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A mixture of inteligent and conventional control methods
may be the best way to implement autonomous systems

INTELLIGENT CONTROL
FOR AUTONOMOUS SYSTEMS

NTELLIGENT CONTROL is the Fuzzy controlier

discipline in which control

algorithms are developed by

emulating certain characteris-
tics of intelligent biclogical sys-
tems. It is quickly emerging as a Reference
technology that may open avenues | input r(t)
for significant advances in many
areas. In fact, fueled by advance-
ments in computing technology, it
has already achieved some very ex-
citing and promising results.

Fuzzy systems, for example, de-
spite emulating human cognition in
only a simplistic manner, have dealt
successfully with vibration damp-
ing in flexible-link robots and have
also solved challenging problems in
process control. Another type of
intelligent system, the knowledge-
based controller (which is based,
for example, on expert or planning
systems), has been employed for
the management and coordination
of the activities of autonomous ro-
bots. Crude circuit or computer
emulations of biological neural net-

Fuzzy
inference

Output
Process

works have served as controllers

. A The controller in a typical fuzzy control system [top] consists of a rule base, a fuzzy inference
that can learn how to control h‘gb' mechanism, an input fuzzification interface, and an output defuzzifier. In the cruise-control appli-
ly nonlinear systems. And genetic cation illustrated [bottom], the system continually adjusts the throttle, u(t), in an attempt to min-
algorithms, based on principles of  imize the difference between the desired vehicle spacing, r(t), and the actual spacing, y{t).

biological evolution, have been
used for the computer-aided design of control systems and to
automate the on-line tuning of a cargo ship autopilot control
algorithm.

Unfortunately, along with these genuine achievements in
intelligent control, there have also been exaggerations and

trol technologies are incapable of handling nonlinear systems
and system uncertainties. The fact is that “conventional”
techniques have evolved substantially over the past several
decades. Proportional-integral-

derivative (PID) control and KEVIN M. PASSINO

inflated claims. In particular, some proponents of intelligent  state-space and frequency-dom- The Ohio State
control systems like to say (and write) that conventional con-  ain methods, optimal control University
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and robust control, the Kalman filter, ad-
aptive control, and Lyapunov techniques,
to name a few, have been highly success-
ful in solving problems in many areas.
Among the areas: vehicular control,
weapon systems, robotics, manufactur-
ing, power systems, spacecraft, aircraft
control, and process control.

Another problem with intelligent con-
trol is that some engineers get so excited
about the very idea of emulating intelli-
gent behavior (whatever that means) that
they tend to lose their objectivity about it.
Clearly, it is necessary to ask of this tech-
nology, as for any other innovation, three
important questions: for which problems,
if any, can it outperform tried-and-true
conventional techniques? Can its behav-
ior be verified by modeling, simulation,
nonlinear analysis, and experimenta-
tion—as is done for conventional control
systems? And, will it stand up to objective
cost-benefit analyses and the test of time?

Regardless of the successes of intelli-
gent control, there is a second closely re-
lated, but more important, trend in the
field of control today—the effort to inte-
grate the functions of isolated subsystems
to form highly autonomous systems that
can perform complex control tasks with-
out human help. This trend is gaining
momentum as control engineers, having
solved many problems, are seeking con-
trol challenges in which broader issues
must be taken into consideration.

For instance, in military aviation, engi-
neers are moving on from traditional ter-
rain-following, terrain-avoidance control
systems to a "pilots associate” computer
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robot has independently m

program that integrates the functions of
mission and tactical planning into a single
system, much as a human co-pilot does. In
the emerging area of intelligent vehicle
highway systems, to take another exam-
ple, engineers are designing vehicles and
highways that can fully automate the
human's responsibilities in steering, brak-
ing, throttle control, and route selection
to reduce congestion and improve safety.

Although it is clear that conventional
control will play a large role in the devel-
opment of such highly automated systems,
it is also possible that highly autonomous
behavior may be more easily achieved
with intelligent controls. Even more likely,
a combination of the two approaches may
prove to be the best solution.

To determine the best overall engineer-
ing methodology for the development
and deployment of autonomous sys-
tems—especially when safety issues are of
concern—it is helpful to have a frame-
work, or architecture, for the incorpora-
tion of intelligent control techniques into
autonomous systems. Before getting into
that area, however, it is best to review the
techniques of intelligent control and to
highlight those of their characteristics
that have proven to be especially useful in
particular applications

Fuzzy control

The workings of intelligent controllers
are usually described by analogies with
biological systems—for example, by
looking at how human beings perform
control tasks or recognize patterns and
make decisions. One of the most widely

ovable shoulder and elbow joints. In the absence of feedback fsee the red response curve on
the next page], the end of the robot’s arm will tend to vibrate quite a bit after a 90-degree

slew is commanded for each link.

publicized techniques for embodying
human-like thinking into a control system
is fuzzy control.

A fuzzy controller can be designed to
roughly emulate the human deductive
process—that is, the process people use
to infer conclusions from what they know.
A typical fuzzy controller consists of four
main components: a rule base, a fuzzy
inference mechanism, an input fuzzifica-
tion interface, and an output defuzzifica-
tion interface [see upper part of drawing
on the previous page].

The rule base holds a set of IF-THEN
rules that quantify the knowledge that
human experts have amassed about solv-
ing particular problems. It acts as a re-
source to the fuzzy inference mechanism,
which makes successive decisions about
which rules are most relevant to the cur-
rent situation and applies the actions indi-
cated by those rules.

The input fuzzifier takes the “crisp”
numeric inputs to the system and, as its
name implies, converts them into the
fuzzy form needed by the fuzzy inference
mechanism. At the output, the defuzzifi-
cation interface combines the conclusions
reached by the fuzzy inference mecha-
nism and converts them into a crisp num-
eric value as an output.

As an example of the working of a
fuzzy control system, consider an advan-
ced automotive cruise-control system [see
botiom of drawing on previous page].
The design objective is to specify the rule
base to represent the manner in which a
human driver in the follower vehicle
would act to regulate the inter-vehicle dis-
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tance. The rule base contents would be a
set of IF-THEN rules of this general type:

IF e(t) is positive-small
and de(t)/dt 1is positive-
medium, THEN u(t) 1is posi-
tive-medium

IF e(t) 1is positive-small
and de(t)/dt 1is negative-
medium THEN u(t) 1is posi-
tive-small

where e(t) is the error between the de-
sired and the actual inter-vehicle spacing
and u(t) is the throttle input to the fol-
lower vehicle.

The first rule listed above quantifies the
driver's knowledge that if the inter-vehicle
distance error is small—that is, the actual
vehicle spacing, y(t), is almost the same as
the desired spacing, r(t)—and the error is
increasing at a moderate rate, then the
throttle input of the follower vehicle
should be positive and large enough to
counteract the growing gap.

The second rule indicates that if the
error is again small, but this time it is de-
creasing at a medium rate, then only a
small throttle input should be applied,
since the follower vehicle is already mov-
ing to correct for the error.in the inter-
vehicle spacing.

A complete rule base consists of a
whole set of such rules in which linguistic
descriptions like “positive-medium” are
given precise meaning by fuzzy logic.
Since several standard methods exist for
implementing the fuzzy inference mecha-
nism, the main problem in designing a
fuzzy control system is the specification
of the rule base. Overall, the fuzzy con-
trol design methodology provides a
heuristic technique for constructing non-
linear controllers, and this seems to be
one of its main advantages.

Fuzzy supervisory control

It is often the case that higher-level
knowledge about how to control a pro-
cess is available along with the lower-lev-
el data on which simple control systems
operate. Examples include information on
how to tune a controller while it is in
operation and how to coordinate the ap-
plication of different controllers based on
the operating point of the system. For in-
stance, in aircraft control, certain key var-
iables are used in the tuning (scheduling)
of control laws, and these may be exploit-
ed by a fuzzy controller in a unique ap-
proach to the design and implementation
of a gain scheduler.

In process control, engineers or process
operators often have considerable heuris-
tic expertise on the tuning of PID con-
trollers while they are in operation. This
expertise may be codified and loaded into

the rule base of a fuzzy PID tuner to
ensure that a PID controller is properly
tuned at all times.

Another control application (this one
within the author’s personal experience)
is the selection and tuning of controllers

for a two-link flexible robot {see diagram
opposite]. With such a robot, the end of
the arm will vibrate quite a bit if no feed-
back control is employed [see red re-
sponse curve below]. Fuzzy and conven-
tional controllers developed to reduce the
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A The use of a rule-based supervisor [middie] to switch between two fuzzy controllers—one for
coarse movements and one for fine—dramatically reduced the movement of the end of the robot
arm [top, biue response curve] from the wild oscillations that occurred in the absence of feed-
back [top, red response curvel. With the fuzzy model reference learning control (FMRLC) [bot-
tom], very similar resuits are obtained [top, black response curve] but with no need to manually
contruct a rule base. (Note the control system conventions: a diagonal arrow indicates that a con-
troller is being tuned—not simply accepting input data. The inset box in the top drawing shows
schematically the initial [dashed) and final [solid] positions of the robot arms.)
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vibration worked reasonably well over the
entire workspace of the robot; however,
our experience indicated that control
could be made more effective if a supervi-
sor were added. That supervisor [middle
drawing on previous page] would coordi-
nate the action of two fuzzy controllers—
one for large-angle movements and one
for fine endpoint positioning—and would
provide the tuning appropriate to each
situation.

Accordingly, we added a supervisor with
rules that indicated that one controller
should be used when a link's endpoint was
far from its destination and the other when
it was near. The first controller was de-
signed to move the robot without injecting
energy into the flexible modes, while the
second was designed for fine positioning
so as not to amplify disturbances when the
links were near their endpoints.

The rule-based supervisor simply swit-
ches between the two controllers depend-
ing on where the links are relative to their
desired positions. The results it delivered
were excellent [see blue response curve
on previous page]l—as well they should
have been. After all, we had amassed years
of experience in the design of conven-
tional controllers for this testbed—some
of which we could load into the rule base.
Through this, and other experiments, we
have found that intelligent control can
sometimes capture valuable heuristic in-
formation, which may be difficult to in-
corporate into conventional controllers.

Fuzzy learning control

In other fuzzy control approaches, the
goal is to implement inductive, rather
than deductive, systems. These systems
not only can learn, but can also generalize
from particular examples—for example,
from the system's current behavior. Such
approaches typically fall under the rubric
of "fuzzy learning centrol” or “fuzzy adap-
tive control”. One promising approach is
called fuzzy model reference learning
control (FMRLC). With it, a fuzzy con-
troller is used in much the same way as in
the previous discussion except that it
begins with an empty rule base [bottom
drawing on previous page]. A “reference
model” with output y,(t) is used to char-
acterize the desired closed-loop system
behavior—that is, it holds the perfor-
mance specifications (for example, if the
reference model is a simple first-order
low-pass filter, then its time constant
specifies how fast the closed-loop system
should react to a step input). Then, a
learning mechanism compares y(t), the
actual performance, with y_(t) and de-
cides how to synthesize or tune the fuzzy
controller so that the difference between
y(t) and y,(t) goes to zero.

In particular; the learning mechanism

Genetic algorithm
] Population Process
% of
11 controllers model
Most-fit w9 AN
ost-fi p
controller rocess >

Direction of travel

iy

A Key to the operation of the genetic del

£,

contmller (GMRAC) [top] is a

genetic algonthm that maintains a population of controllers, which evolve in accordance to rules
like thase governing biological evolution. In a cargo ship steering application [bottom], it worked
surprisingly well [see resuits on next page]. In this case, r{t) is the reference input (ideally desired
heading), y,,,(t) is the reference model output (practical desired heading), y(t) is the actual head-

ing, and u(t) is the commanded rudder angie.

moves the centers of the output member-
ship functions [of the rules previously ap-
plied to create the error between y(t) and
¥(t)] so that the nonlinearity induced by
the fuzzy controller will force the actual
output, y(t), to track the desired one,
¥ult). The FMRLC has been successfully
applied to the flexible robot described
above, where it automatically synthesized
a fuzzy controller rule base that achieved
results {black response curve on previous
page] comparable to those obtained in
the rule-based supervisory control ap-
proach for which the rule bases were
manually constructed. In addition, the
FMRLC has been applied to the cruise
control problem described above, a cargo
ship steering application, anti-skid brakes,
and reconfigurable control for aircraft,
where it learns to compensate for failures
in aircraft systems.

Our experiences with the FMRLC
overall indicate that significant advan-
tages may be obtained from controllers
that can truly learn from their experiences
(while forgetting useless information), so
that when a situation is encountered re-
peatedly, the controllers will know how to

handle the later instances. This would ap-
pear to be an improvement upon those
adaptive controllers that perform some
adaptation every single time they en-
counter a situation, no matter how many
times they have met it before.

Knowledge-based control

hile fuzzy control techniques
similar to the kinds described
above have been employed in a

variety of industrial control applications,
more general knowledge-based controllers
have also been used successfully. For in-
stance, expert systems (computer programs
that roughly emulate the way an expert
thinks through a problem) are being used in
a supervisory role similar to the one illus-
trated on p. 57. Others, called expert con-
trollers, have been put to work controlling
complex processes. Such expert systems
allow for more ‘general knowledge repre-
sentation techniques (not just fuzzy logic
rules) and for inference mechanisms capa-
ble of implementing more complex reason-
ing strategies.

In addition, there are planning systems
(computer programs that emulate the way
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A The GMRAC works so well that the simulated cargo ship response overlies the reference mod-
el nearly perfectly [top] despite changes in the ship’s speed during the maneuver [second trace
from the top]. As would be expected, the rudder moves very little except to initiate the turn and
to make adjustments immediately afterwards {third trace from the top]. The slight differences

between the cargo ship response and the reference

view [bottom tracel.

experts plan) that have been used in path
planning and tor making high-level deci-
sions about tasks for robots. Although
these expert and planning system ap-
proaches certainly have promise, and
have had some successes in selected appli-
cations, opportunities still exist for them
to prove themselves in a wider context.

Neural networks for control

Next to fuzzy-logic systems, probably
no other intelligent control area has stir-
red as much interest as the application of
artificial neural networks for control. In

Aal

may be ined in the expanded

applying these networks, engineers trv to
emulate the low-level biological functions
ot the brain to solve ditticult control
problems. For instance, for the inter-vehi-
cle spacing control problem described
earlier [p. 55], an artificial neural network
may be trained to remember how to reg-
ulate the inter-vehicle spacing by being
repeatedly supplied with examples of how
to perform the task correctly.

Atter training, the neural network can
be implemented on the vehicle to regulate
the inter-vehicle distance by recalling the
proper throttle input for each value of the
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inter-vehicle distance 1and rate of change
of that distance) that is sensed. Other neu-
ral control approaches bear some similari-
ty to the fuzzy model reference learning
controller discussed above in that they
automatically learn how to control a sys-
tem by observing the systems behavior

Genetic algorithms for control

Yet a third approach to intelligent con-
trol is the one based on genetic algo-
rithms. Here. the goal is to embody the
principles ot evolution. natural selection,
and genetics from natural biological sys-
tems in a computer algorithm. Essentially,
the genetic algorithm performs a parallel,
stochastic, but directed search to evolve
the most tit population.

[t has been shown that a genetic algo-
rithm can be used effectively in the (off-
line) computer-aided design of control sys-
tems since they can artificially “evolve” an
appropriate controller that meets the per-
formance specitications to the greatest ex-
tent possible. To do this, the genetic algo-
rithm maintains a population ot strings that
each represent a ditferent controller (digits
on the strings characterize parameters of
the controller). It works on those strings
with the genetic operators of reproduction,
crossover, and mutation (representing
respectively, the survival of the tittest, mat-
ing, and the random introduction of new
“genetic material”), coupled with a fitness
measure (which often involves the perfor-
mance objectives) to spawn successive gen-
erations of the population.

After many generations, the genetic
algorithm trequently produces an ade-
quate solution to a control design prob-
lem. lts stochastic. but directed, search
helps avoid locallv optimal designs and
seeks to obtain the best design possible.

Another, more challenging problem is
trving to make controllers that evolve
while the system is actually operating. Re-
cently. progress in this direction has been
made by the introduction ot the genetic
model reference adapuve contraller
:GMRAC  Ttop part of drawing on preced-
ing page’ As in the FMRLC. the GMRAC
uses a reterence model 1o characterize the
desired pertormance. The kev to the
GMRAC s a genetic algorithm that main-
tains a population ot sirings representing
the candidate controllers. That algorithm
emplovs a model of the process, along with
process data, to evaluate the fitness ot each
of the controllers at each time step.

Based on these tiness evaluations, the
genetic algorithm propagates controllers
into the next generation through the
workings of the three standard genetic
operators. In the end. the controller that
is deemed most tit is used to control the
system. This allows the GMRAC to con-
tinually evolve a controller trom one time



step to the next, and hence to constantly
tune it in response to changes in the pro-
cess (variations in temperature, aging of
the plant, and so on) or in response to user
changes of the reference model.

As an example, consider a cargo ship
steering application [bottom part of draw-
ing on p. 58). In our simulation studies on
that case, we seeded the initial population of
controllers in the GMRAC with a random
selection of gains for a proportional-deriva-
tive (PD) controlter. Then we chose a refer-
ence model in accordance with the design
specifications, embedded a simple linear
process model in the GMRAC, and selected
an appropriate fitness function. Finally,
crossover and mutation probabilities of 0.6
and 0.24, respectively, were assigned, and
the GMRAC was ready for a simulation run.

The results were quite impressive [see
curves on preceding page]. Note that the
cargo ship direction tracks the reference
modet output nearly perfectly despite the
use of a nonlinear model of the plant and
variations in the speed of the ship during
the maneuver. (Lowering the speed makes
it harder for the rudder to steer the ship.)

On the basis of our results and a reading
of the literature [see To Probe Further, p.
62], we believe the GMRAC to be quite
promising as a new technique for stochastic
adaptive control. It provides a mechanism
through which alternative controllers can
be quickly applied to the problem when it
looks as if they will be useful. Moreover, it
has some inherent capabilities for learning
through the evolution of its population of
controllers.

Research activity in intelligent control
typically focuses on algorithms based on
fuzzy, expert, neural, or genetic principles
hierarchically interconnected as demand-
ed by different applications. Intercon-
necting diverse systems naturally raises the
question of stability. While some recent
work has focused on stability analysis of
intelligent control systems, a significant
amount of work remains to be done to
establish a sound theoretical approach for
the verification of the behavior of intelli-
gent control systems.

In addition, there is a need to focus
much more effort on detailed engineering
cost-benefit analysis to study the advan-
tages and disadvantages of intelligent con-
trol techniques and to determine whether
they have anything to offer over conven-
tional control approaches. Perhaps more
importantly, there is a need to study very
carefully whether and how intelligent
control may be used to implement auto-
nomous control systems.

Ultimate goal: autonomous control

Autonomous behavior has two basic
ingredients: high performance and unas-
sisted action. PID controllers can achieve
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only certain performance levels and pro-
vide for only a limited amount of automa-
tion. More advanced controllers tend to
offer higher levels of performance and
greater automation capability.

A key characteristic of highly auto-
nomous control systems is that they per-
form well under all process operating con-
ditions and performance demands-—even
in the presence of failures. While autono-
my may be achieved in a variety of ways,
the focus here will be on doing so with
intelligent control.

Intelligent autonomous controllers
ne good way to look at a general-
ized intelligent autonomous con-
troller is as a three-layer system

having an execution layer, a coordination
layer, and a management layer. The execu-
tion layer connects to the process under
control via sensors and actuators. The man-
agement layer interfaces with other systems
and with human operators. Information is
processed and transmitted between those
two layers through the coordination layer.

Each layer has a considerable degree of
autonomy. The execution layer, for exam-
ple, is not just a collection of data-acqui-
sition and actuator hardware. It executes
low-level numeric signal processing and
control algorithms such as PID, optimal,
adaptive, and intelligent controls; param-
eter estimators; and failure detection and
identification (FDI) routines.

The coordination level tunes, sched-
ules, supervises, and redesigns the execu-
tion level algorithms. It also handles crisis
management, planning and learning capa-
bilities for the coordination of execution
level tasks, and higher-level symbolic
decision-making for FDI and control
algorithm management.

The management level supervises the
lower level functions and manages the
interfaces with humans and other systems.
In particular, it interacts with the users in
generating goals for the controller and in
assessing the capabilities of the system.
The management level also monitors the
performance of the lower-level systems,
plans activities at the highest level, and
(in cooperation with human personnel),
learns at a high level about the user and
the lower-level algorithms.

Intelligent systems and controllers may
be employed as appropriate in the imple-
mentation of various functions at any of
the three levels of the intelligent auto-
nomous controller. For example, adaptive
fuzzy control may be used at the execu-
tion level for adaptation. Genetic algo-
rithms may be used at the coordination
level to pick an optimal coordination
strategy. And planning systems may be
used at the management level for se-
quencing operations.

Hierarchical controllers that mix intel-
ligent and conventional techniques are
commonly used in the intelligent control
of complex dynamical systems. Because
such systems demand a high degree of
autonomy, they require a variety of deci-
sion-making approaches to handle the
complex dynamical learning and reason-
ing involved.

Several fundamental characteristics
have been identified for intelligent auto-
nomous control systems [see To Probe
Further, the first book listed]. In general,
duties are delegated from the higher to
the lower levels and the number of dis-
tinct tasks typically increases as we go
down the hierarchy. Higher levels are
often concerned with slower aspects of
the system's behavior and with its larger
portions, or broader aspects.

There is then a smaller contextual hori-
zon at lower levels—that is, the control
decisions are made by taking less infor-
mation into account. Higher levels are
typically concerned with longer time
horizons and more extensive information.
It is said that there is “increasing intelli-
gence with decreasing precision as one
moves from the lower to the higher levels”
[see the second book in To Probe Further
and its references]. At the higher levels
there is typically a decrease in time-scale
density, a decrease in bandwidth, or sys-
tem rate, and a decrease in the decision
(control action) rate.

Finally, note the ongoing evolution of
the intelligent functions of an autonomous
controller: by the time one is implement-
ed, it no longer looks intelligent, just algo-
rithmic. (It is this evolutionary principle,
doubts about our ability to implement
“artificial intelligence,” and the fact that
implemented intelligent controllers are
nonlinear controllers that makes many
researchers feel more comfortable focus-
ing on enhancing autonomy rather than
achieving intelligent behavior.)

Automated highway systems

To make the operation of autonomous
systems and the notion of autonomy more
concrete, let us examine the problem of
automating a highway system. One possi-
ble general functional architecture for
automated highway systems is shown in
the diagram on the next page, which is
clearly based on our three-level model.
This example supposes that many vehicles
are operating on a large roadway system in
the metropolitan area of a large city. Each
vehicle is equipped with a system that can
control its brakes, throttle, and steering to
automate the driving task (whether for
normal operation or collision avoidance).

In addition, suppose that there is a
vehicle information system in each vehi-
cle that provides updated information to
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coordination level has a manager for
vehicle information, which makes
sure that appropriate vehicles get
the correct information about road,
travel, and traffic conditions. That
manager also manages and dis-
tributes the information on acci-
dents and vehicle tailures that comes
in from vehicles so, for example, the
control manager can navigate pla-
toons to avoid collisions.

A third coordination-level manag-
er, the one that handles traffic signal
control, has two main functions.
Using input from the roadway infor-
mation system, it adapts the traffic
light sequences at several connected
intersections in such a way as to re-
duce congestion; and it reports on
what it has done to the other subsys-
tems (for example, the vehicle infor-
mation systems).

Finally, the manager for roadway
information tells the other subsys-
tems about road conditions, acci-
dent information, and congestion. It
also passes information from the
other subsystems to the roadway for
use by the changeable message
signs—for example, re-routing in-
formation from the traffic signal
control manager. As shown in the
drawing [left], there are several
copies of each of the managers and
the entire coordination level as
needed for different neighborhoods
in the metropolitan area.

The management level deals with
the broadest aspects of traffic flow.
For one thing, it interfaces with oth-
er automated highway systems and
with traffic authorities—in the latter
case to inform police and emergency
services about accidents and to gath-
er information on construction,

The three-level organization of a generic intelligent autonomous controller is well illustrated in this
system for an automated highway system. In general, the upper layers process a wider variety of infor-
mation than the lower layers, and make decisions at a lower rate. For example, the management level
might reconfigure traffic signaling because of changes in the weather. In steering an individual vehicle,

the execution level, by contrast, would make many rapid decisions based on fairly little data.

both the driver and the overall system.
{The driver would be given data on such
subjects as the state of his vehicle's health,
traffic congestion, road construction,
accidents, weather, road conditions, and
the location of hotels and restaurants. The
overall system will be informed if the
vehicle has had an accident or, for exam-
ple, if its brakes have failed.)

The roadway is equipped with traffic
signal controllers—for intersections and
ramp metering, for example—and the
roadway information systems that provide
information to the driver and other sub-
systems. Among these other subsystems
are automatic signing systems that provide

re-routing information in case of conges-
tion, poor road conditions, and so forth.

It is these four components that form
the execution level in the intelligent auto-
nomous controller. Of course, they will
be physically distributed across many
vehicles, roadways, and portions of the
metropolitan area.

At the coordination level, there is a
manager for vehicle control that may co-
ordinate the control of closely spaced ve-
hicles to form “platoons,” which it then
may maneuver to prevent collisions. The
coordination layer may also provide in-
tormation about such control activities to
the rest of the system. In addition, the
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weather predictions, and major
events that might affect traffic. For
another, it advises tratfic authorities
on the best way to avoid congestion
given current weather conditions,
construction, and expected  traffic
loads. [t also monitors the performance of
all the subsystems in the coordination and
execution layers and suggests corrective
actions when necessary.

Notice that. in terms ot the fundamental
characteristics of intelligent autonomous
control systems, duties are successively
delegated as the controller hierarchy is
descended. High-level tasks at the man-
agement level involve such activities as
reconfiguring traftic signaling due to con-
struction and weather. At the coordination
level, the manager for roadway informa-
tion and traffic signal control may develop
new signaling strategies. And finally, that
strategy would be implemented at the exe-
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cution level on changeable message signs
and the traffic signal control strategy.

In short, the higher levels of the hierar-
chy are typically concerned with slower
and broader aspects of the system behav-
ior (although in an accident the traffic and
vehicle management center would react
as quickly as possible to alert emergency
vehicles). The lower levels of the system,
conversely, take much less into account in
reaching decisions, but tend to make deci-
sions at a higher rate. Control corrections
made as a vehicle steers around a curve
may occur every few milliseconds, while
the management center decisions may
occur every few minutes or hours.

Clearly there is the need for a signifi-
cant amount of interdisciplinary activity
to implement such a complex control sys-
tem. No single control technique (con-

ventional or intelligent) can be used to
solve the diversity of problems found in a
complex automated highway system.
While conventional systems and control
technologies will certainly find wide use
in automated highway systems, it seems
likely that intelligent systems and control
techniques will prove to be useful for at
least some functions, especially consider-
ing the focus on automating what has tra-
ditionally been largely a human control
activity. Similar statements seem to hold
for many other autonomous systems.

Where is this technology going?
The fields of intelligent and auto-
nomous control are in their infancy. We
are only beginning to find some answers
to the questions posed in the opening
remarks of this paper. While some “auto-

nomous” robots and vehicles have been
implemented, there is still much room for
improvement.

Current intelligent systems can only
roughly model their biological counter-
parts, and hence, from one perspective,
they can achieve relatively little. What
will we be able to do if we succeed in
emulating their functions much more
completely? Achieve full autonomy
through the correct orchestration of intel-
ligent controls implemented with new
computing technologies like neural net-
works? Could we achieve the same goals
with conventional methods and conven-
tional computing technology? Regardless
of how we proceed, the goal of achieving
autonomy is exciting and challenging,
and is likely to produce many technolog-
ical benefits along the way. *

To probe further

There are many general introductions to
intelligent autonomous control. From
Kluwer Academic Publishers, Norwell,
Mass., come An Introduction to Intelligent
and Autonomous Control (1993), edited by
P. J. Antsaklis and the author of this article,
and Intelligent Robotic Systems: Theory,
Design, and Applications (1992) by K. P.
Valavanis and G.N. Saridis. M. M. Gupta
and N. K. Sinha are the editors of
Intelligent Control: Theory and Practice
(IEEE Press, Piscataway, N.J., 1995), as are D.
A. White and D. A. Sofge of Handbook of
Intelligent Control: Neural, Fuzzy, and
Adaptive Approaches (Van Nostrand
Reinhold, N.Y., 1992).

For other general theories on intelligent con-
trol, see J. S. Albus's “Outline for a Theory
of intelligence,” IEEE Transaction on Sys-
tems, Man, and Cybernetics, Vol. 21, no. 3,
1991, and in the same publication, R. F.
Stengel's “Toward intelligent Flight Con-
trol,” Vol. 23, no. 6, 1993.

An explanation of the relationships between
traditional and intelligent control is given
in “Bridging the Gap Between Conven-
tional and Intelligent Control,” by the
author of this article. it appears in the
“Special Issue on Intelligent Control,” /EEE
Control Systems Magazine, Vol. 13, no. 3,
pp. 12-18, June 1993,

Also worth study is “Defining Intelligent Con-
trol-Report of the Task Force on In-
telligent Control,” by P. J. Antsaklis, its
chair. The report appeared in /EEE Control
Systems Magazine, Vol. 14, No.3, pp. 4-5,
and pp. 58-62, june 1994.

An introduction to fuzzy systems and control
is presented by LX. Wang in Adaptive
Fuzzy Systems and Control: Design and
Stability Analysis (Prentice-Hall, Englewood
Cliffs, N.J., 1994) and by this author with S.
Yurkovich in “Fuzzy Control,” in the Hand-
book on Control, edited by W. Levine (CRC
Press, 1996).
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More details on the fuzzy supervisory ap-
proach are provided by the last two
authors plus V. G. Moudagal in “Rule-Based
Control for a Flexible-Link Robot.” IEEE
Transactions on Control Systems Technol-
ogy printed it in Vol. 2, no. 4, pp. 392-405,
December 1994.

An introduction to the FMRLC technique is
contained in a paper by J. R. Layne and
this author, “Fuzzy Model Reference
Learning Control for Cargo Ship Steering,”
IEEE Control Systems Magazine, Vol. 13,
no. 6, pp. 23-34, December 1993,

For details on the application of the FMRLC
to the flexible robot, see V.G. Moudagal ,
W. A. Kwong , K. M. Passing, and S. Yur-
kovich in “Fuzzy Learning Control for a
Flexible-Link Robot,” IEEE Transactions on
Fuzzy Systems, Vol. 3, no. 2, May 1995.

Two introductions to expert control and plan-
ning systems for control, besides the book
by Antsaklis and Passino, are K. ). Astrom,
1. J. Anton, and K. E. Arzen's “Expert Con-
trol,” (Automatica, Vol. 22, pp. 277-86)
1986, and T. Dean and M. P. Wellman’s
Planning and Controi (Morgan Kaufman,
Calif., 1991).

Amid the many books on neural networks,
there is the one edited by M.M. Gupta and
D.H. Rao, titled Neuro-Control Systems:
Theory and Applications (IEEE Press, Pis-
cataway, N.J., 1994).

An excellent introduction to genetic aigo-
rithms is D.E. Goldberg’s Genetic Algo-
rithms in Search, Optimization, and Mach-
ine Learning (Addison-Wesley, N.Y., 1989).

More about genetic adaptive control is pre-
sented by L. Porter and this article’s author
in “Genetic Mode! Reference Adaptive
Control,” IEEE International Symposium
on Intelligent Control, pp. 219-24, Col-
umbus, Ohio, August 1994.

For greater detail about failure detection and
identification systems, go to the book
above by Antsaklis and Passino, or read H.
Rauch’s “Issues in Intelligent Fault Dia-

gnosis and Control Reconfiguration,” /EEE
Control Systems Magazine, pp. 6-12, Vol.
14, no. 3, June 1994.

More details on general learning control sys-
tems are presented in J. A. Farrell and W.
Baker's chapter in the book listed above
by Antsaklis and Passino.

For work on architectures for intelligent con-
trollers, see other chapters in that book by
J. S. Albus, B. P. Zeigler, L. Acar and U.
Ozguner, A. H. Levis, and A. Meystel, and
in the book listed above by K. P. Valavanis
and G. N. Saridis.

More information on architectures for auto-
mated highway systems (AHS) appears in
“ITS Architecture Development Program
Phase | Summary Report,” ITS America,
U.S. Department of Transportation, Nov-
ember 1994. For a general overview of this
area, see the /EEE Transactions on Vehic-
ular Technology, Special Issue on Intellig-
ent Vehicle Highway Systems, Vol. 40,
February 1991.
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