
Engineering Applications of Artificial Intelligence 14 (2001) 1–14

Genetic adaptive control for an inverted wedge: experiments and
comparative analyses$

Mathew L. Moore, John T. Musacchio1, Kevin M. Passino*

Department of Electrical Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, USA

Abstract

The inverted wedge is a planar robot with two degrees of freedom and a single control input (i.e., it is ‘‘underactuated’’). The goal

is to develop a digital controller that can balance the wedge in the inverted position by shifting a weight on the top of the wedge.
Because it is underactuated and has complicated nonlinear dynamics, the inverted wedge is a good testbed for the development of
nonconventional advanced control techniques and comparative analysis between control methods. We begin with the development

of a nonlinear state feedback controller and direct and adaptive fuzzy controllers, that we will later use as a baseline comparison to
show what type of performance is possible for this testbed. Control routines based on the GA have been found to apply to several
practical applications in simulation and off-line optimization. Here, we will show that a GA can be used on-line in real-time to
produce a particularly effective adaptive control method and this is the main contribution of this work. Computational and real-time

implementation issues will be discussed and the genetic adaptive strategy will be compared with the state feedback and fuzzy control
methods. # 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Genetic algorithms; Adaptive control; Laboratory experiments

1. Introduction

Using conventional techniques, designing controllers
for plants with nonlinear dynamics and modeling
uncertainties can be quite challenging. By making use
of heuristics, intelligent control techniques potentially
can greatly simplify the synthesis of a controller for such
plants. Although the analysis of intelligent techniques
such as fuzzy systems, neural networks, and evolution-
ary programming, has in many cases been widely
studied and show promising results, these techniques
are used relatively infrequently in industry. This is
possibly because of the lack of experimental implemen-
tation and analysis of these techniques.

This paper examines the implementation of an
adaptive control method (the genetic model reference
adaptive controller (GMRAC)) based on the genetic

algorithm (GA) discovered by Holland in 1975, and
compares the results to those from direct and adaptive
fuzzy controller (a fuzzy model learning reference
controller (FMRLC)) and a conventional nonlinear
state feedback controller. The GA, an optimization
routine based on principles of genetics and evolution,
performs a directed random search of a population of
controllers to determine which one is the best to
implement at a specific sampling time period. The
GA has found numerous applications in off-line
optimization in both signal processing and control
problems. Here, however, we show that a real-time
implementation of a GA for adaptive control is not only
possible, but it is also a worthwhile controller synthesis
technique.

The inverted wedge experiment, an underactuated
planar robotic system with two degrees of freedom, acts
as the testbed for comparing control techniques. Its
complexity is simple enough to allow for the develop-
ment of a crude mathematical model of the system,
but, due to the nonlinearities, has enough sophisti-
cation to render the standard linear techniques, e.g.,
proportional-integral-derivative (PID) and linear
quadratic regulator (LQR), unsuccessful in physical

$This work was supported by a National Science Foundation grant.

1 J. Musacchio is now with the University of California, Berkeley,

USA.

*Corresponding author. Tel.: +1-614-292-5716; fax: +1-614-292-

7596.

E-mail address: k.passino@osu.edu (K.M. Passino).

0952-1976/01/$ - see front matter # 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 9 5 2 - 1 9 7 6 (0 0) 0 0 0 4 7 - 6

implementation. Coupling between the two degrees of
freedom is nonlinear, and due to this and the under-
actuation, the system demands the controller to be
robust to friction and model uncertainties.

The GMRAC was first introduced in Porter and
Passino (1994), with the full version of this work in
Porter and Passino (1998). A simulation study of on-line
genetic adaptive techniques and the FMRLC as applied
to a brake system is discussed in Lennon and Passino
(1999a). An indirect genetic adaptive scheme was
introduced in Kristinsson and Dumont (1992). In Porter
and Passino (1995), the authors show how the GA can
be used to adapt observer gains to obtain good state
estimation. Another study of the GA for state estima-
tion can be found in Gremling and Passino (1997a),
(1997b), and a study of failure estimation using the GA
for an automated highway system can be found in
Gremling and Passino (1997a, 1997b). In Lennon and
Passino (1999b), the authors examine several genetic
adaptive strategies and apply them to a ship steering
problem. The FMRLC algorithm was first introduced in
Layne and Passino (1992, 1993). Implementation studies
of the FMRLC can be found in Moudgal (1995). In this
paper, we examine direct fuzzy and the FMRLC
algorithms applied to a new experiment } the inverted
wedge. The main contribution of this paper is, however,
the first implementation of the on-line genetic adaptive
technique given in the GMRAC algorithm.

This paper is organized in the following manner: first
the details of the inverted wedge experiment are
introduced and a nonlinear mathematical model is
developed. Then a brief overview of the state feedback
control law used on the system and the results of this
controller are given. The next two sections give a

description of the direct fuzzy and adaptive fuzzy
methods that were applied, and the results of the
implementation of these controllers on the inverted
wedge are shown. Then we introduce the GA and the
GMRAC, and discuss implementation issues of a real-
time GA. Finally, we examine and compare the
experimental results of each implementation.

2. The inverted wedge control problem

The inverted wedge, shown in Fig. 1, is similar to
the inverted pendulum in that the goal is to regulate
the system to zero-state (i.e., the balanced position). The
system consists of a cart that rides along the top of the
inverted wedge (the ‘‘sliding surface’’) whose position is
controlled by a motor via a chain and gear system.
Moving the cart along the sliding surface shifts the
system’s center of gravity, allowing the wedge to balance
above its pivot point.

2.1. Dynamical model of the plant

Plant dynamics are described in a fixed world
coordinate system ðX ;YÞ whose origin is attached to
the base at its pivot point of the wedge (point O). The
input to the system, denoted uðtÞ, is a voltage level to the
motor which controls the position of the cart (g,
measured from the center of the sliding surface, or
~q1 þ~q2 in the world coordinate system). The motor is
attached to the center of the wedge framework. The
angle of the wedge, a, is measured from the Y-axis,
positive counter clockwise. Both g and a are measured
using optical encoders.

Fig. 1. The inverted wedge experiment.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–142

The system can be modeled by a nonlinear function of
the form

_xðtÞ ¼ f ðxðtÞ; uðtÞÞ; ð1Þ
where x is the state of the system. The details of the
vector equation can be found by examining the
dynamics of the system. The states of the system are
the position and velocity of the cart (gðtÞ and _gðtÞ,
respectively), the angular position and velocity of the
wedge (aðtÞ and _aðtÞ), and the motor current IðtÞ.
Examining the forces along the direction of the sliding
surface we obtain the equation

�g ¼ 1

m
F ÿ Ff ÿmg sin að Þ;

where m is the mass of the cart, Ff is the frictional force,
and F is the force supplied by the motor. The cart is
coupled to the two tracks of the sliding surface using
ball bearings, and viscous friction is assumed. Further-
more, we assume that the motor force is proportional to
the current supplied to the motor. This results in the
equation

�g ¼ 1

m

KI

r
ÿ Kf _gÿmg sin a

� �
:

The summation of moments about the pivot point of the
wedge yields the second equation, given as

�a ¼ 1

Jw
ðMgl sin aÿmgðÿd sin aþ g cos aÞ

ÿmðd 2 _aÿ d _gþ g2 _aÞÞ: ð2Þ
In this equation, Jw is the moment of inertia of the
wedge, d is the distance from the pivot point to the
sliding surface measured perpendicularly. A final
equation relates the controller output voltage the
armature current of the motor. Using the standard DC
motor model, we have

_I ¼ 1

L
uðtÞ ÿ RI ÿ Kb

_g
r

� �
;

where R and L are the armature resistance and
inductance, Kb is the back electromotive force (EMF)
constant, and r is the radius of the gear in the drive
system.

Using the system dynamic equations and the defined
state vector (1) can be written as

_x ¼

x2
1
m ðKr x5 ÿ Kfx2 ÿmg sin x3Þ

x4
1
Jw
ððMgl ÿmgÞ sin x3 ÿmgx1 cos x3

þmdx2 ÿmðd 2 þ x1Þx4Þ
1
LðuðtÞ ÿ Rx5 ÿ Kb

r x2Þ

26666666664

37777777775
; ð3Þ

where the state vector x ¼ x1; x2; x3; x4; x5½ �T¼
g; _g; a; _a; I½ �T, and the plant parameters are given in
Table 1.

Note that the wedge system does not fit the parameter
strictly or pure feedback forms given in Krstic� et al.
(1995), making nonlinear controller design using Lya-
punov theory difficult. This is coupled with the fact that
although the dynamics of the plant may be well known,
many of the parameters listed in Table 1 are, at the very
least, uncertain. As a result, direct use of feedback
linearization techniques is not feasible. Furthermore,
certain unmodeled dynamics make it a challenging
problem. These include the fact that the drive belt
(which is two nylon-covered metal cables with nylon
teeth in between) attached to the cart and motor tends to
bounce and stretch. We have also not modeled the
effects of Coreolus acceleration of the cart, and the
centrifugal force component on the cart due to the
wedge (the simplifications allow the development of a
model that can be analytically linearized). Furthermore,
the belt had to remain fairly loose to minimize the gear
friction terms (also not modeled in the derivation), and
the resulting chain backlash that occurred because of
this seemed to have a significant effect on the plant.
Other unmodeled nonlinearities include a large dead-
band in the motor and the changing cart friction that
results from not keeping the sliding surface lubri-
cated. Although any one of these may have mini-
mal effect on the system, the combined effect of all
unmodeled dynamics seemed to largely influence the
wedge behavior.

2.2. Sensing and actuation

All control algorithms were implemented digitally
using a computer program with a sampling period of
Ts ¼ 0:005 s (smaller sampling intervals did not improve
performance, and larger ones made it impossible to meet
the control objectives). Optical encoders were used to
measure both the position of the cart on the sliding
surface and the angular position of the wedge (measured
from the global Y-axis). From these measurements, the
velocities of the cart and wedge are approximated within
the computer program using a backward-difference. The

Table 1

Summary of plant parameters and variables

Plant parameters

Jw 1.4029 kgm2 inertia of wedge

M 4.86 kg mass of wedge

m 1.25 kg mass of cart

l 0.14m distance between pivot point and COG of wedge

d 0.17m distance between pivot and sliding surface

r 0.019m radius of gear

Kf 20.0N/m/s friction coefficient

R 1.9O motor resistance

L 0.004H motor inductance

K 14.8 oz-in/A motor torque constant

Kb 11.0V/kRPM back EMF constant

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–14 3

calculation of the velocities utilized a digital filter in
order to remove the transients which occur due to the
sensing technique. Access to the analog plant from the
computer was obtained via a Keithley DAS-20 data
acquisition card, which offers both A/D and D/A
converters and an 8-bit digital interface, as well as a
custom made circuit to convert the output of the optical
encoders to a digital count read into the computer.

3. State feedback controller development

In this section we discuss the linear quadratic
regulator (LQR) approach that, although unsuccessful
for this plant, led to the development of a nonlinear
state feedback controller.

3.1. LQR and state feedback control

In order to develop a linear controller for the plant, it
is necessary to develop a linear model of the system, of
the form

_xðtÞ ¼ AxðtÞ þ BuðtÞ;
where A and B are found by solving the Jacobian
around the balanced point x ¼ 0, u ¼ 0. Doing this gives
the resulting equation

A ¼

0 1 0 0 0

0 ÿKf

m ÿg 0 K
mr

0 0 0 1 0

ÿmg
Jw

md
Jw

gðmdÿMlÞ
Jw

ÿmd 2

Jw
0

0 ÿKb

Lr 0 0 ÿR
L

266666664

377777775;

B ¼ ½ 0 0 0 0 1
L �

T;

where the values of the parameters are given in Table 1.
Since the states of the linear system are controllable,

state feedback methods are applicable to the linear
system. The feedback gains were originally chosen to
solve the infinite horizon linear quadratic regulator
(LQR) problem, which consists of minimizing the cost
function given by

J ¼
Z 1

0

ðxTQxþ uTRuÞ dt; ð4Þ

where the matrices Q and R are used to weigh the states
and input. Matlab can be used to solve the algebraic
Riccati equation that produces the gain vector k that
results from the minimization criteria and the control
law is implemented by the equation

uðtÞ ¼ ÿkx:
However, although successful in simulation studies,

the LQR performed poorly in the implementation for a
variety of chosen weighing matrices, forcing the

introduction of a nonlinear feedback term and some
heuristic tuning of controller gains. This nonlinear
feedback term represents the position on the sliding
surface, the cart should be located to balance the wedge
and is calculated from the formula

geq ¼
d sin aþMl sin a=m

cos a
; ð5Þ

where recall, d is the distance measured perpendicular
from the sliding surface to the wedge’s pivot point, l is
the distance from the pivot point to the center of gravity
of the wedge and m andM are the masses of the cart and
wedge, respectively. Since this nonlinear term also
approaches zero as the wedge angle approaches zero,
the modified state feedback law will still attempt to
regulate the system to zero state. Intuitively, the
addition of this term places more emphasis on the effort
of balancing of the wedge and relies on the fact that, for
the wedge to be perfectly balanced, the cart must
(eventually) be in the center of the sliding surface.

This new resulting state feedback law implemented is
given by

uðtÞ ¼ k1ðgÿ geqÞ þ k2 _gþ k3aþ k4 _a:

The final values for the gains, which were obtained
via heuristic tuning, were k1 ¼ 181:14, k2 ¼ 23:76,
k3 ¼ ÿ41:04, k4 ¼ ÿ47:52.

3.2. State feedback results

The heuristic nonlinear state feedback controller
results are shown in Fig. 2. Initial conditions place the
cart in the middle of the sliding surface at rest, with the
wedge at a stationary angle of about 158. Note that
the state feedback controller only balances the wedge
within a small steady-state value, partially due to a large
deadband in the actuation. Attempts to counteract this,

Fig. 2. Result of wedge balancing using the state feedback controller.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–144

by slightly increasing the absolute value of the controller
output when close to zero helped, but did not eliminate
this problem (and, in fact, tended to cause greater
oscillation).

4. Direct and adaptive fuzzy control

Fuzzy control provides a nonlinear mapping between
state values and controller output, and also allows the
use of heuristics in the design. This is beneficial in this
case, since for the most part we can determine what the
controller should do in any given case. This section
discusses the development and results of both direct and
adaptive fuzzy controllers as applied to the inverted
wedge.

4.1. Direct fuzzy control

The multiple input2single output (MISO) fuzzy
controller used for balancing the inverted wedge utilized
four inputs and produced the motor voltage input. The
inputs to the fuzzy system consisted of the error,
eðkTsÞ ¼ ar ÿ a, and the change of that error

deðkTsÞ ¼ ðeðkTsÞÿeððkÿ1ÞTsÞ
Ts

;

and the cart position and discretized velocity,

gðkTsÞ and dgðkTsÞ ¼ ðgðkTsÞÿgððkÿ1ÞTsÞ
Ts

;

multiplied by their respective gains, ge, gde , gg, gdg . The
cart variables were utilized since they were found to be
useful to the controller system; the position of the cart is
necessary to keep the controller from pushing the cart

beyond the limitation of the physical system, and the
velocity of the cart was used for similar reasons. In
addition, these choices for inputs seem logical, since they
could be considered as the state variables of the system
without the motor.

A direct fuzzy controller implements a rule base that
is generated from a set of IF2THEN rules. Typically,
this set of rules is developed heuristically based on the
knowledge of the plant. An example IF2THEN rule in
the case of the inverted wedge system could be

IF e is positiveÿ large AND de is positiveÿ large

AND . . .THEN u is negativeÿ large:

Note that this example rule does not explicitly name the
additional two inputs from the cart as we only use it for
illustrative purposes. Here we use linguistic variables
‘‘positive-large’’, ‘‘positive-medium’’, and ‘‘positive-
small’’ to quantify the error terms that are large,
medium or small positive values; likewise we would
use terms such as ‘‘negative-large’’ if the error was a
large negative value, and so on. To quantify what
exactly is ‘‘positive-large’’, etc., we use the membership
functions shown in Fig. 3. Their universes of discourse
(that is, their domain) is normalized to cover a range of
½ÿ1; 1�.

The inverted wedge system with four inputs, and
seven membership functions each, contains a rule base
of 2401 (¼ 74) rules. Also, because we are using
symmetric, overlapping triangular-shaped membership
functions (shown in Fig. 3), it is possible to have 16
(¼ 24) rules on at once (Passino and Yurkovich, 1998).
Fortunately, there is a large amount of symmetry

Fig. 3. Membership functions for the fuzzy controller.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–14 5

between the respective rule tables. For example,
consider the case where the position of the cart is zero
(in the center of the sliding surface) and its velocity is
zero. If the error e is positive large, than the angle of the
wedge is too far clockwise (with reference value of zero
radians), and a negative voltage must be applied to the
motor to move the cart to the left. The amount of
voltage applied depends on the present state of the
change in error. If the change in error is such that the
error is moving toward zero (what we want) then we do
not need to apply as large a voltage as if the change in
error was such that the error is moving away from zero.
The same type of logic can be applied if the error was
negative, corresponding to an angular position too far in
the counterclockwise direction. The resulting rule table
for the case for g ¼ 0 and dg ¼ 0 is shown in Table 2. In
this table the linguistic values of each of the inputs go
from negative-large to positive-large, and are assigned
the respective numeric values ÿ323.

Note that the effect of changing g and dg simply shifts
the rule base up or down in the main diagonal direction
depending on their values. If the position of the cart is
such that it is all the way to the left, we will not want to
apply a voltage that will further push the cart to the left
in the case that e is positive (for if e is negative, the
controller will send out a voltage to move the cart to the
right in order to balance the cart) as this would risk
damage to the equipment. So when e and g are opposite
in signs and near their respective extremes, we tend to
apply less of control voltage to the system than we
would with e or g zero or the same sign. The opposite is
true if g is a large positive value (to the right). Physical
understanding of a plant of this type is necessary in
order to successfully design the rule base for a fuzzy
controller. We omit the details of the remaining 2352
rules (2401ÿ 49) in the interest of brevity and since once
you think about the physics of the plant, the rule base is
easy to construct.

To develop a crisp output from the fuzzified inputs,
center-of-gravity defuzzification is employed and utilizes
the output membership functions shown in Fig. 3. The
crisp value is the resulting controller output. Finally,
note that the fuzzy controller is not linear even with

the above choices; since there is a low number of
linguistic values and hence membership functions there
is an ‘‘oscillation’’ on the shape of the nonlinear
map that the controller implements. For more details
on fuzzy control, consult Passino and Yurkovich
(1998).

4.2. Direct fuzzy controller results

The above design of the fuzzy controller was
successful at balancing the wedge only when a was
initially within a range of 82108 from the vertical. The
control energy utilized is quite significant and the cart
tends to oscillate about the zero-position point. The
results are shown in Fig. 4. The input and output gains
were heuristically tuned to gu ¼ 5:0, ge ¼ 2:0, gde ¼ 4:25,
gg ¼ 2:25, and gdg ¼ 1:25, which seemed to perform the
best.

The results here seem to show that modeling
uncertainties tend to have a large effect on the
performance of the system. The LQR could not balance
the wedge at all when developed using dynamic models
and linear approximations. Although the primary
factors were taken into account with the development
of model, there was no attempt to model the effects of
the chain and gear system, which seem to have some-
what of a dominate effect on the system.

Since the state feedback controller could be signifi-
cantly improved by adding the nonlinear feedback term,
geq, we attempted to introduce this same term to our
direct fuzzy controller as well. The cart position input, g,
was substituted with the nonlinear term geq. The results
were significantly improved, as shown in Fig. 5, and, in
fact, performs as well as the nonlinear state feedback
method.

Table 2

Rule table for the fuzzy controller with g ¼ 0 and dg ¼ 0

‘‘Force’’

u

‘‘Change in error’’ de

ÿ3 ÿ2 ÿ1 0 1 2 3

‘‘Error’’ ÿ3 3 3 3 2 2 1 0

e ÿ2 3 3 2 2 1 0 ÿ1
ÿ1 3 2 2 1 0 ÿ1 ÿ2
0 2 2 1 0 ÿ1 ÿ2 ÿ2
1 2 1 0 ÿ1 ÿ2 ÿ2 ÿ3
2 1 0 ÿ1 ÿ2 ÿ2 ÿ3 ÿ3
3 0 ÿ1 ÿ2 ÿ2 ÿ3 ÿ3 ÿ3

Fig. 4. Results of the direct fuzzy controller.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–146

4.3. Adaptive fuzzy control

The direct fuzzy controller results discussed in the
previous section showed that the cart and wedge still
tended to remain offset from the zero point (a small
steady-state error). From an intuitive sense, an adaptive
control technique applied to the wedge may help to
improve the response of the balancing, and eliminate the
steady-state error that occurs. Here we design and
implement a fuzzy model reference adaptive controller
(FMRLC) which adaptively tunes the centers of the
output membership functions on-line.

The success with the direct fuzzy controller from the
previous section is utilized in the design of the FMRLC.

Specifically, the original fuzzy controller of the form just
described still controls the system. However, an ad-
ditional fuzzy system, called the ‘‘fuzzy inverse model’’,
will be developed to change the output membership
function centers based on the response of the physical
system (Layne and Passino, 1992, 1993; Passino and
Yurkovich, 1998). In other words, the inverse system
will adapt to changes and perform self-tuning of the
actual fuzzy controller.

Fig. 6 shows the FMRLC system as applied to the
inverted wedge problem. It can be thought of as simply
two fuzzy controllers. One of these acts as the true
controller for the physical system (in this case, the
wedge). The second fuzzy controller updates the rule
base of the actual controller by adjusting the centers of
the membership functions. In most cases the update law
is based on the error between the actual output and the
output of a reference model (denoted by _xm ¼ fmðxm; uÞ,
ym ¼ hmðxmÞ) that characterizes the desired performance
of the system. This reference model represents how we
would like the system to behave. In general, we could
make the reference model a linear representation of the
nonlinear dynamic equations of the plant (since we
would like most systems to behave linearly). In the case
of the inverted wedge, however, we utilize a reference
model that is identically zero (that is, ym ¼ 0). This is
beneficial in that it represents the desired state of the
system (we wish to balance the wedge) and it is easy to
implement.

The rule base for the fuzzy controller was developed
heuristically using the same type of logic as for the direct
fuzzy method. Once again, symmetrically spaced trian-
gular membership functions were used. Note that since
there are four inputs to the system up to 16 rules can beFig. 5. Results of the direct fuzzy controller with nonlinear input term.

Fig. 6. The FMRLC applied to the inverted wedge problem.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–14 7

on at one time (24). It is important to note that for true
learning control, we must have a separate output
membership function for each possible input combina-
tion. This way, when the output centers are updated by
the inverse model, it will only be updating those rules
which apply at that time instant (i.e., under the specific
conditions the system is in), and will not change the
outcome for other conditions. That is, the system will
‘‘remember’’ how to control the plant under a specific
condition since it will only update the rules that apply to
that condition when the system is in that state. This is
a key advantage to this control method, since time
consuming re-learning is avoided. Nine membership
functions were used for each input, and 6561 (¼ 94)
membership functions were used for the output. The
initial output membership function centers were setup to
give the same results as the direct fuzzy controller. That
way, the controller initially has a good idea how to
control the system.

The inverse fuzzy model is nearly an exact copy of the
fuzzy controller. Note that since the reference model for
this system is identically zero, the inputs to the updating
inverse system will be the same as the inputs to the
system controller, except in this case we only use
the error and change in the error (e and de). This seems
to be a good way to design an update law, since we
would like to adjust the system so that we have the best
response as possible (i.e., we always want to balance the
system as fast as possible). The inverse model also
utilizes symmetric triangular-shaped membership func-
tions. Five membership functions were used for the
inputs and the output.

In actual implementation, the system introduces a
certain delay into the system. That is, an input at a
certain time step is not ‘‘seen’’ at the output until several
time steps later. As a result, the active regions of the rule
base are stored in an array, and the present condition of
the system results in an update of active regions Td time
steps in the past, where Td refers to the delay time of the
system. In this case the delay was set to be two time
steps. In addition, the inverse fuzzy model was ‘‘turned
off’’ (i.e., the output centers of the actual controller are
not changed) when the state was close to the balance
point, to make the system more robust. Otherwise, the
adaptation forces the controller to overactuate and
exceed the limitations of the system. For more details on
the FMRLC, including how to tune it and design the
fuzzy inverse model, see Passino and Yurkovich (1998).

4.4. Results of the FMRLC

In order to obtain a stable controller for the system,
adaptation gains in the inverse system were kept small.
The final gains chosen were ge ¼ 1:25, gde ¼ 1:5,
ggÿgeq ¼ 5:0, and gdg ¼ 0:75 for the controller fuzzy
system and ginve ¼ 0:025 and ginvde

¼ 0:4 for the inverse

model. Furthermore, the output gain for the inverse
system was ginvout ¼ 0:001. The small adaptation gain
results in the slower settling time for the system, but
remains consistently stable.

Fig. 7 shows the results for the FMRLC. Note that
the adaptive technique is much better than the direct
fuzzy (without the nonlinear input term) at eliminating
the oscillation. More importantly, the figure shows that,
due to the adaptation, the error between the output and
the desired value is much less. The inverse system output
shows the rate of adaptation over time is plotted in
Fig. 8 This shows that while early on periodic updates
are made to the rule base, as time goes on the system
learns and these updates become less frequent.

Fig. 7. Results of wedge balancing with the FMRLC control

algorithm.

Fig. 8. Adaptation (inverse model) output and controller output over

time.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–148

5. Genetic-algorithm-based control

The GA is an optimization routine based on the
principles of Darwinian theory and natural genetics. It
has primarily been utilized as an off-line technique for
performing a directed search for the optimal solution to
a problem. Here, we show that the GA can be used on-
line in real-time controller implementation to adaptively
search through a population of controllers and deter-
mine the member most fit to be implemented over a
given sampling period. This section starts with a brief
introduction to the GA. Then we discuss how to
implement the GA-based control algorithm, and the
results of the implementation. These results will be
compared to those obtained from the direct and
adaptive fuzzy control techniques as well as the state
feedback implementation.

5.1. The genetic algorithm

The GA performs a parallel, directed, random search
for the fittest element of a population within a search
space. The population simply consists of strings of
numbers, called chromosomes, that hold possible
solutions of a problem. The members of a population
are manipulated cyclically through three primary
‘‘genetic operators’’ called selection, genetic operation
(also referred to as crossover and mutation), and
replacement, to produce a new generation (a new
population) that tends to have higher overall fitness
evaluation. By creating successive generations which
continue to evolve, the GA will tend to search for a
global optimal solution.

The key to the search is the fitness evaluation. The
fitness of each of the members of the population is
calculated using a fitness function that characterizes how
well each particular member solves the given problem.
Parents for the next generation are selected based on the
fitness value of the strings. That is, strings that have a
higher fitness value are more likely to be selected as
parents, and, thus, are more likely to survive to the next
generation. This first stage is the selection stage.
Although there are many techniques for the selection
of parents, a commonly used method is the Roulette
Wheel Selection (Goldberg, 1989), a proportionate
selection scheme which bases the number of offspring
on the average fitness of the population. Strings with
greater than the average fitness are allocated more than
one offspring. The actual method of selection is
relatively inconsequential } the key being that strings
with greater fitness tend to produce more offspring.

For the evolutionary process, the selected members of
a population are randomly paired together to ‘‘mate’’
and share genetic information. The GA accomplishes
this sharing by the swapping of portions of strings
between parents. The simplest model is the single-point

crossover, where the selection of a random position
between 1 and l ÿ 1, where l is the length of the
chromosome, indicates which portions are interchanged
between parents. Multiple crossover points can also be
selected, where strings swap several portions of their
strings. The resulting interchange produces two new
strings. The actual interchange is often based on a
crossover probability pc. The sharing of genetic material
occurs only if a randomly generated normalized number
is greater than pc; otherwise, the strings are not affected.
Once this crossover stage is complete, the new strings are
subject to mutation based on the mutation probability
pm. This genetic operation randomly selects a string and
position (between 1 and l ÿ 1) and changes the value at
that position to a random number. Since the variations
due to the mutation operation occur randomly, this
tends to keep the GA from focusing on a local
minimum.

The final step in the GA is the replacement operation,
which determines how the new subpopulation produced
from the genetic operations will be introduced as a new
generation. Two primary methods exist } complete
generation replacement, where each population pro-
duces an equal number of strings, which then completely
replace the parent population, and partial replacement
where only a small portion of new strings are developed
and introduced into the population. In addition, the
former procedure may have a tendency to throw away a
best-fit solution since the entire generation is replaced;
for this reason, often the complete generation replace-
ment method is combined with an ‘‘elitist’’ strategy,
where a one or more of the most fit members of a
previous population are passed, untouched, to the next
generation. This tends to ensure that there always is a
string within the population that is a good solution to
the problem.

The genetic algorithm procedure, illustrated in Fig. 9,
is fairly simple } start with a randomly (or specifically
chosen) initial population of members and perform the
three above operations based on the user-specified
probabilities of occurrence. At the conclusion of this
we have automatically produced the next generation.
Then repeat the operators on each consecutive genera-
tion until the user is satisfied with the results (until a
good maxima is found).

A key part of the success of the GA is the encoding of
the strings. Obviously, we need to choose parameters
that tend to have reasonable information about the
problem. The actual number and type of variables that
will be encoded as strings is application specific.
Common encoding of multiple real-value continuous
variables (as opposed to binary or digital variables)
consists of placing them in integer form and concatenat-
ing them, keeping track of decimal places and variable
separation points for decoding. Thus, two real numbers
12:345 and 9:8765 could be represented in a 10-digit long

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–14 9

string 1234598765. Decoding can occur by first splitting
the string at the appropriate point (in this case, between
the fifth and sixth digit) and keeping track of the
appropriate decimal places. In this case, the actual
values are represented by multiplying the integer given
by the first portion of the string by 10ÿ3 and the integer
in the second portion of the string by 10ÿ4. This is
representative of the base-10 encoding of strings; a base-
2 encoding is also popular, where strings are represented
in the binary form as a series of 1s and 0s. Regardless of
the base of the encoding, the procedure is the same. The
strings are decoded for fitness evaluation, but remain in
encoded form for genetic manipulation, producing

successive generation until a user-specified termination
criterion is reached.

Note that if we encode controller gains as the strings
of the population and base the fitness value of each
member on the performance of that particular controller
the string represents on a model of the system, then
we can use the GA to find the optimum controller.
Furthermore, if we can implement the GA on-line, and
use it to find the best controller at every sampling time
(or every few sampling times) then we can use the GA to
produce an adaptive control routine that will try to find
the optimum controller to use under different con-
ditions. This is the basis of the genetic model reference

Fig. 9. Flow chart for a discrete implementation of the GA.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–1410

adaptive control routine that was implemented on the
inverted wedge system.

5.2. Real-time control using the GA } the GMRAC

Development of a control algorithm based on the GA
involves searching for an optimal controller during each
(or every several) sampling periods. The GMRAC uses
the global adaptive search power of the GA to evolve a
set, or population, of possible controllers during the
real-time implementation of the control algorithm. The
fitness evaluation in this case consists of characterizing
the expected performance of each controller in the
population based on error analysis. This type of
evaluation requires both a model of the plant for
prediction purposes and the development of a reference
model for comparison. In this case, a nonlinear model
was developed in Section 2. The resulting nonlinear
model is used to predict ahead how well the controller
will perform several time steps into the future. As with
any model reference controller, the reference model
characterizes the desired response of the system. That is,
the fitness of each of the strings (controllers) in the
population is based on how well it makes the model
behave like the reference model. In this case, we wish for
all the state values to go to zero, so a reference model
that clearly characterizes this is ym ¼ 0 (i.e, the reference
model output is identically zero). While the GA will
evolve the set of controllers to obtain the best
(predicted) time-response results, the fitness function
evaluation is also used in real-time to select the
controller that will be implemented every few sampling
periods. That is, the most-fit controller determined by
the fitness evaluation each generation cycle becomes the
controller that is actually implemented on the plant
during the next sampling periods.

The general form for the controller for the inverted
wedge GMRAC follows that of the nonlinear state
feedback law developed in Section 3.1. This seems to be
a good choice given its relatively successful per-
formance. The gains of the nonlinear state feedback
controller are encoded as strings. A population of these
strings are randomly selected, with the only restric-
tion that the gains represented by the strings do not
exceed the following boundaries: ÿ2005k15ÿ 150,
ÿ305k25ÿ 10, 205k3540, and 255k4550. This
restriction stems from the examining the wedge system
} we do not want to create the controller which will
tend to overactuate beyond the limits of the system. We
need to tell the GA only to produce strings within the
range so that this will not happen. The fitness function
which characterizes the fitness of each controller (string)
in the population evaluates each string by first decoding
them back into controller gains, then, using the plant
model, predicts ahead four sampling times the values of
the states that would occur given that that controller

were actually implemented. Let eiexp be the expected
error four sampling times ahead if controller i (05i � N
where N is the number of members in the population)
was implemented on the system. Furthermore, let
deiexp ¼ ðeiexpðkTs

Þ ÿ eiexpððkÿ 1ÞTsÞÞ=Ts be the expected
change in error of that controller. We can then define
the fitness function as

J ¼ 1

a1e
2
iexp þ a2d

2
eiexp
þ a3u2

: ð6Þ

This represents the function we want to maximize (so
we try and minimize eiexp, deiexp , and u). The fitness is
evaluated for each string (controller), and the most fit
one (the one with the highest fitness value) becomes the
controller that is actually implemented during the next
sampling period. The GA then evolves the next
generation of controllers using the genetic operators
and, thus, tends to search for the controller which
optimizes the fitness function. In a heuristic description,
the GA evolves a set of controllers to try to find an
optimal controller. Note that in implementation, (6) will
have to be checked for a divide by zero (or, alternatively,
a small positive number can be added to the denomi-
nator). The final gains of the fitness function were
chosen via trial and error and were found to be a1 ¼ 50,
a2 ¼ 100, and a3 ¼ 5.

The size of the population was selected to be N ¼ 20
controllers. This number was picked after considering
the complexity and time consumption of the calculations
necessary for the GA. Despite being a time consuming
method, we were able to obtain a generation (and thus
an updated controller) every 3 or 4 sampling intervals.
Each string in the population has a length of 16 digits,
four for each of the controller gains. The crossover
probability was set at 1 and the mutation probability
was set at 0.1. We found that using such a large
mutation rate tends to improve the performance when
such a small population size is used.

5.3. Results of the GMRAC

Results of the implementation of the GMRAC on the
inverted wedge are shown in Fig. 10. Note that although
the GMRAC tends to oscillate the system more at first,
it still maintains a low settling time, and actually
improves the steady-state error that occurred in the
standard nonlinear state feedback case. Furthermore,
the cart velocity for the GMRAC implementation tends
to remain zero once the zero state is reached, whereas
the other control methods tend to oscillate the cart back
and forth very quickly around the zero position; as a
result, the GMRAC also tends to use less control energy
than the other methods. In fact, the response of the
GMRAC is comparable to the FMRLC without
needing the sudden jumps in control energy that the

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–14 11

FMRLC tended to exhibit, and it balanced the wedge
faster.

Clearly, the GMRAC seems to be an extremely
effective control method for this problem. However,
there are several drawbacks. First of all, the GMRAC
has a tendency to try and force a response too quickly,
which is not possible due to the limits of the system. If
the experiment is started under certain initial conditions,
the cart will tend to jerk too quickly, resulting in
ramming against the edge (at which point an emergency
shutoff occurs). However, this behavior is even occa-
sionally exhibited by the state feedback controller.
Secondly, the GMRAC is a stochastic approach, and,
as a result, results will vary from trial run to trial run.
This will be examined in the next section.

5.4. Stochastic effects of the GMRAC

Since the GA is a directed random search, the results
of this control technique will vary each time it is run.
One hopes that by tuning parameters, consistent results
will be obtained. To show that this is possible, several
other trial runs were completed using the GMRAC
and are shown in Figs. 11 and 12. Although there are
cases where the GMRAC does not perform as well
as the results shown in the previous section, for most
cases the results are consistently as good as the other
methods.

Difficulties in repeating the experiment 100 or even
1000 times make it impossible to provide a full
stochastic analysis of the approach where we would
provide, e.g., averages of responses. The focus in this
first paper on real-time implementations of genetic
adaptive control has been on how to get the method
to operate in real time, how to tune the method,
comparative analyses to show how it can offer
advantages over other methods, and an overview of

some of the stochastic aspects of the behavior of the
method. It is beyond the scope of this paper to fully
investigate a full stochastic analysis of the method;
however, we are presently setting up an experiment in
our laboratory that we can automatically run for a week
or two; this will provide an experimental framework for
a proper analysis of stochastic effects.

6. Conclusions and prospects for further use in industry:

adaptive MPC

This paper studied the implementation of several
intelligent control techniques as applied to the balancing

Fig. 10. Results of the GMRAC implementation. Fig. 11. Results of several trials runs of the GMRAC } cart position

and velocity (note that the time scale is different from the earlier plots

to illustrate the transient behavior better).

Fig. 12. Results of several trial runs of the GMRAC } wedge position

and velocity (note that the time scale is different from the earlier plots).

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–1412

of the inverted wedge problem. These included a basic
four-input direct fuzzy controller (including the use of
the nonlinear input term) and an adaptive fuzzy control
technique known as the FMRLC. The direct fuzzy
controller provided a nonlinear mapping between inputs
and outputs, and allowed the incorporation of heuristics
(which model human deduction process) via the use of
the rule table. Since we generally know the dynamics
necessary to balance the wedge give an initial condition
(obtained from studying the dynamics of the system),
the use of heuristics in controller design via the fuzzy
controllers proved very successful. The FMRLC took
the controller design a step further by supplying an
inductive update method which produced an adaptive
fuzzy controller. The FMRLC incorporates an inverse
fuzzy system which takes the plant output (a) compares
it to the desired response obtained from a reference
model, and updates the fuzzy controller’s input2output
map based on that error. This update occurs via the
inverse system.

Then we introduced the GA, the search routine based
on Darwinian theory and natural genetics, and showed
how it could be applied to control problems to produce
an adaptive control method (GMRAC). The GMRAC
was then applied to the inverted wedge system, and
proved to be rather successful at balancing the wedge.
The intelligent controllers were compared to a conven-
tional state feedback method (with nonlinear term). The
intelligent methods certainly seemed to perform better
than this conventional methods. However, there are
certain tradeoffs required to achieve this success that
must be kept in mind. These include both greater
computational complexity (especially in the genetic-
based technique) of the intelligent controllers, and the
greater design time required.

It is recognized that the particular experiment we are
using is a simple university contraption with little or no
relevance to industrial applications. There is, however,
relevance in the genetic adaptive control methodology
that is proposed. How? To answer this question we will
discuss an approach to try to use the genetic adaptive
controller for more sophisticated industrial applications.
First, the method depends on the availability of a
mathematical model (although the indirect genetic
adaptive control methods do not) and in practical
applications one may not be readily available. There are,
however, many times when linear or nonlinear system
identification can be used to produce at least a crude
model of the plant’s behavior. For example, consider the
use of such models, even relatively complex ones with
many inputs and outputs, in the ‘‘model predictive
control’’ (MPC) method that is often used in the process
control industry. Second, we need to know how far into
the future to simulate the model in the assessment of
fitness for each individual in the population. Again, the
MPC strategy provides some insights in that it must also

cope with this issue. Generally, if your model is good
(and there is not too much uncertainty in the underlying
process), you want to simulate out into the future
further since the simulations will be accurate and hence
not a waste of computations (of course, how far to
simulate also depends on the complexity of the under-
lying dynamics). Ultimately, however, the choice of the
length of the ‘‘moving window’’ is heuristic and requires
experimentation; this should not be surprising as the
choice is largely heuristic for practical applications of
the MPC method. Third, you must gain insight into how
to choose the parameters of the genetic algorithm. To
gain this insight note that the GA is a stochastic
optimization method for choosing the future control
trajectory, and then (just like in the MPC method) the
first element of that trajectory is used as the control
input (for the individual who we believe will perform the
best in the future). The parameters of the GA are simply
the parameters to be tuned to perform the best
optimization. Elitism makes sure that a reasonably
good controller is always present. You choose the
mutation and crossover probabilities so that the method
is persistent is searching for new controllers (in a quickly
changing environment the fitness function will change in
time quickly, so you generally will need a higher
mutation rate).

From this discussion, the path to use in more
sophisticated applications should be clearer, at least
for those that regularly use the MPC strategy. The
(direct) genetic adaptive method should be viewed as an
‘‘adaptive MPC controller’’. Someone familiar with
MPC may just view it as a standard MPC method,
with a genetic algorithm used to perform the optimiza-
tion that is needed to pick the control input (which, in
the linear case, is often least squares). This view, is not
quite accurate. The genetic adaptive controller main-
tains (remembers) the population of controllers and
keeps these on-line for possible use in the future (e.g., if
the plant returns to a similar condition). At the
population level, learning occurs via the individuals
gaining potential for performance improvement by
interations with the plant. Finally, we would note that
in an indirect genetic adaptive control method you
adapt the model; hence, you obtain a type of indirect
adaptive control. If you combine the GMRAC with the
indirect strategy you obtain a method that tunes the
model that is used to predict into the future. This type of
adaptive MPC approach may also be useful for practical
applications.

References

Goldberg, D.E., 1989. Genetic Alogrithms in Search, Optimization,

and Machine Learning. Addison-Wesley, Reading, MA.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–14 13

Gremling, J., Passino, K.M., 1997a. Genetic adaptive state estimation

for a jet engine compressor. Proceedings of the IEEE International

Symposium on Intelligent Control, Istanbul, Turkey, September,

pp. 1312136.

Gremling, J., Passino, K.M., 1997b. Genetic adaptive failure estima-

tion. Proceedings of the American Control Conference, Albuquer-

que, NM, June, pp. 9082912.

Kristinsson, K., Dumont, G., 1992. System identification and control

using genetic algorithms. IEEE Transactions on System, Man, and

Cybernetics 22 (5), 103321046.

Krstic�, M., Kanellakopoulos, I., Kototovic�, P., 1995. Nonlinear and

Adaptive Control Design. Wiley, New York.

Layne, J.R., Passino, K.M., 1992. Fuzzy model reference learning

control. IEEE Conference on Control Applications, Dayton, OH,

September, pp. 6862691.

Layne, J.R., Passino, K.M., 1993. Fuzzy model reference learning

control for cargo ship steering. IEEE Control Systems Magazine 13,

23234.

Lennon, W., Passino, K., 1999a. Intelligent control for brake

systems. IEEE Transactions on Control Systems Technology 7 (2),

1882202.

Lennon, W., Passino, K.M., 1999b. Genetic adaptive identification

and control. Engineering Applications of Artificial Intelligence 12

(2), 1852200.

Moudgal, V.G., 1995. Fuzzy learning control for a flexible-link robot.

IEEE Transactions on Fuzzy Systems 3 (2), 1992210.

Passino, K.M., Yurkovich, S., 1998. Fuzzy Control. Addison-Wesley

Longman, Menlo Park, CA.

Porter, L.L., Passino, K.M., 1994. Genetic model reference adaptive

control. Proceedings, IEEE International Symposium on Intelligent

Control, Columbus, OH, August, pp. 2192224.

Porter, L., Passino, K.M., 1995. Genetic adaptive observers. Engineer-

ing Applications of Artificial Intelligence 8 (3), 2612269.

Porter, L.L., Passino, K., 1998. Genetic adapative and supervisory

control. Journal of Intelligent Control and Systems 2 (1), 1241.

M.L. Moore et al. / Engineering Applications of Artificial Intelligence 14 (2001) 1–1414

