154 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007

The Ideal Free Distribution: Theory and
Engineering Application

Nicanor Quijano, Member, IEEE, and Kevin M. Passino, Fellow, IEEE

Abstract—We extend the theory of the “ideal free distribu-
tion” (IFD) from theoretical ecology by providing methods to
analytically find the distribution for a relatively general class of
“suitability”” functions. We show that the resulting IFD is a Nash
equilibrium and an evolutionarily stable strategy (ESS). Moreover,
we show that for a certain cost function it is a global optimum
point. We introduce the “replicator dynamics” for the IFD and
show that we provide an allocation strategy that is guaranteed to
achieve the IFD. Finally, we show how this allocation strategy can
achieve an IFD for a multizone temperature control problem that
corresponds to achieving the maximum uniform temperature on a
grid under a multivariable saturation constraint.

Index Terms—Dynamic resource allocation, evolutionarily
stable strategy (ESS), ideal free distribution (IFD), replicator
dynamics, temperature control.

I. INTRODUCTION

HE CONCEPT of ideal free distribution (IFD) was origi-

nally introduced in [1]. For many years, this concept has
been used to analyze how animals distribute themselves across
different habitats. These habitats have different characteristics
(e.g., one habitat might have a higher nutrient input rate than
another), but animals tend to reach an equilibrium point where
each has the same correlate of fitness (e.g., consumption rate).
The term “ideal” means that the animals can perfectly sense
the quality of all habitats and seek to maximize the suitability
of the habitat they are in, and the term “free” means that the
animals can go to any habitat. In [2] and [3], the authors survey
the various extensions to the IFD (e.g., the interference model
[4] and standing crop idea [5]), and overview the experimental
biological evidence that supports these models.

The IFD is studied here for a general class of correlates
of fitness called suitability functions. This general class of
suitability functions covers the ones studied in [6] and [7] for
the “continuous-input” model, and also includes the case of
“interference” [4], [7], [8]. We also study a suitability function
studied in [1]. For these suitability functions, we prove the
equivalence of the habitat [6], [7] and input matching rules
[4], [9], an equivalence only previously recognized to hold for
one special class of suitability functions [2], [4]. We introduce
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the concept of an individual animal with a fitness and explain
the type of equivalences that hold between habitat suitability
and individual animal fitness equalization. Then, we show that
the treatment of a more general class of suitability functions
allows us to characterize and analyze the “ideal dominance
distribution” (IDD) [1], something that has not been done in the
literature to date [3]. Next, we explain how the IFD is a Nash
equilibrium and an evolutionarily stable strategy (ESS) [10]
for the case of a “game against the field” [11] for our expanded
set of suitability functions. This means that in a large population
of animals, whose mean population strategy is an IFD, no
mutant animal strategy can invade the population. While this
means that the IFD is locally optimal in a game-theoretic sense
(i.e., unilateral strategy deviations by a single animal are not
profitable for that animal), here we show that the IFD possesses
much stronger optimality properties. We show how to model a
group of animals all simultaneously seeking to maximize their
fitness as a “minimax’’ optimization problem. For this problem,
we prove that the IFD is a global optimum point. This means
that even if an arbitrary number of animals deviate so that
the distribution is not an IFD, then there can be an arbitrary
number of animals who need to change strategies to maximize
their fitness. Moreover, it means that there is no other animal
distribution where all the animals can simultaneously maximize
their fitness. Our results bear some relationships to the work
in [12], but here we consider a different (and more generic)
class of suitability functions, and a “nonlinear” game against
the field. Finally, we study how evolutionary dynamics can
represent the animal allocation process over long time periods.
In particular, we introduce the “replicator dynamics™ [13] for
the animal distribution “population game” [14], [15] and show
how it relates to a steepest descent allocation strategy. For
this model, natural selection according to differential fitness
is the mechanism underlying the animal allocation and ani-
mal strategy mutations are represented by perturbations in the
population “strategy mix” [14]. We show that the IFD is an
equilibrium of the replicator dynamics, and via Lyapunov sta-
bility analysis show that the IFD is asymptotically stable for our
general class of suitability functions (thereby extending earlier
such analysis [13]-[15]). This means that the population will
recover from perturbations (mutations) off the IFD equilibrium
and the population’s strategy mix dynamics eliminate mutants
that are different from the IFD so that evolution leads to the
maintenance of an IFD strategy. We show one case where the
IFD is exponentially stable so that mutant rejection is fast, and
relate the size of the population to the rate of rejection of mutant
strategies.
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In the last section of the paper, we use the theory to solve a
challenging engineering problem that involves achieving tem-
perature control for multiple zones of a planar temperature
grid, in spite of limited current available to drive the heaters
and significant ambient and interzone effects. This problem
can be seen as a distributed multivariable “dynamic resource
allocation” problem because we want to split some quantity
(current or voltage) that we have a limited amount of, and
dedicate appropriate proportions of it to optimize some quantity
of interest (quality of regulation). The allocations are inputs
to a dynamical system and its response determines the qual-
ity of the allocation. The control goal could be a standard
regulation or tracking objective (e.g., making all zones have
the same given temperature), or a nontraditional objective like
reaching the maximum uniform temperature across the entire
grid. Control goals like these arise in the context of a variety
of commercial applications (e.g., building temperature control)
industrial systems. For instance, in semiconductor processing,
one challenge is to achieve a uniform temperature on a plate
[16]. Others [17] study distributed control of wafer temperature
via multizone rapid thermal processing systems. In related
work, the authors of [18] describe a multizone space heating
system that maintains a desired temperature in different zones.
Another application where the type of multizone temperature
control that we study is very important is in personal computers.
In [19], the author describes several current strategies used to
solve this problem. In addition to such strategies, several other
methods are currently available for distributed control design
when set-point regulation or tracking is the objective. For
instance, in [20] the authors show how systems with a spatial
interconnection topology can be controlled using conditions
that can be expressed as linear matrix inequalities.

Unlike the work outlined above, we seek to confront the
problem of the allocation of a limited amount of current
(a multivariable saturation nonlinearity) in order to achieve a
maximum uniform temperature on a planar grid, which is a
true dynamic resource allocation problem. Dynamic resource
allocation problems are found in a variety of applications
beyond temperature control and are currently one of the most
important challenges in the control systems area [21]. Current
work on allocation for dynamical systems has its roots in the
extensive literature that focuses on solving “static” resource
allocation problems in optimization theory [22]. Unfortunately,
such methods do not directly apply to a dynamic resource
allocation problem like the one we are confronting since they
neither consider feedback-based allocation nor simultaneous
constraints involving differential equations, equalities, and in-
equalities. An excellent example of innovative work in resource
allocation for dynamical systems is found in [23] where the
authors define a model for an air-jet system that describes the
relationship between macro and microlevel forces, and derive
dynamic allocations that can be mapped to, and configured for,
different levels in a control hierarchy. Three other examples of
dynamic resource allocation challenges are provided in [24],
one for scheduling, one for temperature control, and the other
for levitating balls in tubes (a university educational experi-
ment). Here, we show how to apply the IFD strategy described
in Section V to simultaneously satisfy current limitations and

try to minimize energy use for a version of the planar tem-
perature control problem in [24]. We provide data from an
experimental testbed to demonstrate the dynamical behavior
and effectiveness of the method, particularly for achieving
disturbance rejection. In this way, we show one case where the
IFD theoretical framework we establish in this paper can be
used to provide a methodology to design strategies for dynamic
resource allocation. Due to the generic nature of the theory
we developed in this paper it is likely that other applications
can follow (e.g., for other applications in dynamic resource
allocation see [24], or for potential uses of the IFD in other
engineering applications see [25] and [26]).

II. IFD

Suppose that there is a set H = {1,..., N} of N disjoint
habitats in an environment that are indexed by + =1,..., N.
Let the continuous variable z;(¢) € Ry be the amount of ani-
mals in the ith habitat at time ¢ > 0, where R, = [0, 00). Let
z=[z1,...,zn]" € RY. Suppose that Z;\le z; = P, where
P > 01is a constant for all time ¢, i.e., the amount of animals in
the environment is constant. We say that a habitat ¢ is truncated
if x; = 0, and is inhabited if z; > 0.

A. General Class of Suitability Functions

Suppose that b; > 0, is a constant that we sometimes in-
terpret as a fixed number of resident animals in the :th habi-
tat, and ¢; > 0 is a constant associated with the ¢th habitat.
Assume that Z;V:1 a; >0and a; >0 forall i =1,...,N.
Let H* ={i€ H:a; >0} soj € H— H* have a; = 0. Let
m > 0 be a constant. Let s; be the suitability function for the ith
habitat, with

a;

(cizi + b)™ )

S; =

(if we had let s; = b; — c¢;xz; all the key theoretical results of this
paper still hold). In the literature, the most common function
that has been used to describe the “continuous-input model”
[2], [3] is a function that assumes that b; = 0 and ¢c; = m =1,
so therefore

a;

8= —. 2)

T

Then, if a; is in nutrients per second, a;/x; is each animal’s
consumption rate at habitat ¢. This suitability is typically as-
sumed to be a correlate of Darwinian fitness so sometimes it
is called the fitness of an animal at habitat ¢. In this case, it
is said that animals distribute in a way that they all achieve
equal fitness. Below, in Section II-D, we will derive an explicit
relationship between habitat suitability and individual animal
fitness since strictly speaking these two are different. In any
case, the IFD is achieved via a sequential allocation process
that places more (fewer) animals in higher (lower, respectively)
suitability habitats until the suitability functions and fitnesses
equalize at the IFD. That is, the IFD is achieved via a process
where each animal simultaneously maximizes its own fitness.
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Another popular suitability function found in the literature is
the one that describes the “interference model” [4], [7], [8]. For
it, in (1), let ¢; = 1 and b; = 0. Therefore

a;
. 3)

€Ty

S; =

Notice that in the case of (3), if we use the fact that at the IFD
all the habitats will end up with the same suitability, then we
can transform the interference model into a suitability function
that looks like the standard one in (2) by taking the mth root on
the right-hand side of (3). In this case, we will end up with a
suitability function of the form s; = ai /m /x;. The animals will
achieve an IFD, but they will not be able to determine precisely
the quality of each habitat if they do not know m.

Since (1) is more general than the ones in (2) and (3), our
analysis is based on (1). The analysis starts by studying the
habitat and input matching rules [4], [6], [7], [9]. Then, we
define the IDD, and finally, we define the idea of individual
animal fitness equalization that will be useful for the game-
theoretic and optimality analysis of the IFD.

B. Habitat and Input Matching Rules

The “habitat matching rule” [6], [7] says that at the IFD, the
animals will distribute so that for each i, j € H*

a;(cjz; +b;)™ = aj(cx; + b;)™. “)

Since all the terms in (4) are positive, we can write this equation
asa,’™ (cjz; +bj) = a;/m(cixi + b;). If we assume that ¢; is
a scaling factor, and that b; is the number of fixed animals in
the sth habitat, we can say that what we have is the relative
proportion of animals between two different habitats should
be equal to some scaled relative proportion of the quality
between the same habitats. Equation (4) can also be written as

a;/m/(cjxj +b;) = ai/m/(cixi + b;). Therefore, for the rest

of our analysis, we assume that the suitability function in (1) is
written as

S

a
=t 5)
For (2), the habitat matching rule simply says that nutrient
consumption rates are equal at all habitats.
Another approach to characterize the IFD is to use the “input
matching rule” [4], [9] which says the animals distribute so that
forall: € H*

1

a”

cx; +b; i

N = T
D j=1 €+ bj Zjvzl aj’

This equation can be written as ag fm [(cizi +b;) =
Zj-vzl a;/m/(zyzl cjz; +b;). Notice that for (2), what we
obtain is that the overall consumption rate in the environment,
characterized by the right-hand side of this equation (with
¢; =m =1 and b; = 0) has to be equal to the consumption
rate in any single habitat. The IFD is achieved via a sequential
allocation process that places more animals in habitats that

have s; > Z;V:l a;/ Z;\Ll xj, which lowers the suitability
of habitat ¢ for each animal there and raises the suitability
of other habitats for animals there. Note that (2) is also
equivalent to s; ' = z;/a; = Zévzl x;/ Zj\;l aj, for i € H*.
The right-hand side of this equation is the total number of
animals in the environment divided by the total number of
nutrients arriving per second. At the IFD, the animals are
distributed so that no matter which habitat they are at, they get
the same amount of nutrients. In this case, we can view the
IFD as being achieved via the sequential allocation of animals
to habitats with s;* < 3" 2/ 3 a;.

Since (4) and (6) are going to be used extensively in our
analysis, we provide a proof of their equivalence in the next
theorem (proofs of all theorems are in the Appendix).

Theorem 2.1: Assume that "N 2;=P >0, "N a}/™ >

i
0,c¢;, m>0,and a;, b; > 0 fori=1,..., N. The habitat and
input matching rules are equivalent characterizations of the IFD
in that for a given set of a;, b;, ¢;, m, the x; are the same for

either rule.

C. Ideal Free and Dominance Distributions

The IDD concept introduced in [1] comes from a type of
relaxation of the “free” assumption of the IFD. The basic idea
is that, assuming that all individuals are not equally aggressive,
if there are new individuals arriving, then it will be more
difficult for these “unsettled” individuals to access any habitat
dominated by current residents. Thus, the unsettled individuals
will end up in habitats that might not optimize their fitness
compared to the case where they were the first arrivals.

The IDD can be interpreted via sequential settling of species
of animals at IFDs. Suppose that we have N species who are
arriving sequentially into the environment. We assume that the
index k= 1,..., N, represents the arrival and settling at the
IFD for each of these species. Let  =1,..., N, be each of
the N habitats that can be chosen for the distribution of each
species. Let a¥ be the input rate for habitat s when the species &
is settling. Let ¥ be the number of animals of species k at
habitat 4. Then, =¥~ is the fixed number of individuals that
settled down in habitat 7, where a:? =0 (i.e., only the first
species will distribute in such a way that there is no interference
with animals that are already settled in a particular habitat).
Let & > 0 and m* > 0 be constants associated with the kth
species. Let P* be the total number of animals associated with
the kth species. For each species arrival the individuals want to
settle down in the best available habitat by maximizing fitness.
The suitability function that each species uses to determine
which is the best habitat, is defined as

k) mk
5§ = k(Zl) % v

with the constraint Zj\;l xf = PF for all k. Equation (7) de-
fines a nonlinear difference equation for the distribution of sub-
sequent species. If P¥ > 0 is such that P = Z,ivzl PF — o
as N and k — oo then for some finite &’ > 0 no habitat will be
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truncated. Since the parameter m skews the distribution it will
change the &’ such that truncation first disappears in an IDD.

The question that arises is: can we know the final value for
each species in any habitat? Notice that (7) is similar to (5), with
a slight change in the variables. Thus, the distribution of the
individuals will be given by the IFD for this specific case. The
next theorem shows how to find the distribution representing
the IFD for the suitability functions as defined in (5) [or (7)].
It gives a solution for the IFD for a general class of suitability
functions (not available in the literature) and a solution to (7)
(when for each species k, we have that xf’l = b;) so that the
IDD can be found for any number of species N that sequentially
arrive at the environment.

Theorem 2.2: Fori=1,..., N, the point

1
m

F o B b nn
i N LS v

Ty = — ®)
N a
Zj:l cj

is the IFD for the suitability function defined in (5), whenever
P satisfies

S
<

&

bzﬂL_
. Cj
a;” j=1 7

. )

1 J

o

= N
P> max
i=1,..,N ,

T

If (9) is not satisfied, and without (significant) loss of generality,

we assume that a)’™ /by > ... > a)\/™ /by, the IFD is given by
1 1 1
IS o VA S VIR U i
o= ”H”Zﬁéﬁzﬁé,zzhwm
[ g+ al®
2
0, i=k*41,... N
(10)
where
N b
b P + Z =1 77
k* =argmax < k: If < —==9 11)

Notice that whenever (9) is satisfied with strict inequality
z; > 0, which implies that all the habitats end up inhabited.
Also, notice that k* is given by analyzing the values of the
suitability functions when x; = 0. It is clear that if P is big
enough, then the right-hand side of the inequality in (11)
becomes almost 0, and hence all habitats will end up inhabited.

D. Individual Animal Fitness Equalization

Normally, the number of habitats N, the a;, b;, ¢;, m, i =
1,...,N,and P > 0 are given. Then, the z; must be found that
achieve the IFD via (6). Problems with existence of the IFD can
arise, however, if ; is the number of animals since in that case
it is natural to assume that x; is discrete. For example, assume
that z; € {0,1,...}. In this case, the IFD may not exist (e.g.,
ifP:7,N:2,m:1,a1:0.1,b1:b2:0,01:02:1
and as = 0.2, then (6) cannot be satisfied). But, if the P, a;,

b;, c;, m, and N have appropriate values, (6) can be satisfied.
The standard approach to cope with this problem is to assume
that there is a large enough number of animals so that it is a
good approximation to consider x; to vary continuously. We
will take this same approach so we are assured that an IFD
exists. But, with z; continuous, we lose the ability to distinguish
between individual animals. In this framework it is, however,
still possible to introduce a limited notion of an individual.
This will allow us to assign each individual a fitness and then
clearly relate equalization of habitat suitabilities to equalization
of individual animal fitnesses. Moreover, our concept of an
individual is critical to modeling the IFD as a game between
many individuals in Section III-A, showing how individuals’
fitness maximization objective leads to an IFD, and relating this
to optimality formulations for the IFD.

To introduce the concept of an individual, assume that each
animal is identical and represented by some arbitrarily small
€; > 0 so that there is an arbitrarily large (integer) number
n > (0 of animals in the environment, where ne, = P, and
b; = bieg, with b; > 0 being the integer fixed number of resi-
dent animals in the ith habitat. Then, if n; > 0 is the (integer)
number of animals at habitat 7, Zjvzl n; =N, T = N;€s, and
the IFD in (6) is achieved when forall: =1,..., NV

— 1
ex(c;n; + bl a’™
Y= €aleny +b5) SN g

J=1"3

which has been another interpretation of the IFD in the liter-
ature (e.g., in [1] and [3]) for the case b; =0, ¢; = m = 1.
Notice that for an arbitrary P and b;, in order to ensure the
existence of the IFD, we need to have an arbitrarily small
positive value €.

Given the concept of an individual animal ¢, > 0 at habi-
tat ¢, ¢ = 1,..., N, we define this animal’s fitness as (i) =
a}/m/(cmi + b;). In the case when b; = 0, c; = m = 1, if a; is
nutrients per second, f(4) is the number of nutrients per second
that an animal gets at habitat ¢. This choice is consistent with
the results in [7], which show other ways to relate fitness and
suitability. Notice that

3=

fliy =2 =,

cing +b; i +b

13)

Notice that if we use the suitability function in (2), we have
f(@) = a;/n; = €ys;, so that individual animal fitness is indeed
a correlate of habitat suitability. Clearly, however, even though
they are linearly related, habitat suitability is not the same
as individual animal fitness. Moreover, if a;, b;, ¢; > 0 and
z; >0,7=1,..., N, then equalization of habitat suitability
(ie., s; = 84,1, j =1,...,N) is equivalent to equalization of
animal fitness (i.e., f(i) = f(4), 4, j =1,..., N). The equiva-
lence characterized by Theorem 2.1 holds for the fitness of all
individuals at any habitat j € H*.
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III. GAME-THEORETIC AND OPTIMALITY
PROPERTIES OF THE IFD

In this section, first we define the basic concepts of evolu-
tionary game theory in order to prove that the IFD is indeed
an ESS. Then, in order to extend this result, we model the IFD
achievement as solving an optimization problem, and we prove
that the IFD is a global optimum point.

A. Nash Equilibria and Evolutionarily Stable Strategies

In this and the next section, to use a game-theoretic per-
spective, we view each “player” as an individual animal that
makes strategy choices to maximize its payoff, which is fitness.
A Nash equilibrium is a set of animal strategy choices such that
any unilateral deviation by any animal from its strategy choice
will not be better for that animal. The standard definition for an
ESS is a strategy such that no “mutant” can invade a population
of members (“incumbents”) who use this strategy [10]. The
classical ESS idea is based on a two-player game where incum-
bents either play other incumbents or mutants (and vice versa).
These players are drawn from an infinite population. There is
an extension of this ESS concept that is called a “game against
the field” where the success of each individual does not depend
on a single opponent, but instead depends on the strategies of
all other members of the population (see [11, p. 23]).

Let f(Z,Py) be the fitness of a single Z-strategist in a
population (set) of j-strategists that we denote by Py. We will
say that z is an ESS if both of the following two conditions
hold [11].

1) Forally # =
[, Ps) < (@, Py).

2) For any § # Z, if (g, Pz) = f(Z, Pz), then for a small
qg>0

(14)

F5.B) < £ (2.5,) (1s)
where f(y, Py, ) is defined as the fitness of a y-strategist in a
population consisting of individuals playing the strategy y, =
qy + (1 —q)z.

The first condition means that = is a Nash equilibrium, since
no mutant strategy 4 does better than the incumbent strategy z,
and usually this condition is called the “equilibrium condition”
[14]. The second condition states that if the mutant strategy
y does as well as the incumbent strategy z, then the mutant
strategy does not do as well than the incumbent strategy when
they play against a population formed from both the incumbent
and the mutant strategies. This is a variation of what is known
as the “stability condition” [14].

B. Game-Theoretic Characteristics of the IFD

In this section, we characterize the relationships between
equilibria in games and the IFD. In a game-theoretic inter-
pretation of the animal distribution problem each animal has

N pure strategies corresponding to choosing habitat i, ¢ =
1,..., N. Each animal can only reside in one and only one
habitat. Hence, each animal €, has a strategy of the form
z=10,...,€z,...,0]", where €, is in the ith position. These
strategies can be interpreted as pure strategies of a polymorphic
population [14]. The meaning of “y # z” for (14) and (15) is
that ¢ can correspond to placement of ¢, in any habitat j # 1.
In the next theorem, Pz for (14) is any population such that
all individuals play a strategy so that the IFD defined by (6) is
satisfied. Clearly, in this case, the strategies of individuals in Pj
are not the same since the animals must play different strategies
to achieve the IFD.

Theorem 3.1: If x; is a continuous variable with €, > 0
representing an animal, then the x;, ¢ =1,..., N, given by
the IFD in (6) are the result of animals using a (strict) Nash
equilibrium strategy and hence an ESS.

The game-theoretic model is developed from the perspective
of the individual animals. Theorem 3.1 shows that if each
individual uses a strategy that maximizes its own fitness, they
will achieve an IFD, which is an ESS, and hence a Nash
strategy. Due to the equivalence of individual fitness equaliza-
tion and habitat suitability equalization, Theorem 3.1 implies
that choices at the individual level lead to habitat suitability
equalization across the entire environment. The Nash equilib-
rium is often called an “optimal” strategy since no animal can
do better by deviating from the strategy. The only allowed
deviations from the IFD in the game-theoretic model of animal
distribution problem correspond to shifting €, from one habitat
to another and this is consistent with the assumption that
animals can adopt one of N pure strategies. This fits with the
ESS concept above since this corresponds to a single “rare”
mutation in a population. Clearly, if there are certain types of
simultaneous deviations of animals (e.g., by swapping habitats
via simultaneous mutations), the strict Nash can also be main-
tained; however, such deviations would require coordination
and this is not possible since we are inherently considering a
competitive game-theoretic framework via the Nash concept,
and hence also the ESS. In the next section, we will, however,
reconsider this assumption.

Finally, we note that while in [11] and other papers it has
been pointed out that the IFD is an ESS, this is to our knowledge
the first formal proof of this fact. The value of the formal proof
lies in the treatment of fitness, and it clearly connects individual
fitness maximization to habitat-level suitability equalization.
The proof shows that the IFD is a strict Nash equilibrium so
some would consider the animal distribution game to be unique
since most games do not have strict Nash equilibria [15]. More-
over, the proof shows that the IFD of the animal distribution
population game is what is called a “local ESS” in [14].

C. Optimality of the IFD

In this section, we show how optimization models can rep-
resent the animal distribution game and how the IFD is a
global optimum point for such a model. Recall that the animal
distribution game assumes that all animals in the population
seek to simultaneously maximize their fitness. Assume that a;,
b;,c; >0andz; > 0,7 =1,..., N. An optimization model for
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the animal distribution game is one where the minimum fitness
is maximized. In other words

1 1
. a" an
max min €g——
{ e +b1)" 7 (evan +bN)}
N
subject to ij =P
j=1

z;>0,i=1,...,N. (16)

The constraints demand that the population size stays con-
stant and that the number of animals at each habitat is non-
negative. The terms er(ag fm /(c;x; +b;)) are the fitnesses for
any animal that chooses habitat ¢, ¢ = 1,..., N. Consider a
single individual €, > 0. If this animal is at habitat ¢ and
f@@) < f(y), j # i, then it can move to habitat j (i.e., change
strategies). The “max min” represents that multiple animals
simultaneously shift strategies to improve their fitness since
at least some animals with lowest fitness shift habitats (and
if f(i) = f(j) for some 4 and j the min can be achieved at
multiple habitats).

The following theorem shows that the animals choose the
IFD in order to maximize their fitness when everybody else is
trying to do the same.

Theorem 3.2: The point z* = [z7,...,2%] ", such that for
all: =1,..., N, [with z] defined in (10) and (11)] is a unique
global maximum point that solves the optimization problem in
(16) that represents that each animal simultaneously chooses a
habitat to maximize its own fitness.

The value of Theorem 3.2 is that it shows that the IFD is a
global optimum point for the animal distribution problem. The
game-theoretic setting of Section III-B only illustrated local op-
timality in the Nash sense. Theorem 3.2 shows that any number
of simultaneous perturbations from the IFD result in possibly
many animals incurring a degradation in fitness. Hence, an
arbitrary number of mutants cannot invade the population. This
idea will be studied further in Section I'V.

IV. EVOLUTIONARY ALLOCATION DYNAMICS
FOR IFD ACHIEVEMENT

In this section, we consider animal allocation dynamics from
evolutionary and decision-making perspectives. We focus on
defining allocation dynamics that guarantee the achievement of
an IFD.

A. Replicator Dynamics Model

The replicator dynamics are a simple model of how selection
via differential fitness affects the proportions of animals using
different strategies [14], [15]. Here, building on the game-
theoretic formulation in Section III, we show how equilibria of
one class of replicator dynamics are related to the IFD. These
are not the standard replicator dynamics that are developed
based on random pairings of two individuals in what is called a
“linear game.” Here, we extend such standard formulations in

[13] and [14] to represent our game against the field, which is
classified as a nonlinear game.

Recall that each animal has IV pure strategies, which corre-
spond to choosing which habitat to live in for its entire life, and
that the number of animals is constant and Zj\;l x; = P for

some P > OQand all ¢t > 0. Let p; = z;/ Zj\;l x; represent the
fraction of individuals in a population of animals playing pure
strategy 4, ¢ = 1,..., N. Clearly p;(t) > 0 and Zj\;l pj=1
for all ¢ > 0. The vector p = [py,...,pn] " is the “population
state,” which represents the strategy mix of the population
[14]. Clearly, p(t) € A forall t > 0, where A = {p(t) € RY :

Zij\il p;(t) = 1} is the “constraint set” (simplex) that defines a
subset of the state space. The vector z(t) = [x1,...,2y]" lies
in the simplex A,, where A, = {z(t) € R} : SN @i = P}

The replicator dynamics assume continuously mixed genera-
tions and are given by
% = [; [{fitness of animals that play i € H}

— {average fitness in population}] (17)
where (3; > 0 are proportionality constants. The left-hand side
of (17) is the normalized rate of increase in the population
share playing strategy 7. The right-hand side of (17) indicates
that if ¢-strategists are more successful (less successful) than
the average, their population share will increase (decrease,
respectively).

The replicator dynamics generally describe the evolution of
the state of the population p. Note, however, in the case where
the players only have pure strategies ¢ € H, the mean pop-
ulation strategy p = vazl pie;, where e; = [0,...,1,...,0]"
(a vector with a 1 in the ith position), represents the pure
strategy ¢ € H. This means that the population state is the
mean population strategy. Hence, we can think of the replicator
dynamics as representing the evolution of the IFD strategy by
the process of natural selection.

In this specific case, we have defined the fitness of animals
that play < € H in (17) at time ¢ as (13), and the average fitness
(of a randomly selected individual from the population) is f =
Zj\f:l p; f(j). Hence, the replicator dynamics are

pi = Bipi (£(i) — f) (18)

or

1

1
m N e
aim p] ajm

— N 19
CZPpZ + bz = Cijj —+ bj ( )

Di = Bi€xpi

with 5; > 0 forall i = 1,..., N, when p(0) € A. Notice that
f(i) — f measures the deviation from the IFD as quantified
by the habitat matching rule (after some mathematical ma-
nipulation). The replicator dynamics for our population game
are in the form of “monotone selection dynamics” [14]. The
monotone selection dynamics in [14, p. 88] show what is
essential to set up a replicator dynamics so that A is invariant.
Notice that when s; is defined as in (2), the average payoff f
is constant.
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B. Constraint Set Invariance for the Replicator Dynamics

First, we specify conditions under which (19) can be satisfied
at the same time that the constraints Zj\;l p;j =1 and p; >
0, i=1,...,N are satisfied. This is essential since we are
only interested in solutions to (19) that satisfy the appropriate
constraints.

Theorem 4.1: The system in (19) satisfies the constraint
p(t) € A, forallt > 0ifand only if 3; = 8,4, =1,...,N,
and p(0) € A.

This shows that the rate of increase or decrease in proportions
of the strategies must be the same in order for the ordinary
differential equation describing the replicator dynamics to sat-
isfy the constraints of Zj\;l pi=1p>0,9=1,...,N. A
special case of this result is the following theorem, which is
from [14].

Theorem 4.2: If 3; = 3; = forall 4, j=1,..., N, and
p(0) € A, then p € A for all ¢ >0 [i.e., A is invariant with
respect to (18)].

To ensure that the constraint set A is satisfied in all that
follows, we assume that 3; = 3;.

C. Stability Analysis of the IFD

First, we need to find the equilibrium point in (19). We
assume in the following analysis that P in (9) is satisfied with
strict inequality, which implies that p; > 0. It also implies that
the equilibrium point is strictly inside the simplex A, i.e., in
A — OA. If we let p; be the equilibrium point, we get for
any i, j that a,/™ /(c; Pp; + b;) = a;/m/(cjppj + b;), which
is the habitat matching rule in (4) but in p-coordinates. In
Theorem 2.2, we have shown that this point is given by (8).

Note that, for (2), when we try to find this equilibrium point,
if p; # 0 the solution would be f(i) = f, which means that the
consumption rate in each habitat 7 has to be equal to the overall
consumption rate (in this case, this one is described by f) at the
IFD equilibrium. Otherwise, the strategy mix of the population
will continue to change.

Theorem 4.3: For the replicator dynamics in (19), the
IFD equilibrium given by p* = 2*/P [where z* is defined in
(8)] is asymptotically stable, with region of asymptotic stability
A — 0A.

Theorem 4.3 is a “semiglobal” result, which means that if
the population state perturbs from the IFD to a point within
some set, then the population state will return to the IFD. Note
that under the game-theoretic interpretation, only a special type
of perturbation is allowed: perturbations correspond to a single
animal €; > 0 switching to another strategy where €, is arbi-
trarily small. Theorem 4.3 includes this strategy perturbation
as a special case; so, it applies to the game-theoretic setting.
What does it mean for the population state to “return” to the
IFD? If any animal switches habitats, then the mechanisms of
reproduction via differential fitness will always shift the animal
distribution back to the IFD. The shift of animal ¢, will result in
more deaths in its new habitat and correspondingly more births
in the habitat it shifted from.

In [13] and [14], it was shown that any ESS for a two-
player game must be an asymptotically stable equilibrium in the

replicator dynamics defined for that type of game, but that there
could exist asymptotically stable equilibria that are not ESS.
For our replicator dynamics for the game against the field, the
above results show that there is one unique equilibrium strictly
inside the simplex, which this equilibrium is the IFD (which
we showed was an ESS in Section III), and that the IFD is
asymptotically stable [or exponentially stable for the standard
suitability function in (2)].

D. Allocation Dynamics: Gradient Optimization Perspective

Related work has been done via the study of the Shahshahani
gradient [14] and for linear games in [12].

Consider the cost function J = (1/2) 3N ((x:/P) —
(x7/P))?, where x} is defined in (8), and Zjvzl z; = P. Note
that J measures the deviation off the IFD defined by (6). The
following theorem shows that minimization of this .J, results
in an IFD.

Theorem 4.4: The point z; in (8) is a global minimizer for
the constrained optimization problem defined as

1N ;2\ 2
Jzzz(p‘p)

i=1

minimize

N
subject to ij =P
j=1
x;>0,i=1,....N (20)

where z} is defined in (8), when P is satisfied with strict
inequality in (9).

Next, suppose that a steepest descent method is used in
animal reallocation so that

aJ
axi

Ti = —AP 21

where A > 0 is a “step-size” parameter. Note that if we let
b; = 0 and choose A = Be, 27 1(a}/m/cj), (21)is

Jj=

1
1 m
N w g
a; €T; -
. 3 % c
j=1 Cj N CLJ."”
Zj:l cj

These allocation dynamics are equivalent to the replicator dy-
namics in (19). If in (18) we take f(i) = ew(al/m/cimi), then

the replicator dynamics in (19) are the same as in (22). Hence,
we know that the constraint Zj\;l z; = Pismetforall ¢ > 0.
Moreover, for the optimal allocation dynamics the following
result holds.

Theorem 4.5: The optimal allocation dynamics in (22) have
the IFD as an equilibrium and it has a region of exponential
stability given by A, — 0A,.

Hence, the allocation strategy will not get “stuck” and
will result in a distribution of effort that converges to the
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Fig. 1.
distribution of the x; (right axis).

IFD. Convergence is achieved independent of where the effort
distribution starts. Equation (21) and the proof illustrate that if
P is small (big), we will have a faster (slower) convergence rate.
Also, notice that there is a critical difference compared to
the strict Nash equilibrium and replicator dynamics viewpoint.
Perturbations for the game-theoretic formulation are due to
a single animal €, > 0 switching habitats, and the replicator
dynamics are built upon that perspective. With the optimal allo-
cation perspective, any perturbation is allowed (i.e., any initial
condition corresponding to the initial animal effort distribution
must be possible), even ones that are not small perturbations
€, > 0.

V. MULTIZONE TEMPERATURE CONTROL APPLICATION

Here, to illustrate the theoretical results shown in the pre-
vious sections, we consider a multizone temperature control
problem that has a voltage saturation constraint [24]. The ex-
periment consists of N = 4 zones, where each zone consists of
one lamp with voltage input v;(¢) and one sensor that provides
the temperature T;(t), t > 0. The idea of this experiment is
to use the replicator dynamics in (19) to reach a maximum
uniform temperature in each of the zones (it is important to
note that this is not a standard tracking problem since the
maximum achievable temperature is not known). The controller
is implemented using a dSSPACE DS1104 data acquisition card.

Equation (19) has two main variables: The proportion of the
number of animals in habitat ¢, p;, and the arrival rate a; for the
tth habitat. In the previous analysis, the a,; values were positive
constants, however, these arrival rates could vary with time.
Suppose we define each arrival rate to be the inverse of the tem-
perature sensed in each zone, so that fori = 1,..., N, a;(t) =
1/T;(t). Since T;(t) > 0, a;(t) > 0 for all i. Next, let z;(t) =
p;(t)P = v;(t), where Zj\;l vj(t) = P is the total amount
of voltage that can be applied to all zones. For our lamps,
v;(t) > 0, t > 0, and this fits with the assumptions on z;(t) in
the theory. For a given v;(0), the replicator dynamics indicate
how to redistribute voltage, depending on a;(t). Here, the tem-
perature will change due to ambient and interzone influences,
and the replicator dynamics will persistently and dynamically
redistribute the constrained amount of voltage. Will it do this
in a way to try to achieve the maximum uniform temperature?
The results below seem to illustrate that it will. Why? Because,
it will allocate more voltage to the minimum temperature at

Voltage distribution

0
3000

0 1000 2000
time (sec)

1000 2000
time (sec)

Temperatures in four zones of the multizone temperature control experiment. The plot represents the temperature in each of the zones (left axis), and the

each time step. It will tend to force the lowest (minimum)
temperatures to rise faster than the higher temperatures.

While we expect that the temperature in each of the zones
will be the same after some time, there are certain features of
the physical experiment that conspire against us achieving this
goal. One problem is the physical location of the lamps and the
sensors. Since we are working with breadboards, it is difficult to
have the same sensor-lamp, interlamp, and intersensor distances
for all the zones, and hence the interzone effects are different for
each zone. The second problem is the sensors. We calibrate one
sensor and then we pick three others that provide temperatures
close to it before construction. Next, there is sensor noise. If
all the sensors were the same, and there was no noise, after a
period of time the same temperature would be achieved in each
of the zones.

The results are shown in Fig. 1. This figure shows the first
50 min of the experiment. At the beginning, the experiment
was at 22 °C, and as we can see, practically all the zones were
around this temperature. The temperature in each of the zones
starts to increase according to the voltage that we allocate to
each of the lamps. The idea is to distribute 3.5 V across the
zones. We assume that these 3.5 V are equivalent to P. The ini-
tial conditions are x1(0) = 0.44, z5(0) = 0.57, z3(0) = 0.51,
and z4(0) = 1.98. All the units are in volts. At 18 min, we add
a disturbance to the grid. This disturbance consists of turning
on a lamp that is close to the first temperature zone, and leaving
it on for 2 min. As we can see in Fig. 1, the first zone drastically
increases its temperature, but at the same time there is a
reallocation of the resource (voltage) across the four zones. We
can see then that all the zones but the first one start to have more
voltage and that occurs until the disturbance finishes. The final
temperature in the grid is practically the same (29 °C), +1 °C.
In this case, it is clear that we do not reach a unique equilibrium
point described by the input matching rule due to ambient
and interzone influences. However, as we can see in Fig. 1,
the final values allocated are x1(3000) = 0.88, x2(3000) =
0.88, 25(3000) = 0.86, and x4(3000) = 0.88. However, using
our previous analysis the final values should be x] = 0.88,
x5 = 0.87, x5 = 0.86, and z} = 0.89, which as we can see
are relatively close to what we have in the experiment. Notice
that the only computations needed to implement the control
are those for the computation of (19), using a; = 1/T;, and
with €, = ¢; = m =b; = § = 1. Clearly, the computational
complexity is not a concern for this application.
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VI. CONCLUSION

We have analyzed the IFD for a general class of suitability
functions. We have proven that the habitat and input matching
rules are equivalent for this general case. We also proved that
the IFD is indeed an ESS for the general case. Since this
last concept only provides local results, we state a constrained
optimization problem where we prove that the IFD is a global
optimum point. Finally, from an evolutionary time perspective,
we set up the replicator dynamics and show that the IFD is an
asymptotically stable equilibrium point. An interesting charac-
teristic for this case is that under some constraints, a gradient
optimization perspective leads us to the same replicator dy-
namics. Finally, in order to provide more insight on why these
allocation dynamics are useful from an engineering perspective,
we applied the approach to the multizone temperature control
problem. Using the replicator dynamics ideas, we showed how
in spite of limiting the input voltage, we can manage to have
a uniform temperature in each of four temperature zones.
A future direction is to evaluate the relative advantages and
disadvantages of other control-theoretic approaches for solving
dynamic resource allocation problems such as the multizone
temperature control problem studied here.

APPENDIX

A. Proof of Theorem 2.1

For (4) = (6) note that (c;x; + b;) Z;V:1 a}/m = ai/m x

S (cjz; + b)), which clearly is (6). For (6) = (4), for
i 1/m N 1/m N

all i=1,...,N, ai/ /(Ci.«%’i +0) =>4 aj/ /2 j=1 %

(cjz; +bj) = C, where C is a constant, so for all ¢, j, (4)

holds.

B. Proof of Theorem 2.2

From (), (o)™ fe0)( + (bi/¢5)) = (0" /) (] +
(b;/c;)). Therefore '

L N N
al" cobiN L b aj
Ci Z<xj+c'> B (x’JrCz); €

j=1 J

3=

(23)

with Zjvzl x; = P, we obtain (8). The constraint on P in (9)
is obtained by using x; > 0. In the case when P > 0, without
(9) necessarily holding, the analysis changes. Since we need

to satisfy the constraint that x; > 0, and using the fact that

a;/m/ci>0,f0rsomez’=1,...,N,forxi>O
1
1 N a™
m djm1 .
e (24)
b; P+Z_ 24

Since a}/m/bl >.> a}v/m/bN, if we let k* be the largest

index k for which a,lc/m/bk > o, k* is given by (11). Then,
if ie{k*+1,k*+2,...,N}, (24) is not satisfied, and
since ¢; > 0, this equation can be written as ((a}/ " e P+

(ai"™ fer) SN (by feg) —(bifer) N1 (@)™ fey)) ) N

(a;/ "/cj) < 0. The left-hand side of this inequality is the
same z; in (8). However, we have assumed that 7 > 0, there-
fore 27 =0 for i € {k*+1,...,N}. Hence, we will have
: . L. N
N - k* truncated habitats, which implies that Zj:1 z; =
Zf 1:(;; = P. Therefore, instead of taking the sum over

all habitats in (23), we need to consider only those habi-
tats that are inhabited, i.e., we need to take the sum over
k* habitats. Then, (a}/m/cl-) Zle(x; + (bj/cj)) = (xf +
(bi/ci)) Z?;l(a;/m/cj). Using the fact that 25;1 z; =P,
and the same ideas as before, we obtain that the IFD for the
suitability function in (5) is given by (10) and (11).

C. Proof of Theorem 3.1

Let x represent a strategy choice by animal ¢, such that all
other animals make strategy choices such that the IFD defined
by (6) holds. From the habitat matching rule, we know that
for any j such that a; = 0, x; = 0. Therefore, Z will only
correspond to strategy (habitat) choices ¢ € H* where a; > 0
and z; > 0. Let P; represent the population with individuals
all playing strategies such that the IFD is achieved. It is im-
possible to know which habitat ¢ € H* player €, will choose
since the IFD can be achieved for any strategy choice ¢ € H*
provided the other animals adopt the appropriate strategies. In
Theorem 2.1, we have shown that the habitat matching rule
is satisfied and it is given by (6), which in terms of fitness is
equivalent to (13). Hence, for any : € H*

1 1
ar ar
77Pa_: = ) = €4 L = € E
(@ Fo) = J(0) = € (i + b)) ey +by)

= 1)
(25)

forall ¢, 7 € H*. Suppose that the animal €,, makes a unilateral
deviation to strategy ¢ # T that corresponds to choosing habitat
j #1, j € H (the animal could choose j such that a; = 0).

Then, f(7,P:) = ex(al/™/(cj(x; +e;) +b;)), and if j €

H — H* a; =0, f(y, Ps) = 0. In either case, by monotonicity
and from (25), f(y, Ps) < f(Z, Pz). Hence, the IFD is a strict
Nash equilibrium and hence an ESS.

D. Proof of Theorem 3.2

Note that (16) is equivalent to the optimization problem

max z

N
subject to Z x; =P

j=1
220, i=1,...,N
1
a;‘n
€—"7>2,i=1,...,N (26)
xz—i—c—:

where we have introduced the new variable z € R, z >
0. If we combine the constraints, we obtain that for each
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i=1,...,N,ex((a}/™/c;)/2) > m; + (bi/c;) > 0, since z >
0. Adding all the terms across the NN habitats, we obtain

that = < €, (75, (0" /e))/ (P + L1, (b /c;))). There-
fore, (26) is equlvalent to

max z

[~ 3

N a .
Zj 1 c]
+Z] 1 c

subjectto 2z < sz

In this case, the maximum is unique and equal to z* =

1/m .
€e(Sim (e /e)/ (P + 320, (by/c;)). Hence, for i =
1,...,N, the x; are any values that satisfy the constraints of
(26) and such that

1
a a™ <N b; b, =N a

i i __ 0i J
p P+ o > j=le; e E:j:l c;

am™

N .
Z]lcj

27)

\.-‘

[~ 3

We have then two cases. For the “<” option, adding all the
terms across the /N habitats, we obtain a contradiction (i.e.,
the total population size is less than P). Therefore, the “="
option in (27) must hold. Using the same ideas as in the proof
of Theorem 2.2, we can show that the IFD for the suitability
function in (5) is given by (10) and (11).

E. Proof of Theorem 4.1

For (=), since by hypothesis the sum of the p; is equal to 1
for all ¢ > 0, and p;(0) > 0 for all 4, then p(0) € A. For the
N =2 case

1
ap(1l—
p1=Prex < Ppld=p)

ag p1(1—p1)
(c1Pp1 +b1)

(c2Ppa + b2)

b e aF (L—p)(1—(1-p) a'p(l—p)
2o (c2Ppa + b) (e1Ppr+b1) |-

Since Z;V:lpj =1, Zévzlpj = 0. Hence, (31 = (3>. Next, we
assume that 3 = 3; = 3; foralli,j =1,..., N, and prove that
it also holds for NV + 1. Note that

1

N+1 m
pja’
0= iPi D1 7j
Zﬂp l—f—b Zﬂp ; (¢; Ppj+b;)
w N+1 o’
AN 1PN+1 pja;
+ (CN+1PpN+1+bN+1) + +1Z C]Pp]+b )

Using SN p, =1, and 3, = S forall i = 1,..., N, by hy-
pothesis, we obtain that § = Bn 1.
. N . N ,
For (<=), since 3; =03;,then > ;" 1 pi=€,(D>_; 1 Bipi f () —

Zij\il Bipi f) = 0. But, if we take the integral with respect to
time, for t >0, fg SN pi(r)dr =0, or SN pi(t) -
vazl p;(0) = 0. But, by hypothesis, the sum of all the initial
conditions has to be equal to 1, then we get that for all
t> 0N pi(t) = 1. Since by hypothesis p(0) € A, we can
conclude that p € A for all ¢t > 0.

FE. Proof of Theorem 4.3

Using the Lyapunov function

(28)

N D
= f;pi In (pf) .

In information theory, this function is called the relative en-
tropy function or Kullback-Leibler distance [15]. It has the
property that 0In(0/p;) = 0In(0/0) =0, and p} In(p}/0) =
+00. It has been proven that V' is a valid Lyapunov function
candidate (e.g., see [15]). The derivative of V' along the trajec-

tories in (18), is V = _21 105 (/i) (ps(f(3) — f)). Since
Z;‘V:lp; =1

N N
=D Bf@+ Y op
i=1 i=1

N N
—Zp;‘f(i)ﬂLZpif(l)

(29)

In order to show that Vis nonpositive, we will prove that the
maximum value of V' in (29) is equal to 0. For that, we let f(4)
be as in (13) and we solve the optimization problem

N o
max J=V= ZGa; “—= (pi — ;)
i=1 Ppi+ 4
N
subject to ij =1
j=1

p; >0forallei=1,...,N.

Using Lagrange multiplier theory, the Jacobian VJ = [9J/
Op1,0J/ps, ..., 8J)dpN]", where 8.J/dp; = e,(a)’™ /c;)
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(Pp; + (b;/c;i))/(Pp; + (b;/c;))?. Since the inequality con-

straint p; > 0 is inactive, fort = 1,... N
1\ 2
[ (P + Zj:l é)
€z +A*=0 (30)

1
m
J

2 a
(Pri+ ) SN, 4

where p* = [P}, ..., Py is the regular point for the optimiza-
tion problem, and \* is the Lagrange multiplier. From (30),
. . 1/m N —%
for any 4, j=1,..., N, (ai/ /ci) ijl(ij +(bj/cj)) =
(Pp; + (bi/ci)) Z;yzl(a;/m/cj). After solving the above
equation for p;, we obtain a scaled version of (8), i.e., p; =
af/P = pf. In order to see if it is a global or a local maximum,
we need to check the Hessian V2.J. We have that

2
1
aim N b

o 2P (%) (P, %)

— = —¢€ <0

op? v 3 =

bi N a .
and 8326‘; - = 0. Hence, V2J is negative definite, which implies
iOPj

that p* is indeed a global maximum. Therefore, the maximum
value of J is max J = 0. Since V < 0 for all p; # py, and V=
0 if p; = p;, the IFD is (uniformly) asymptotically stable.

Notice that V in (29) is negative, except when it is
equal to the equilibrium point. The previous analysis showed
that whenever we are inside the simplex (i.e., when p &€
A — 9JA) the Lyapunov function satisfied all the previ-
ous conditions. Therefore, the region of asymptotic stability
is A — 0A.

G. Proof of Theorem 4.4

We want to minimize .J, subject to h(z) = SN a; —

P, and g;(z) =x;, i=1,...,N where the g; constraints
are inactive. We have 0.J/9z; = 1/P((x;/P) — («}/P)), and
Vh(z)=11,...,1]". Also, V2J(x) = (1/P?)Inyn, where
In«n is the identity matrix N x N. Equation P > 0, and
satisfies with strict inequality (9), V2.J(z) is positive definite.
Using the fact that the constraint is inactive, we have for all
i=1,...,Nthat1/P((z;/P) — (x}/P)) + A\* = 0, where \*
is the Lagrange multiplier, and Z; is the optimum point. Rear-
ranging, we have for any k, w, Z} — 7}, = xj, — z},. In terms
of k only, we will have N — 1 of these equations. If we add
all these equations, we get that Zj, (N — 1) — Z?’:M#k T =
(N —-1)— Ej‘\;u#k %, which is equal to (8). It is clear that
Z; > 0 since P is assumed to satisfy (9) with strict inequality.
However, J is defined over A, — 0A,, and its Hessian is
positive definite, which implies that the cost function is convex
on A, — 0A,. Therefore, the point in (8) is a global minimum
for the cost function J defined in (20), subject to Zjvzl z; =P,
with z; > Oforalli =1,..., N.

H. Proof of Theorem 4.5

Equation (22) is equivalent to (19) for the case when b; = 0
forall i =1,..., N. We know that the IFD defined by (8) is
an equilibrium point whenever P > 0 and it is unique, and that
A, — 0A, is invariant in = generated by (22). Let e¢; = p; —
()™ /es)/ Zj-v:l(a;/m/cj)). Since a;, ¢;, and m are posi-
tive, we have that ¢&; = p; = —((Bea/P) 0, (a)/ ™ /¢)))es.
Taking the Lyapunov function V; = (1/2)e?, then V; =
~((Bea/P) YN ()™ /c;))€2(t). which implies that the IFD
equilibrium is (uniformly) exponentially stable.
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