can reduce performance
of the cooperative controller to the noncooperative one. Note
also that the data point for a specific number of objects is
computed as an average of 60 mission runs. For some particular
missions scenarios, it might be possible that the noncooperative
strategy performs equal to or better than the cooperative one,
so that cooperation does not show any benefits. The results
here show when we can, on average, expect an improvement
in performance by using load balancing and, thus, be able to
justify the cost of implementing a communication network.

Next, for a given object distribution, let the average time be-
tween objects be the time it takes on average to travel from one
object to another and perform any task. Fig. 4 shows that as the
average time between objects increases from 32 to 72 s local
path planning (e.g., via TSP) becomes more important. Each bar
represents the average of the average mission time for scenarios
with 8, 12, 16, and 20 objects. While all vehicles try to bal-
ance path length, the darker bars shows the average performance



798 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 5, SEPTEMBER 2006

Fig. 4. Performance measure with and without local optimal scheduling. The
worst standard deviation in any of the two cases is 101 s.

Fig. 5. Balancing number of tasks versus balancing path length.

when local optimal scheduling is used (e.g., locally, AAVs com-
pute TSP-algorithms as they balance their load). As the average
time between objects increases, we see more benefits in using
local optimal scheduling as one would expect. Next, Fig. 5 com-
pares the performance of a cooperative controller that balances
path length with one balancing the total number of tasks. This
shows that balancing path length requires more computations,
but results in better performance. This is due to gains from the
load balancing algorithm trying to minimize mission time by
passing in order to reduce individual AAV travel time.

Finally, we consider the effects of not satisfying all the load
balancing conditions described in Section III-C. We consider
a cooperative strategy that uses a fully connected communi-
cation network and vehicles try to balance their tasks in the
sense that vehicles with higher load pass tasks to vehicles less
loaded. However, this strategy will satisfy condition 1) only,
while the other conditions are not taken into account. Fig. 6

Fig. 6. Performance degrades when all load balancing conditions are not
satisfied.

shows how the strategy degrades when load balancing condi-
tions are not met. A closer look at the load dynamics (not shown
here) shows that the total load of the system does not reach a
steady state, but keeps on moving between vehicles until the
mission is completed (even when no new tasks arise). Thus, if
conditions 1)–3) in Section III-C are not met, vehicles fail to co-
operatively decide which vehicle should schedule which tasks
and a type of oscillation in task assignments across the network
degrades performance.

These simulation results suggest the following principle
in decentralized decision making in highly uncertain envi-
ronments. If vehicles schedule new tasks that arise while the
mission progresses, the “selfishness” of the noncooperative
strategy described above does not perform very well because
underutilized vehicles finish their tasks earlier and return to the
home base without cooperating with the remaining vehicles.
If vehicles pass to the least loaded vehicle without precisely
considering all load balancing conditions (e.g., if they are too
“generous”), then the asynchronicity of the problem creates
large loads of tasks that can cycle over the network. The lack
of agreement of where to schedule all tasks does not allow the
system to settle down, also degrading its performance. When
all load balancing conditions are met, it takes a finite amount
of time for decentralized vehicles to decide how to distribute
tasks that were not considered at the beginning of the mission.
Since the system task loads are guaranteed to converge, we
know all tasks will be performed, while trying to minimize
underutilization of the fleet.

VI. CONCLUSION

We first introduced a mathematical model for the coopera-
tive control problem for multiple AAVs. We then introduced a
class of cooperative strategies based on task-load balancing, and
provided Monte Carlo simulations to compare performance of
different strategies (e.g., to a noncooperative strategy) in order
to uncover system-level tradeoffs and principles of design and
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operation. Simulations showed that strategies persistently bal-
ancing the vehicles load perform better than strategies where
load was passed over the network, but load balancing conditions
were not strictly met, or where load was not shared at all. Other
aspects, like tradeoffs between achieving perfect balancing and
scheduling tasks far into the future remain future research direc-
tions, as well as the further study of task arrivals/departures and
its relation to the task throughput of the system (e.g., to deter-
mine capacity conditions, for task arrivals/departures, etc.).

We also performed a theoretical analysis of the load balancing
properties of the system. We presented sufficient conditions for
a distributed cooperative strategy based on sharing the task load
to achieve a balanced state of the total system load (e.g., by
showing the load distribution is exponentially stable even in the
presence of communication delays). For particular networks, we
then determined the specific time the system takes to settle down
after the last task was completed or found. It would be of interest
to be able to obtain similar results for a time-varying communi-
cation topology.

APPENDIX

A. Proof of Theorem 1

To study the ability of the system to automatically redistribute
load to achieve balancing, we employ a Lyapunov stability theo-
retic approach. For convenience, we first define some notation.
If is a matrix, then is equal to the minimum of all
of the elements of is equal to the maximum of all
of the elements of , and is equal to the sum of all of the
elements of , as defined earlier. Further, let be column

of recall is the th element in the th column. Let
. Choose

for all (3)

(4)

Notice that is the average load (total network load di-
vided by ) minus the minimum load, taken over times

, at any vehicle . Notice also that for
, at least one of the two cases hold: 1) there must be

two vehicles and , such that
for some and or 2)

there is some load in transit between at least two vehicles.
We first demonstrate that is bounded from above and

from below by our choice of and . We will
find a constant such that
for all . But notice that according to (3)
and (4) if , then . There-
fore, any value of will suffice for , and we need
only to be concerned with .

From (3) and (4)

and

(5)

Also

(6)

We must consider two cases. If
, then and

. It follows then from (5), that
.

On the other hand, if
, then according to (6)

it must be the case that

Once again, (5) implies that

Thus, we can conclude that for all

(7)

Next, let
and . We will find
a constant , such that .
Later, we will relate and , and using
(7), we can then relate to . No-
tice that for all so since

. As we mentioned
before, if at least one of the following cases must
be true. If there is an imbalance greater than between
neighboring AAVs, then ,
and, therefore, . On the other hand, it could be the
case that at time all neighboring AAVs are balanced within

, but for some and . Then we
can only guarantee that and,
therefore, . We conclude that is
always bounded from below by the lesser of the two bounds,
i.e., that .
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Next, because the network contains a finite number of blocks,
each of finite size, there must be some constant,

, such that for , . Recall
that . Thus, if we choose , it is clear that if

, then

and if , then

It follows that, for all

(8)

It is clearly true for all , that the total
load in transit at time is equal to the total system load at
time minus the load at the vehicles at time . Hence, if
is the column of that contains the load at the vehicles and
in transit at time , then for all

Since the total network load is bounded by (2), there must exist
a column . Note that
column may not be unique. In fact if the total network load
is constant (e.g., if we balance the total number of tasks), then

, so that represents
any column. Either way , therefore,

However, for all

for all . Therefore,
. It follows that:

(9)

Due to condition 2 in the load balancing policy and the bounded
delay, each of the load passes between neighboring vehicles at
time , must have been smaller than

(since the perception of AAV about the
load of AAV , may be a delayed value
by at most ). Therefore, the load in transfer between any
neighboring vehicles at time resulted from at most load
passes. Hence

(10)

Equations (8), (9), and (10) imply that

(11)

and (7) and (11) imply that

(12)

Because
, it is clear that
. Hence, using (12) and rearranging

some terms, we get

Therefore, it is always true that

(13)

We now show that there exists a bound from below for .
Notice that

Because
it follows then, from (4), that

(14)

Then, can be bounded from below in terms of
and by a sum of the elements where
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exactly one element of is equal to and the
remaining elements of are equal to . From
this analysis and (14), we have that

(15)

It is clear from the definition of and (3) that

(16)

We must consider two cases. First, consider
. According to (16)

(17)

Equations (15) and (17) yield

(18)

Now, consider
, so that

(19)

As before, the maximum load in transit at times
, is the sum of at most

load passes, each of which must have been smaller than
. Hence

(20)

Using (19) and (20), along with (15) yields

(21)

Because (18) and (21) both bound from below, we can
claim that is always bounded from below by the lesser
of the two bounds. Therefore, it is always true that

(22)

Next, we define a constant on which the rest of the proof will
depend. For a given discrete load network, there is a constant

, such that if AAV sends some load to AAV , then

, where and
for all . In words, measures how much

the load on a vehicle passing some load at time will differ
from the load of its minimum loaded neighbor. For the same
discrete load network, there is also a constant , such that
if and , then .
Let . Below, we will see that we will be able
to guarantee that the minimum load will increase by at least
within a finite number of steps of any time until the invariant
set is reached.

Note that is a nondecreasing function. To see
this, notice that AAV may pass some load to AAV only
if the perception it has about the load of AAV is less than
its own load (condition ). Furthermore, the balancing policy
allows AAV to pass only a certain amount of load, so that

may drop below its prepass load perception of AAV
, but not below its minimum prepass load perception of all its

neighboring AAVs (condition 2). It is clear that any load per-
ception about AAV must be larger or equal than the minimum
perception of all its neighboring vehicles. Mathematically it is
true that, , where

is the minimum load perception
AAV has about its neighboring AAVs at time . Note also,
that is an element in row

of . Since
for all , even after passing

some load to some vehicle , we conclude that
for all .

Next, fix and let be the set of all , such that
. First, we consider the case where

. Because for all , if
, then for all

. In words, this means that if at time the
minimum value in is in the first column of , then the
entire row must have the same value since the minimum is non-
decreasing, which will guarantee an accurate perception about
the minimum load of the system. Thus, for any two vehicles
and such that and , .
There must be time , such that if AAV
sends some load to AAV at time , AAV receives this load
by time . However, it might be the case that for some
there does not exist a neighbor such that and .
However, note that since , there must exist at least one
vehicle such that for some and note
that every vehicle in the network can be reached by AAV by
spanning fewer than links. Therefore, after , either
the number of least loaded vehicles decreases by at least one, or
the smallest load increases by at least . Because ,
the above passing and receiving scenario may take place
times, to ensure that for all and
for some . It is apparent that for

for all .
What happens if means that no vehicle is

guaranteed to have an accurate perception about the least loaded
neighbor. This case arises when tasks are passed at a very high
rate, so that the minimum load changes at least every
time steps. However, since this means that at least
every steps one vehicle must strictly increase its load,
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thereby not letting . Therefore, for at most
time steps without increasing the minimum load of the system.

Note that in the worst case the two cases described above can
follow one another. In order to guarantee that the minimum load
of the system will strictly increase, we need to consider both.
Thus, the minimum load is guaranteed to increase by after

time steps for .
It is also clear that there is some , such that

Therefore, it follows that

(23)

which implies that is exponentially stable in the large [24].
If the load blocks are of different sizes the must be calculated
from a worst case analysis.

B. Proof of Theorem 2

Let be the set of all vehicles such that and
. Similar as argued above, if , then
and vehicle is guaranteed to have an ac-

curate perception about the load on vehicle since
is nondecreasing. Then, notice that for , there must
exist at least one vehicle for all so that every
vehicle in the network can be reached by AAV by spanning
fewer than links. Therefore, after , either the number of
least loaded vehicles decreases by at least one, or the smallest
load increases by at least . Since the above
passing and receiving scenario can take place at most times.
Again, to ensure that for some
let . Equation (23) can then be rewritten as

Recall from (2) that . Since ,
we let , it follows that:

On the other hand, recall from (13) and (22) that

We conclude that

Therefore,

(24)

This completes the first part of the proof. The importance of
(24) is to have an estimate of how rapidly the load on all AAVs
converges within . In particular, it shows the tradeoff between
plant parameters and balancing rate.

Next, let us consider the case where AAVs try to balance
the total number of tasks and , so that each task repre-
sents units of load. Then, and, therefore,

for . Using (2) and (4),
we can bound by .
Then, we conclude that for some such that

DSR.
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