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Abstract

From the point of view of information processing the immune system is a highly parallel and distributed intelligent system which
has learning, memory, and associative retrieval capabilities. In this paper we present two immunity-based hybrid learning
approaches for function approximation (or regression) problems that involve adjusting the structure and parameters of spatially
localized models (e.g., radial basis function networks). The number and centers of the receptive fields for local models are specified
by immunity-based structure adaptation algorithms, while the parameters of the local models, which enter in a linear fashion, are
tuned separately using a least-squares method. The effectiveness of the procedure is demonstrated through a nonlinear function
approximation problem and a nonlinear dynamical system modeling problem.

© 2003 Published by Elsevier Science Ltd.
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1. Introduction

When a neural network is used to approximate a
function by interpolating data from that function, the
tuning flexibility of the approximator mapping is heavily
dependent on the structure of the neural network (e.g.,
the number of nodes or layers). Generally, a larger
approximator structure provides more tuning flexibility
with the potential to achieve higher approximation
accuracy (Barron, 1993). However, it may require a
larger training data set, and may cause convergence,
complexity, overfitting, and generalization problems.
Due to these trade-offs, we generally want a simplest
approximator structure that can achieve our desired
level of approximation accuracy. Approximator struc-
ture tuning algorithms can be classified into two broad
categories: incremental (a.k.a., growing or constructive)
algorithms and decremental (a.k.a., pruning or destruc-
tive) algorithms. Incremental algorithms start with a
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network that is too small to solve a problem, and add
new nodes to the network until certain terminating
performance criteria is met (Kwok and Yeung, 1997). A
variety of incremental algorithms have been developed
such as cascade correlation (Fahlman and Lebiere,
1990), projection pursuit regression (Friedman and
Stutzle, 1981), dynamic node creation (Ash, 1989),
Meiosis networks (Hanson, 1990), resource-allocating
network (Platt, 1991), and selective node activation
(Fabri and Kadirkamanathan, 1996). They are different
to each other in the structures of the growing networks,
the methods to assign the weights of the newly added
nodes, the strategies for freezing or retraining the
existing network weights, and the algorithms for
parameter training. In contrast, decremental algorithms
start with a large network capable of good estimation,
and trim it until the error becomes unacceptable. This
can be achieved either by estimating the sensitivity of the
error function to the removal of an element and then
removing the elements with the least effect, or by adding
terms to the objective function that reward choosing a
small structure (Reed, 1993; Hassibi and Stork, 1993;
Weigend et al., 1991; Sietsma and Dow, 1991; Kruschke,
1988).
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In this paper we develop two approaches for
approximator structure and parameter tuning using a
hybrid learning approach inspired from the natural
immune system. Here, “hybrid” refers to two essential
characteristics of the learning procedure: (i) we use
immunity-based concepts to specify the structure and
some approximator parameters and a conventional least
squares method to specify the remaining parameters,
and (ii) we tune both parameters and structure of the
approximators. To the best of our knowledge, this is the
first time that the metaphor from the immune system is
incorporated with radial basis function neural networks
for structure and parameter adjustment.

The paper is organized as follows. In Section 2 the
biological model of the immune system is described
(from which the motivation for our approaches are
derived). In Section 3 the spatially localized model in the
form of radial basis function neural networks is
discussed, which serves as the approximator structure
for hybrid learning. In Section 4 we propose two
immunity-based hybrid learning approaches capable
of allocating appropriate receptive fields and pruning
the redundant units for the spatially localized models.
A nonlinear function approximation problem is pre-
sented to demonstrate the potential of the proposed
methods. At the end of this section we will also
comment on the relationships between the work here
and the most relevant work in the applications of
artificial immune systems. In this way we will
further clarify the contributions of this paper. In
Section 5 the immunity-based hybrid learning
method is applied to model an aircraft jet engine
(General Electric XTE46).

2. Inspiration from the immune systems

The natural immune system is a complex system
which discriminates between own body cells (self) and
foreign pathogens (non-self), and defenses against
pathogens. From the point of view of information
processing, the immune system is a highly parallel
and distributed intelligent system with the capabilities
of learning (to recognize relevant patterns, e.g.,
antigenic peptides), memory (to memorize patterns
encountered previously), and associative retrieval (to
construct pattern detectors to distinguish between self
and non-self). Moreover, the problems of pattern
recognition and classification are not solved by a single
recognizing unit but rather by a network of local
antigen—antibody interactions (mutual recognitions)
at a system level. According to its importance and
complexity, the immune system has absorbed many
research efforts resulting in several theories to explain
various aspects of immunological phenomena. Among
them, the immune network model has gained more

attention which aims to explain the behavior of B
lymphocytes (B cells).

As illustrated in Fig. 1, the B lymphocytes interact
with the antigens to stimulate the immune response.
There are many antibodies on the surface of the
B-lymphocytes that act as antigen detectors. The
specialized portion of the antibody used for identify-
ing other molecules (of antigens or antibodies) is
called paratope. The region on any molecule that
can be recognized by the paratope is called epitope.
If the epitope of a foreign antigen molecule matches
the paratope of an antibody, the antibody can attach
itself to the antigen so that the antigen can be
neutralized (leading to its eventual demise). Since
antibodies, like other molecules, have epitopes as well,
they may also be recognized by other antibodies.
Therefore, different antibody types together with anti-
gens compose a complex reaction network, which is
called the immune network by Jerne (1974). The
immune network can be used to represent the relation-
ship between antigens (being neutralized) and anti-
bodies (being stimulated), and the relationship
among antibodies (either being stimulated or being
suppressed as they have both epitopes and paratopes).
In the immune network, a node represents a type of
antigens or antibodies, and the links between nodes
represent the affinity between them. The affinity is
determined by the matching degree between the
paratope and the epitope, and the population of each
type of antibodies (or antigens). An antibody type is
thought to be stimulated when its paratope recognizes
the epitope of antigens or other types of antibodies,
so that the corresponding lymphocyte is stimulated
to reproduce more lymphocytes, and the lympho-
cytes secrete more antibodies (with certain mutation
rate). This process is called clonal selection. On the
contrary, an antibody or antigen may be suppressed
if its epitopes are recognized by others. Furthermore,
the diversity of the immune system is maintained
through the replacement of the dead lymphocytes
(caused by aging or being suppressed by others) by
new lymphocytes generated in the bone marrow
(through the reshuffling of the host DNA that codes
for the antibody genes).

Based on Jerne’s hypothesis that the immune system
is a regulated network of molecules and cells (i.e.,
antibodies and antigens) that recognize one another,
Perelson presented an immune network model (Farmer
et al., 1986; Perelson, 1989) which has received a lot of
attention among researchers (and we would also like to
apply it for the function approximation problem). The
affinity between the network nodes are defined in the
form of logic operation of binary strings. Let i and j
denote two nodes (two types of antibodies) in the
immune network, which are represented by binary
strings of length /. The matching index between them
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Fig. 1. A schematic illustration of the immune system.

is given by

my = Z G <Z ei(n+k)apj(n) — s+ 1>, (M
k n

where n denotes the bit of a string, k denotes the shift
alignment, e;(n + k) denotes the value of the (n+ k)th
bit of the epitope string on the ith antibody type, and
pj(n) denotes the value of the nth bit of the paratope
string on the jth antibody type. The symbol A denotes
the exclusive or operation, s is a matching threshold
below which two antibodies will not react at all, and
G(x) = x for x>0 and G(x) = 0 otherwise.

In the immune network model, the connection
strength between different types of antibodies is
determined not only by the matching index, which is
fixed given the types of antibodies, but also by the
concentrations of the antibodies, whose dynamics are
given by the following differential equations:

N N n
Yi=c| Yy mpxixg =k Y mgxpg Y mpx;
J=1 J=1 J=1

— kzxi, (2)

where x;, i =1,2,..., N, denote the concentrations of
different antibody types and y;, j =1,2,...,n, denote
the concentrations of antigen types. The first term
represents the stimulation from other antibody types,
the second term represents the suppression from other
antibody types, and the third term represents the
stimulation from other antigen types. The form of these
term is dictated by the fact that the probability of a
collision between an antibody type i and an antibody
type j (or an antigen type j) is proportional to x;x;

(or x;y;). The parameter c is a rate constant that depends
on the number of collisions per unit time and the rate of
antibody production stimulated by a collision. The
constant k; represents a possible inequality between
stimulation and suppression. The last term (—kpx;)
models the tendency of cells to die in the absence of any
stimulation at a rate determined by k».

Besides the above differential equations to describe
the dynamics of the antibody concentrations, an
essential aspect of the immune network model is that
the list of antigen and antibody types is dynamic,
changing as some types are added or removed, so
that N and n change with time (but on a time scale
slower than that occurs in x;). In particular, a minimum
threshold on concentrations is placed so that a variable
(a given antibody type) and all of its reactions are
eliminated when its concentration drops below the
threshold, which simulates the death of unstimulated
(useless) antibodies. Moreover, new types of variables
may be added according to the reproduction of new
antibodies.

Inspired by the immune system, many intelligent
computational methods, known as artificial immune
systems or immunity-based systems (Dasgupta and
Forrest, 1999; Dasgupta, 1999), have been studied and
successfully used in a variety of applications such as
pattern recognition (Hunt et al., 1995, 1999; Gilbert and
Routen, 1994), pattern classification (Bersini, 1999;
Seront and Bersini, 1994; Bersini, 1992; Bersini and
Varela, 1994; Pramanik et al., 2002; Wang and Jiao,
2001), function optimization (Bersini and Seront, 1992;
Fukuda et al., 1999; de Castro et al., 2002; de Castro
and Timmis, 2002), anomaly detection (Dasgupta, 1996;
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Huang, 2002), decision making (Dasgupta, 1998), and
computer security (Kephart, 1994; Kephart et al., 1995,
1999). However, note that with the introduction of the
dynamics of antibody concentrations, the dynamical
behavior of the immune network becomes very compli-
cated: the connection parameters between the nodes are
not independent but are determined by the dynamics of
the antibody concentrations (and the concentrations of
lymphocytes). This is different to the neural networks
where the weights can be adjusted independently, and
makes the immune system, in principle, more complex
than the brain-nervous system. Thus, compared to other
biological inspired techniques (such as neural networks),
the application of artificial immune systems is still an
emerging field and has received relatively little attention
so far.

3. Spatially localized model architecture

Biological studies have undoubtedly provided a large
amount of inspirations for the design of engineering
systems. In particular, the applications such as nonlinear
modeling have been strongly benefited from the analogy
to the neural networks. Although immune networks and
neural networks share many similarities at the level of
system behavior, they are different at the respective
building block level. Each node of the immune network
represents a pattern, and the links between them
represent the similarity (between the patterns) and the
concentration (of each pattern). Some studies have been
given to compare the artificial immune systems with
neural networks (Hoffmann, 1986; Dasgupta, 1997) and
other learning systems such as learning classifier systems
(Farmer et al., 1986; Bersini and Varela, 1990) and
autocatalytic chemical reaction networks (Farmer,
1990). In this paper we would like to incorporate the
metaphor from the immune system with the spatially
localized model architecture of the radial basis function
neural networks.

In neurobiological studies, the concept of localized
information processing in the form of receptive fields
has been known and demonstrated by experimental
evidence (e.g., locally tuned and overlapping receptive
fields have been found in parts of the cerebral cortex, in
the visual cortex, and in other parts of the brain). This
suggests that such local learning offers alternative
computational opportunities to learning with “global
basis functions” such as the multilayer perceptron
neural network with sigmoidal activation functions
(Schaal and Atkeson, 1998). Inspired by these biological
counterparts, the radial basis function neural network
model has been presented, which can be defined by

M biRi(x)

_ , 3
YT R ®

where y is the output of the radial basis function
network, x = [x1, X2, ..., x,] " holds the n inputs, and i =
1,2,...,M represent M receptive field units. The
strength parameters b; represent the “‘strengths” of the
receptive field units, which are constants. The ‘“‘radial
basis functions” R;(x) (a.k.a., radial response functions
or kernel functions) define the activation extents of the
corresponding receptive fields with the characteristics
that their responses decrease monotonically with dis-
tance from a central point. There are several possible
choices for the receptive field functions R;(x). Typically,
Gaussian-shaped functions are used for analytical
convenience, that is

Ri(x) = exp(—3(x — ¢;) " Di(x — ¢)), 4)

where ¢; =[c,cb, ...,c}]" parameterize the locations
(centers) of the receptive fields in the input space, and
D; = diag((1/6})%,(1/ab)?, ...,(1/d')*) determine the
shapes (relative widths) of the receptive fields.

Actually, to improve modeling flexibility of the radial
basis function networks, it is also possible to replace the
strength parameters b; with the strength parametric
functions

bi(x) = ajo + ajix1 + -+ + aipXy, ®)

where a;;, i=1,2,...,M and j=0,1,2,...,n, are con-
stant strength function parameters. Moreover, by using
this new definition (5) of the “‘strength,” we can apply
the inspiration from the immune system to structure and
parameter adjustment of the radial basis function
networks.

As illustrated in Fig. 2, we view the radial basis
function neural network as an artificial immune system.
The function to be approximated is defined (repre-
sented) by the training data set G = {(x(/),y(])):l=
1,2, ..., P} including P input—output data pairs. These
data pairs are thought to be the ““antigens” that have
been encountered by the artificial immune system. By
learning the characteristics of these antigens, the
artificial immune system is expected to approximate
the function well for new antigens (testing data). The
receptive field units in a radial basis function neural
network are analogous to the antibodies in the immune
system. Each strength parametric function b;(x) repre-
sents a ‘“‘pattern,” which describes a linear mapping
valid in a local region. The valid regions of the patterns
are defined by the receptive field functions R;(x), where
the parameters c¢; specify the centers of the regions and
D; specify the sizes of the regions. Note that there could
exist some overlapping between different patterns since
Ri(x) are defined as Gaussian functions. This implies
that for a data point in the input space, it could be
within more than one valid regions of the receptive field
units and thus excite more than one strength functions.
Therefore, the output of the radial basis function is a
weighted average as defined in (3). This is similar to the
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Fig. 2. Radial basis function neural network: an artificial immune systems.

immune system where an antigen could match more
than one antibodies since the match, as defined in (1), is
a partial match, and the overall results of these matches
are to defend against pathogens.

It is also worthy to note that as we are developing an
artificial immune system for the function approximation
problem, the matching degree defined here is different to
the logic operation of binary strings, which is generally
used in the immune network model to calculate the
matching index (1) (and may be applied to some other
pattern recognition problems). There are two matching
indices used in this function approximation artificial
immune system: the unit matching index and the function
matching index. The value of the radial basis function
Ri(x(/)) is used as the unit matching index, which
measures the closeness of a data pair (x(/), y(/)) to the
pattern (stored in the ith receptive field unit) in the input
space. The function matching index is a measure used in
the function space to describe how well this data pair
(antigen) can be approximated by the radial basis
function network (the artificial immune system). This
index is defined as

S M bi(x(D)Ri(x(1))
M Ri(x(D))

where x(/) and y(/) are the /th input—output data pair.
The matching index between the receptive field units
(antibodies) are naturally different than that between
the radial basis function network and data pairs. It is
intended to be used as a heuristic measure of redun-
dancy of the receptive field units so that we define it as

Sik = migdik, (7

A= |y() - (6)

mig = /> (c—FY, ®)

]

Oik = \/ Z]n: | (@i — ay), &)

where i and k represent two different receptive field
units, m; is the Euclidean distance between the centers
of the ith unit and the kth unit, and J;, is the Euclidean

distance between the strength function parameters of the
ith unit and the kth unit.

Note that in the immune system the affinity between
the antigens and antibodies is determined not only by
the matching index, but also by the concentrations of
the antibodies (whose dynamics are given by (2)). If a
type of antibodies is stimulated by the antigens (or other
antibodies), more antibodies of the same type will be
generated. On the contrary, the antibodies may be
suppressed if their epitopes are recognized by others.
This phenomenon is resembled in the artificial immune
system to the function of the relative width D; but in a
different way (and only the interconnection between the
antibodies, the receptive field units, is considered). The
basic idea is that if a part of the function mapping is
complicated, then more receptive field units are required
in this region (so that they are distributed closely) in
order to have an accurate mapping (since each receptive
field unit only stores a linear mapping (5)). Thus, their
corresponding relative width should be small, which
implies that the linear mapping is only valid in a small
region. On the contrary, if the receptive field units are
located sparsely, the relative width can be large. This
kind of the “concentration” in the artificial immune
system is described by the following equation:

h
D;=D+ Etanh| ———— |, (10)
(Z/]cv—l,k;éi l/mi,k>

where i and k represent two different receptive field
units, m; ;. represent the Euclidean distance between the
centers of these two units, / is a constant to determine
the rate of changing the relative width according to the
distance between the centers, and D and E are constant
diagonal matrices to specify the possible adjustment
range of the relative width.

The learning process of the artificial immune system
to approximate the functions is the process to tune the
parameters and the structure of the radial basis function
neural network. Note that the tunable parameter vector
can be composed of both the radial basis function
parameters ¢, and o} and the strength function
parameters a;;. This is referred to as the nonlinear in
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the parameter case because the parameters enter the
function approximator in a nonlinear way. A nonlinear
in the parameter spatially localized model can be tuned
by a variety of gradient methods such as the steepest
descent method and Levenberg—Marquardt method.
Alternatively, we may decompose the parameter vector
into a linear part (consisting of the strength function
parameters) and a nonlinear part (composed of the
radial basis function parameters). By having the tunable
parameter vector 8 be composed of strength function
parameters a;; only (and specifying the radial basis
function parameters ¢; and D; in advance), we will have
a linear in the parameter radial basis function network.
Note that the linear in the parameter radial basis
function networks are also universal approximators and
have the capabilities of forming an arbitrarily accurate
approximation to any continuous nonlinear function.
Results from approximation theory indicate that if
tuned properly the nonlinear in the parameter approx-
imator can achieve good approximation accuracy with
less parameters than does the linear in the parameter
approximator. However, the problem is that we know
how to tune the linear in the parameter approximators
(e.g., using the least-squares method) but in certain cases
they may not be able to reduce approximation error very
well and we may need much more parameters (receptive
fields). As for nonlinear in the parameter approxima-
tors, although they are desirable in theory, in practice
we do not know as much about how to tune them
properly and the gradient methods may often result in
local minima. This motivates our work on under-
standing the radial basis function neural networks from
the point of view of artificial immune systems, and
facilitates structure and parameter adjustment of the
spatially localized model by way of the hybrid learning
approach. By this we mean that we can apply the
immunity-based structure adaptation approach to spe-
cify the number and centers of the receptive field units,
and use the conventional least-squares method to train
the strength function parameters since they enter
linearly.

4. Immunity-based hybrid learning algorithms

From the point of view of the biology, the function
approximation problem may be thought of as a kind of
artificial immune systems. The “antigens’ represent the
input—output data pairs and a collection of antigens
defines the problem of function approximation. The
“antibodies” represent the units of the approximator
(e.g., the receptive field units of the radial basis function
network), which are characterized by the tunable
parameters and the number of units, and a collection
of antibodies defines the function approximator. A good
immune system usually consists of a compact collection

of antibodies capable of recognizing all antigens, which
is analogous to finding the simplest approximator
structure that can achieve the desired level of approx-
imation accuracy. In the following, we present two
immunity-based hybrid learning algorithms, namely,
learning from clonal selection and learning from internal
affinity. Actually, these two learning algorithms can be
incorporated together for structure and parameter
adjustment of radial basis function networks. We
separate them to be two methods to facilitate a clear
explanation.

4.1. Learning from clonal selection

This learning method is capable of allocating appro-
priate receptive field units according to the approxima-
tion errors (external criteria). The basic steps of this
approach can be summarized as follows:

1. Initialization: The initial approximator may be
composed of one (or perhaps a few) receptive field
unit(s) using a priori knowledge of the function to be
approximated. Usually, the centers of the receptive
field units ¢; are uniformly distributed on the input
space of the problem, and the relative widths D; are
chosen according to Eq. (10).

2. Recognition: The function matching index between
the data pairs (x(/), y(/)) and the radial basis function
network is calculated according to Eq. (6).

3. Reinforcement: The “weakest” data pair (x(w), y(w)),
i.e., the one whose value of the function matching
index is the largest, is cloned. By “‘clone” we mean
that we recruit a new receptive field unit, whose
center is located at x(w), into the existing radial basis
function network. Its relative width is chosen
according to Eq. (10). The step of reinforcement
serves to compensate the poor approximation region
by recruiting more receptive field units (which
represent a local linear function) so that we could
have a finer mapping in this area. This is analogous to
the immune system where new antibodies are
produced through clonal selection (with a certain
mutation rate) or reshuffling of the host DNA. The
difference is that in the artificial immune system we
try to generate a clone based on the information from
the antigen (we know the worst training data pair and
we add a new antibody at that location) rather than
from other antibodies (as in the natural immune
system), which, we think, is more effective. As a
result, the parameter vector of the radial basis
function is enlarged and the tuning ability is
improved.

4. Parameter adaptation: We use the training data set
G={(x(D),y):1=1,2,..., P} to tune the “linear”
parameters 0, consisting of the strength function
parameters a;;. This may be implemented by least
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squares method, that is

0, =@ @)'oYy, (11)
where Y = [y(1), »2), ..., y(P)] " and @ = [¢(x(1), 0,),
H(x(2),0,), ..., p(x(P), 0,)]". Note that here all the
linear parameters are retrained in order to optimize
the overall performance of the enlarged radial basis
function network.

5. Generalization: The performance of the approximator
is tested by evaluating approximation error defined as
the maximum absolute error (MAE) between the
output of the actual function and the output of the
approximator. If the value of the fitness function is
below a ‘“‘satisfactory threshold,” we claim that a
satisfactory approximator has been generated. Other-
wise, go to Step 2 for structure and parameter
adaptation again.

To study the performance of the proposed immunity-
based hybrid learning approach, we seek to approximate
a complicated nonlinear function

2 =0.1x 4+ 0.05(x + )? + 3(1 — x)e =¥ 0+’

—10E — X} — phe ¥ — Lot (12)
where xe[—4, 6] and ye[—4, 6], as shown in Fig. 3. Note
that the nonlinearity represented in this function is not
uniform. The “frequency” of the nonlinearity is high in
some regions, while the function is relatively smooth in
other areas. It is generally not easy to approximate such
functions. (as we will see later by approximating it with
neural networks) in that we try to approximate both

-4

-4
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high frequency and low frequency components of the
function.

We generate a training data set including 1000 data
pairs. The “‘satisfactory threshold” is chosen to be 0.35.
We start the approximation process with four receptive
field units, whose centers, located at (—2,—-2), (—2,4),
(4,-2), and (4,4), are uniformly distributed in the
problem space. The performance of the approximator
becomes better along with the structure adaptation
when more receptive field units are recruited into the
radial basis function network, as shown in Fig. 4 (where
the solid line represents the approximation errors with
respect to growing numbers of receptive field units and

Maximum Absolute Error

0 5 10 15 20 25 30 35 40
Number of Receptive Field Units

Fig. 4. Structure adaptation via recruitment of new receptive field
units.

Fig. 3. Nonlinear function we seek to approximate.
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the dash—dotted line represents the desired satisfactory
threshold).

The immunity-based hybrid learning approach results
in a radial basis function neural network with 37
receptive field units to satisfy the requirement given by
the satisfactory threshold. As shown in Fig. 5, there are
more units in the region with high nonlinearities, which
is quite reasonable. The function surface implemented
by this immunity-based hybrid learning system is shown
in Fig. 6, which is very close to the function surface for
which we seek to approximate. The maximum absolute
error is 0.3580, which is slightly above 0.35, because we
are using a different test data set consisting 2000 data
pairs (rather than the training data set for structure and
parameter tuning).

Fig. 5. Centers of the resulting receptive field units (using the learning
from clonal selection approach).
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The performance of a function approximator with
both structure and parameter adaptation becomes
remarkable when the function encountered is compli-
cated enough. A function only with high frequency
components may be easy to approximate (in the sense of
structure adjustment), for instance, by increasing the
grid of the receptive field units (given a large amount of
well distributed training data). Here, we are trying to
approximate a function which consists of both high-
frequency and low-frequency components. Without a
priori knowledge of the nonlinearity of the function, a
very fine grid of receptive field units is required for
radial basis function networks, which, actually, may
result in a redundant approximation structure that
wastes many computations. For example, in order to
accurately approximate the function given in Eq. (12), a
radial basis function network with 64 units (on an 8 x 8
grid) is required, whereas using 49 units (a 7 x 7 grid) is
not appropriate due to the poor error surface. The
proposed immunity-based hybrid learning system, how-
ever, is capable of approximating the function accu-
rately enough with 36 well assigned receptive field units.
Moreover, there is no generalization or overtraining
problem encountered.

For the above function approximation problem one
may argue that a nonlinear in the parameter approx-
imator tuned by gradient methods may obtain good
performance with relatively small number of para-
meters. However, it is difficult, in general, to find the
optimal solution, and the parameters may get distracted
by the multiple local minima, which we will illustrate
later by an example of using multilayer perceptron
neural networks tuned by the Levenberg—Marquardt
method.
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Fig. 6. Function surface of the immunity-based approximator (using the learning from clonal selection approach).
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4.2. Learning from internal affinity

This learning approach performs structure adjustment
according to the endogenous behavior of the radial basis
function network and is capable of reducing the
redundant receptive field units. The learning method is
described as follows:

1. Initialization: The approach starts with a spatially
localized model (radial basis function network)
consisting of a large set of units, which is capable
of good estimation. Sometimes, this can be obtained
by a fine division of the input space and then by
assigning a receptive field unit for each subregion, or
by the learning from clonal selection method
described in last section.

2. Recognition: We calculate the affinities between the
receptive field units according to Egs. (7)—(9).

3. Refinement: This process serves as structure adapta-
tion for the approximator by eliminating the redun-
dant units. We find the pair of receptive field units
whose value of affinity measure is the smallest, and
eliminate (any) one of them.

4. Parameter adaptation: We use a least-squares method
to tune the linear parameters in order to maintain
good approximation accuracy by allocating the
computational power optimally among the remaining
receptive field units, while the centers and relative
widths of the receptive field units are kept frozen (to
reduce computation complexity).

5. Generalization: The performance of the approximator
is tested by calculating the fitness function of the
hybrid learning system, which is defined as the MAE.
If the value of the fitness function is above a
“satisfactory threshold,” that is, the error becomes
unacceptable, we stop the learning process and come
up with the last satisfied approximator. Otherwise, go
to Step 2 for structure and parameter adaptation
again.

Again, to test the method we use the nonlinear
function defined in Eq. (12). We start the approximation
process from a radial basis function network with 100
receptive field units, whose centers are uniformly
distributed in a 10 x 10 grid. The “satisfactory thresh-
old” is chosen to be 0.7 because the centers of the this
learning system are distributed more regularly and an
acceptable function approximation surface corresponds
to a larger value of satisfactory threshold (compared to
0.35 in the learning from clonal selection approach). The
performance of the approximator degrades along with
the structure adaptation when more units are eliminated
from the learning system, and it finally results in a
network with 32 receptive field units, whose centers are
shown in Fig. 7. As shown in Fig. 8, the function surface
implemented by this immunity-based learning system is
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Fig. 7. Centers of the resulting receptive field units (using the learning
from internal affinity approach).

also very close to the function surface for which we
seek to approximate, and the maximum absolute
error for the testing data set is 0.6774. Note that the
MAE here is much larger than that in the learning
from clonal selection approach but their function
surfaces are very similar. This is because MAE is only
one possible error measure that we are using to
terminate the learning process and its effect may be
different in different learning approaches. Thus, we view
the function surface (as in Figs. 6 or 8) as a kind of
general measure of the goodness of the approximator
and we use it to determine the appropriate “‘satisfactory
threshold.”

4.3. Remarks

Generally, the function approximation problem has
not been explicitly studied in the applications of artificial
immune systems. However, there do exist some connec-
tions between the function approximation problem and
other applications, in particular, machine learning
inspired by immune systems, pattern classification based
on the endogenous double plasticity of the immune
network, and function optimization with diversity and
learning of the immune algorithm. In Seront and Bersini
(1994), Bersini presented an immune recruitment me-
chanism for multilayer perceptron neural networks,
which bared some resemblance to the approaches
proposed in this paper. In Seront and Bersini (1994) a
neuron is eliminated from the network if the average
value of the weights connected to it is below a “useless
threshold”. In addition, if these average values for all
neurons in the network are above a certain “‘settling
threshold”, which implies that the learning ability of the
network is low because all neurons are almost saturated,
a new neuron will be added to the network.
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Fig. 8. Function surface of the immunity based approximator (using the learning from internal affinity approach).

In this paper we have studied immunity inspired
learning approaches for radial basis function neural
networks with a spatially localized model architecture
(different to that of multilayer perceptron). Two new
hybrid learning approaches are proposed. The learning
from clonal selection approach is capable of adding
more receptive field units and the structure adjustment is
driven by the exogenous criteria (i.e., the error function).
The learning from internal affinity approach can
eliminate redundant elements from the structure accord-
ing to the endogenous behavior of the spatially localized
model (i.e., the similarities of the receptive field units
measured by the Euclidean distance). We believe that
constructing hybrid learning systems based on spatially
localized models resemble the nature immune system
better. The patterns (strength functions) are stored in a
distributed manner in the receptive field units. Each
receptive field unit is capable of local approximation,
while a collection of these units (i.e., the radial basis
function network) is capable of serving as a universal
approximator. Compared to multilayer perceptrons
(whose capability is gained through the collaboration
of all the neurons), the radial basis function networks
resemble the nature immune systems more (where each
antibody is effective to recognize certain antigens).
Furthermore, using the spatially localized model archi-
tecture provides the advantages of design flexibility for
structure and parameter adaptation, that is, we can
apply the immunity-based structure adaptation ap-
proach to specify the architecture and the parameters
(centers and relative widths) that enter nonlinearly,
followed by using least squares to train the linear
parameters (strength function parameters). This also

often implies less computational complexity compared
to tuning all parameters with the gradient methods. In
other words, it is a kind of combination of local tuning
(where the new unit is added only to compensate for the
worst part of the approximator) and global tuning
(where all the parameters of strength functions are
retrained to achieve global optimization afterwards. In
addition, note that in this paper we use the learning
from internal affinity approach to remove the redundant
units, which can be viewed as a kind of decremental
algorithms. The decremental algorithms inherently
assume the availability of a complex approximator
sufficient for accurate mapping. This assumption may be
relatively easier, achieved by a spatially localized model
with a fine grid of units tuned by the least squares
method rather than by a multilayer perceptron neural
network (which are often tuned by gradient methods
and may meet the problem of local minima).

However, we do not consider our approach universal.
For other applications, one of the other methods may
provide a better solution. Indeed, none of the existing
algorithms are proven to be optimal in structure
adaptation for learning systems and we could not show
that either. For different problems and different
measures of “best”, different algorithms may give
structures with a minimal number of units (neurons or
rules).

4.4. Comparisons
Compared to the learning from clonal selection

approach, the learning from internal affinity approach
results in more regularly distributed receptive field unit
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centers, but its approximation performance is slightly
worse than that of the learning from clonal selection
approach. This is because the arrangement of its centers
is restricted due to the initialization, whereas the
assignment of the centers for the learning from clonal
selection approximator is more flexible so that it may
capture more characteristics of the function. Moreover,
note that as shown in Fig. 5 some receptive field units
generated in the learning from clonal selection approach
are very close to each other. This suggests that we could
integrate the learning from clonal selection approach
and the learning from internal affinity approach
together. For instance, we could execute the learning
from clonal selection approach first to add units at the
positions that are necessary, and then execute the
learning from internal affinity approach to remove the
redundant ones. We may expect the resulting approx-
imator to have a smaller structure while still maintaining
sufficient accuracy. Actually, by using this strategy for
the above problem we reduce the number of units to 31
and still have a function surface accurately enough.

To illustrate the performance of the immunity-based
approximators, we also implement a multilayer percep-
tron neural network (with one hidden layer), which is
nonlinear in the parameters, tuned by the Levenberg—
Marquardt method. The activation function for the
neurons in the hidden layer is chosen to be the
hyperbolic tangent function. We use 30 hidden neurons
in the network, so that we have 2+ 1)30+ 30+ 1) =
121 parameters, which is equivalent to 40(2 + 1) = 120
parameters for 40 units in the radial basis function
network we used before. The function surface imple-
mented by the neural networks, as shown in Fig. 9, is
much worse than the ones obtained by the immunity

based approximators, and the maximum absolute error
for the testing 200 samples is 1.2631. In order to improve
the performance, we increase the number of hidden
neurons to be 40 (i.e., 161 parameters). As shown in
Fig. 10, the function surface is better and the maximum
absolute error for the testing 200 samples is 0.7206.
However, the result is still worse than that of the
immunity based approximators, which implies that a
local minimum may be encountered.

5. Application to nonlinear dynamical system modeling

Function approximation is a generic problem that
permeates many fields. In this section, a nonlinear
dynamical system modeling problem, in particular,
model development for an aircraft jet engine (General
Electric XTE46), is provided to demonstrate the
potential of the proposed immunity-based hybrid
learning methods.

Model development for jet engines is complicated as
the engine behavior is different for different operating
regions and engine quality parameters (due to the
presence of engine-to-engine manufacturing differences
and engine deterioration during normal operation). The
fundamental dynamic characteristics of the XTE46
engine can be represented by a single-input single-
output system in the form

(13)

y = h(x,u,c,p), (14)

where x = [XNL,XNH]" is the state vector including
the fan rotor speed and core rotor speed, u = WF36 is

x :f(x’ u’ C’p)’
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Fig. 9. Function surface of the multilayer perceptron neural networks with 30 hidden neurons.
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Fig. 10. Function surface of the multilayer perceptron neural networks with 40 hidden neurons.

the input variable (combustor fuel flow), and the output
variable y = XN2 is the measurement of the state
variable XNL. The vector ¢ = [ALT, XM, PC]" re-
presents the operating condition of the engine (the
altitude, mach number, and throttle setting represented
by power code). The vector p=[ZSW2, SEDM2,
ZSW1D, SEDM7D, ZSW?27], SEDM27, ZSW41, ZSE41,
ZSW49, ZSE49]" represents the quality parameters of
the engine. The function f(-) denotes the unknown
nonlinear characteristics of the engine which is different
at different operating conditions and for different
quality parameters. Although it is theoretically possible
to build one neural network to approximate the engine
dynamics by interpolating all engine data collected from
the whole space of operating conditions and quality
parameters, it is not feasible in practice because of the
huge amounts of data (millions of data pairs). Instead,
we build a grid of neural network models to approx-
imate local engine dynamics (specified by fixed values of
operating conditions and quality parameters), and then
interpolate these local models to generate the ““global”
model (actually, we build a “regional” model valid in
the “climb” region). Note that it is possible to obtain the
“regional” model by fuzzy interpolation on a grid of
these local models (Diao and Passino, 2001). However,
using a too coarse grid may only obtain limited model
accuracy, while using a too fine grid may result in a
redundant structure.

We use the learning from clonal selection approach to
specify the structure of the “regional”” nonlinear model.
To illustrate the basic ideas we consider a simplified
scenario where the engine dynamics are varying with
respect to three key operating condition variables
(ALT, XM, and PC) but the quality parameters

are fixed. The process of hybrid learning starts
from generating a regional model consisting of only
one local model located in the center (ALT =
15000, XM = 0.7, and PC = 47.5) of the climb region
(ALT e[12 500, 17 500], XM €[0.6, 0.8], and PC e[45, 50]).
Afterwards, more local models are recruited at the
locations where poorest approximation performance is
observed. The performance of the regional engine model
becomes better along with the structure adaptation
when more appropriate local models are recruited.
Fig. 11 compares the performance of a regional model
composed of 64 local models selected by the immunity-
based approach with a regional model of the same
number of local models but uniformly distributed on a
4 x 4 x 4 grid. The operating condition in Fig. 11 is
different to those where the local models are used. The
solid line represents the system response of the XTE46
engine, the dashed line represents the response of the
regional model constructed by the immunity-based
approach, and the dotted line represents the response
of the model generated from the grid. We can see that
the immunity-based regional model is generally more
accurate, especially when the XNL is low.

Note that for the engine modeling problem we use the
learning from clonal selection method to allocate local
models instead of receptive field units. This is an
extension of the algorithm described in Section 4 due
to the complexity of modeling a jet engine. Hence, we
move the immunity-based structure selection problem
from considering the units of a single neural network
model to the units of a regional model composed of
multiple local neural network models. This also
demonstrates the versatile applicability of the immu-
nity-based approach.
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Fig. 11. Performance of the regional model.

6. Conclusion

From the point of view of information processing the
immune system is a highly parallel and distributed
intelligent system which has learning, memory, and
associative retrieval capabilities. In this paper we present
two immunity-based hybrid learning approaches for
function approximation (or regression) problems that
involve adjusting the structure and parameters of
spatially localized models (e.g., radial basis function
networks). The number and centers of the receptive
fields for local models are specified by immunity-based
structure adaptation algorithms, while the parameters of
the local models, which enter in a linear fashion, are
tuned separately using a least squares method. The
effectiveness of the procedure is demonstrated through a
nonlinear function approximation problem and a non-
linear dynamical system modeling problem.
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