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Fuzzy fault tolerant control for smart lights
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Abstract. This paper investigates the implementation of adaptive and nonadaptive fuzzy controls for a smart lights experimental
testbed. The objective is to accurately regulate the light level across the experimental testbed to a desired value, and to test the
performance of the fuzzy controllers under cross-illumination effects and bulb and sensor failures. As an initial approach, a
decentralized (i.e., no communication between controllers) nonadaptive fuzzy controller is implemented and applied to the smart
lights. This approach is convenient for this type of experimental testbed where a mathematical model of the plant is not available
and heuristic information about how to control the system is sufficient. The nonadaptive fuzzy controller, when properly tuned,
is able to achieve uniform lighting across the entire testbed floor in most of the tested situations but it fails whenever an on/off
light bulb failure is introduced. In order to attain uniform lighting in the presence of failures, a “fuzzy model reference learning
controller” (i.e., adaptive fuzzy controller) is implemented for the smart lights, and this algorithm proves to be able to successfully
adapt to uncertainties such as disturbances and failures.
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1. Introduction

Lighting represents one of the key components of
today’s residential and commercial buildings. In fact,
lighting consumes around 35% of the electricity used
in commercial buildings in the United States. Also,
lighting uses 18% of the electricity produced in the
U.S., and an additional 4% to 5% has to be used just
to remove the waste heat caused by the lights [19]. A
good smart lighting system can be a promising solu-
tion to this energy consumption problem. The lighting
energy use in most buildings can be reduced signifi-
cantly while maintaining the quality of service. This
reduction of electricity use can be achieved by reducing
the over-illumination produced by neighboring lights
and considering external light sources (e.g., daylight
harvesting). A significant saving (up to 40%) can be
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obtained by applying modern control strategies such
as daylight harvesting, occupancy sensing, scheduling,
and load shedding [9, 10].

Over the last several years, in order to improve the
lighting use in commercial buildings and reduce the
utility costs, smart lighting systems have been devel-
oped and implemented for controlling the illumination
level in an office setting [4, 9, 20, 21]. Martirano
discusses the importance of using efficiency and effec-
tiveness to approach a smart lighting control problem
[9]. Efficiency is achieved via using low consumption
equipment (i.e., LED luminaries) and improved lighting
design practices (i.e., localized task lighting systems).
Effectiveness is achieved by improving the current
lighting control systems to avoid additional unnec-
essary energy use and adopting a technical building
management system (i.e., maintenance and metering).
This research claims that a smart lighting control sys-
tem can result in saving up to 25% in industrial and
commercial buildings, and up to 45% in tertiary and
educational buildings [9].
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Wen et al. developed an energy-efficient lighting
system based on wireless sensor network technology
[20, 21]. In this system, they implemented a central-
ized intelligent lighting optimization algorithm where
the overall lighting in an office is determined as a linear
combination of the light contributions from each of the
luminaries based on a discretization of the office into
square grids. This light setting control is coded as a lin-
ear programming optimization problem supported by
the fact that the power consumption is directly propor-
tional to the light output from the luminaries, and hence,
minimizing the illuminances is similar to minimizing
the electricity usage. Once the centralized optimiza-
tion algorithm computes the optimal linear combination
of the individual luminaries that minimizes the entire
lighting output, then the control signal is sent via the
wireless network [20, 21].

An adaptive lighting system has been developed
in [4]. Hughes et al. proposed the use of an intelli-
gent control system that allows the lighting system
to dynamically respond to the current conditions of
the area it illuminates. For this adaptive system, they
have included within their control loop occupancy sen-
sors, photosensors, and personal control modules. The
proposed adaptive lighting system is programmed to
maintain the desired ambient illumination levels and
continuously adjust task illumination levels in individ-
ual areas as occupancy varies. This adaptive control
system has been able to provide a significant reduction
in energy consumption of about 69% compared to a
conventional static lighting system [4].

There has been significant work on the development
of stable fuzzy/neural adaptive controllers [17, 18],
even for multi-input multi-output (MIMO) systems
[11]; however, the smart lights testbed does not fit the
mathematical assumptions in those papers needed to
guarantee stability. First, an individual isolated zone
acts like a first order system with a delay making the
system infinite dimensional so that none of the exist-
ing theory applies. Moreover, our plant has eight inputs
and eight outputs and is highly coupled, and not cou-
pled in a way that the “diagonal dominance" conditions
in [11] are met, and hence stability cannot be guaran-
teed. Due to the lack of a mathematical model of the
plant and lack of existing control theory for coupled
MIMO systems with a delay, a control strategy where
heuristic information about how to control the system
is required. Heuristic based control strategies include
neural networks, fuzzy control, adaptive neural/fuzzy
control, genetic algorithms for adaptive control, etc.
Here, we select a nonadaptive and adaptive fuzzy

control as candidate control strategies for our smart
lights testbed.

In relation to fault-tolerant control, most researchers
view faults as structural or parameter changes and then
use some type of robust control (e.g., sliding mode
control or adaptive control) to reduce the effect of the
changes. Here, we use adaptive fuzzy control since it
has been shown [18] that it can cope with large and
nonlinear changes in a plant. Unlike in [6], there is no
need for other fault tolerant control strategies beyond
this adaptive strategy (e.g., a fault diagnosis strategy
coupled with a control-redesign strategy). There have
been several studies on how to achieve fault tolerant
control via adaptive fuzzy/neural control. An intelli-
gent fault-tolerant control system is developed in [1].
Diao et al. proposed a design model of a turbine
engine system using a hierarchical learning structure
in the form of Takagi-Sugeno fuzzy systems. For this
fault-tolerant control approach, the control scheme is
designed based on stable adaptive fuzzy/neural control
where the on-line learning capabilities of the controller
capture the unknown dynamics caused by the failures. A
novel fault-tolerant control methodology using adaptive
estimation and control approaches based on the learn-
ing capabilities of neural networks or fuzzy systems
is described in [2]. For this methodology, an on-line
approximation-based stable adaptive neural/fuzzy con-
trol is considered for a class of input-output feedback
linearizable time-varying nonlinear systems. Stable
indirect and direct adaptive controllers are discussed
for a class of input-output feedback linearizable time-
varying non-linear systems in [3]. These indirect and
direct adaptive controllers present stable performance
for a fault-tolerant engine control problem.

This paper provides the first application of fuzzy
control to intelligent illumination control. The imple-
mented adaptive fuzzy controller has been able to
effectively achieve uniform lighting across the entire
floor of the experimental testbed under different
testbed settings. The “no-partition case” has been the
selected to present most of our experimental results
since it represents the most challenging illumination
control problem (since it provides maximized cross-
illumination between zones). We have proposed a
decentralized control approach where each zone of the
testbed has an independent fuzzy controller (unlike
in [5]). This eliminates the need for communication
between the zones, and furthermore, we do not need
a sensor network (as they do in [20, 21]) to acquire
the data, compute the control action, and then apply
the control signal to the plant. Our approach achieves
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significantly better results than other approaches such
as the conventional decentralized integral controls and
the illumination balancing algorithm (IBA) in [5]. The
improvements compared to previous work (i.e., like
[5]) include: first, a faster transient response which
means faster rise time and settling time to achieve
the desired light level which is a desired feature in a
lighting system, and second, improved uniform light-
ing under maximized cross-illumination effects (i.e.,
“no-partition case") something that the decentralized
integral control failed to do and for which the IBA
showed poor tracking performance as illustrated in [5].

In this paper, we adapted the “fuzzy model refer-
ence learning controller” (FMRLC) approach [7, 8] to
our smart lighting testbed, something that has not been
done before. Here, we have demonstrated the follow-
ing advantages of the FMRLC: improved convergence
rates (i.e., faster transient response), use of less control
energy (i.e., reduced light consumption) by applying
lower voltage levels to the light bulbs compared to the
fuzzy controller, decentralized integral control, and IBA
in most of the presented cases, enhanced disturbance
rejection properties (i.e., rejection of light bulb and sen-
sor failures), and lack of dependence on a mathematical
model (i.e., heuristic knowledge about the plant is suf-
ficient). All these facts are supported by experimental
results obtained from the testbed. This is the first study
of fault tolerant control for smart light systems.

2. Experimental testbed

2.1. Testbed layout

The experimental testbed is made up from a box of
22.5 × 33 × 12 cm. The floor plan of the testbed is pre-
sented in Fig. 1. Notice that the eight zones are not
equally distributed across the entire floorplan. Zones 1
and 2 are 11.25 × 10 cm, zones 3 and 4 are 11.25 × 6.5
cm, zones 5 and 6 are 11.25 × 7.5 cm, and zones 7 and
8 are 11.25 × 9 cm.

The bold lines separating each zone represent card-
board “partitions” that can be set up between the zones
in order to simulate partition in an office building. There
are three main room partition settings: full height, half
height, and no partition. Full height partitions provide
the case where there are eight independent rooms (i.e.,
eight independent sensors), half height partitions gives
us the case with some cross-illumination effect between
neighboring rooms (like a typical office building), and
the case of no partitions introduces maximized cross-

Fig. 1. Floor plan of the experimental testbed for smart lights.

illumination effects through out the entire testbed (the
situation for large open areas in a room). In this paper,
to avoid introducing too many plots, we will focus in
the no partition case because it provides the most chal-
lenging control problem as described in [5, 14, 15], but
we also discuss the sensor failure case. However, all
the control algorithms were tested under all the room
settings to guarantee a stable system performance.

Fig. 2. Cross section view “AA" of zone 2 illustrating light bulb and
sensor.
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The cross section view “AA” of zone 2 (see Fig. 1)
illustrating the location of both the light bulb and the
light sensor is presented in Fig. 2. Notice that the light
bulb is located right above the light sensor for better
light sensing. The light bulb is a miniature incandescent
bulb (base #1847) of 0.25 Watts operating at 6.3 Volts
with a length of 3 cm. The light sensor is a Cadmium-
Sulfide (CdS) photocell (RadioSchack Part #276-1657)
featuring visible light response, sintered construction,
and low cost [16].

2.2. Driving and acquisition circuitry

The smart lighting experimental testbed has both
driving and acquisition circuitry. These two main cir-
cuitries are interfaced by means of a research and
development (R&D) controller board from dSPACE
Inc. The dSPACE DS1104 R&D controller board is
equipped with real-time interface (RTI) which can be
graphically programmed in Simulink from MATLAB.
The DS1104 board provides us with eight analog to dig-
ital converter (ADC) channels to interface the output of
the light sensors with the controller coded in the digital
computer and eight digital to analog converter (DAC)
channels to interface the controller output to the light
bulbs as an analog signal.

The schematic layout for the driving circuits in each
zone of the testbed is given in Fig. 3. The driving cir-
cuitry is intended to provide the necessary current for
the light bulbs in each corresponding zone by using a
power transistor as a common-collector amplifier (i.e.,

Fig. 3. Left: Driving circuitry for each zone of the experimental
testbed is in the same form as the one shown above for zone 1. Right:
Acquisition circuitry for each zone of the experimental testbed is in
the same form as the one shown above for zone 1.

Fig. 4. Overall control loop diagram.

a voltage buffer). As illustrated in Fig. 3, each zone
of the experimental testbed has its independent driving
circuit.

The schematic layout for the acquisition circuits in
each zone of the testbed is shown Fig. 3. The acquisition
circuitry is designed to provide a voltage signal (i.e., an
analog signal) to each one of the analog to digital con-
verter channels. As shown in Fig. 3, each zone of the
testbed has its independent acquisition circuit. A light
dependent resistor (LDR) is used to measure the illumi-
nance of the light bulbs over the testbed floor in Volts
since this is proportional to measuring illumination
in lux (i.e., lux = constant × Volt). The proportional-
ity constant depends on the resistance vs. illumination
characteristics of the LDR. The acquisition circuitry is
formed by a voltage divider which basically will output
as much as the source voltage (i.e., Vcc = 13.4 V) as the
illumination on the LDR increases, or a smaller voltage
(i.e., tending to zero) as the illumination on the LDR
decreases.

2.3. Overall control loop

The overall control loop diagram implemented for
our smart lighting system is illustrated in Fig. 4. The
control loop is composed of four main parts: ADC
acquisition, sensor calibration, control algorithm, and
DAC output. Each part of the control loop plays a key
role in our system and both the ADC acquisition and
DAC output let us create the interface between the digi-
tal and analog world. Both the sensor calibration and the
control algorithms are coded into the digital computer.

3. Fuzzy control for smart lights

Fuzzy control has become an alternative to classical
control schemes because the controller design does not
depend on a mathematical model but on the knowledge
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Fig. 5. PI fuzzy controller for smart lights with scaling gains.

that the control engineer has about how to accurately
control the plant. In this section, we will present the
implementation details related to our fuzzy and adaptive
fuzzy controller. For the reader interested in the details
for the design of a fuzzy and adaptive fuzzy controller,
we encourage to review the description developed in
[7, 8, 12, 13].

3.1. Design case: Direct PI fuzzy control for smart
lights

For our smart lighting system, we have the selected
the inputs of the fuzzy controller as the “error” (e(t))
and “integral-of-error” (

∫
e(t)dt), and the output as the

“applied voltage” (Vapp(t)). We implemented 11 uni-
formly space triangular membership functions for each
controller input. Our designed fuzzy controller was
tested directly on the plant and then we proceeded to
adjust the controller gain during implementation.

The fuzzy controller implemented in our experimen-
tal testbed is illustrated in Fig. 5. Notice from Fig. 5
that we have added the gains g1 and g2 at the inputs
and g0 at the output of the fuzzy controller. These gains
have been added because they are useful in tuning the
fuzzy controller. The gains can scale the horizontal
input and output axes of the fuzzy controller. In our
implementation, we “normalized” [13] the input and
output universe of discourse.

The scaling gains play an important key role in the
performance of the fuzzy controller. Notice that the
scaling gain g1 in the input is equivalent to scaling the
horizontal axis of the e(t) universe of discourse by 1/g1.
The scaling g1 will introduce the following effects:

1. If g1 = 1, the membership functions are not
changed, therefore there is no change on the mean-
ing of the linguistic values.

2. If g1 < 1, the membership functions are uni-
formly “spread out” by a factor of 1/g1.

3. If g1 > 1, the membership functions are uni-
formly “contracted.”

Similarly, the scaling gain g2 will have the same
effects for the

∫
e(t)dt universe of discourse. For the

Fig. 6. Nonlinear control surface by PI fuzzy controller for smart
lights.

output universe of discourse, the scaling gain g0 is a
multiplying factor to the horizontal Vapp(t) axis. For
our smart light system, we found after several trials and
errors that the scaling gains g1 = 0.005, g2 = 0.10, and
g0 = 100 provide the best tuned performance. Gen-
erally speaking, the gains g1, g2 and g0 are used to
normalize the universe of discourse for the error e(kT ),
integral-of-error c(kT ), and controller output u(kT ),
respectively. The gain g1 is selected so that the range
of values of g1e(kT ) lie on [−1, 1] and g0 is selected
by taking into consideration the valid range of inputs
to the plant using a similar approach. The gain g2 is
determined by looking at the normal range of values
that c(kT ) will take for a different set of inputs to the
system. Hence, the gain g2 is selected so that g2c(kT )
range of values are scaled to [−1, 1]. The scaling gains
g1, g2 and g0 are tuned following the design procedure
discussed in [7, 8, 13].

One of the most important characteristics of a fuzzy
controller compared to a linear controller is its con-
trol surface. Fuzzy controllers can generate a nonlinear
control surface which is desired for some control appli-
cations. The nonlinear control surface implemented by
the PI fuzzy controller is shown in Fig. 6. This control
surface provides another way to view the user exper-
tise on how to control the output voltage (i.e., room
illumination).

3.2. Design case: FMRLC for smart lights

The block diagram of the FMRLC is presented in
Fig. 7. Notice from Fig. 7 that the FMRLC has four main
components: the plant, the fuzzy controller to be tuned,
the reference model, and the learning (i.e, adaptation)
mechanism.
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Fig. 7. Fuzzy model reference learning controller (adapted from [8]).

The FMRLC observes the data from the fuzzy control
system, which means the reference input r(kT ) and the
plant output y(kT ) where T is the sampling period of the
digital computer. From the measured numerical data,
the FMLRC considers the fuzzy control system’s cur-
rent performance and automatically adjusts (i.e., tunes)
the fuzzy controller so that the closed-loop system
(mapping from r(kT ) to y(kT )) behaves like the given
reference model (mapping r(kT ) to ym(kT )). In general,
the fuzzy controller loop (the bottom of Fig. 7) makes
y(kT ) track r(kT ) by adjusting u(kT ) and the learning
control loop (the top of Fig. 7) makes the output of
the plant y(kT ) track the output of the reference model
ym(kT ) by tuning the fuzzy controller parameters. A
new notation is introduced to provide a more intuitive
explanation of the FMRLC components in terms of light
voltage levels and present the FMRLC block diagram
without significant modifications from the original in
[8]. Notice that the notations Vref , Vout(kT ), Vm(kT ),
Ve(kT ), and Vc(kT ) respectively represent the notations
r(kT ), y(kT ), ym(kT ), ye(kT ) and yc(kT ) in Fig. 7.

For the fuzzy controller in Fig. 7, we selected
e(kT ) = Vref (kT ) − Vout(kT ) and c(kT ) = c(kT −
T ) + Te(kT − T ) as the inputs, where Vref (kT ) is the
desired input reference voltage. We chose T = 0.001
seconds for our implementation in the dSPACE board.
The controller output is given by the output voltage
Vout(kT ) of the smart light. We implemented 11 uni-
formly spaced triangular membership function for each
controller input (i.e, for e(kT ) and c(kT )). We selected
the scaling gains for the fuzzy controller in Fig. 7 to
be ge = 0.005, gc = 0.10, and gu = 100 (i.e., the ones
we tuned above) which follow the same tuning proce-
dure as g1, g2 and g0. The output membership functions

were defined to be symmetric and triangular shaped
with a base width of 0.4 on a normalized output universe
of discourse as well. The reference model is selected
to be

Vm(s)

Vref (s)
=

1
200

s + 1
200

(1)

where Vm(s) indicates the desired system performance
for the output voltage of the smart light Vout(t). The
reference model given in Equation 1 is selected based
on how we would like the plant to behave, here a first
order system with a very fast pole (i.e., a very fast
transient response desired for a lighting system). For
the fuzzy inverse model, the inputs are selected to be
Ve(kT ) = Vm(kT ) − Vout(kT ) and Vc(kT ) = Ve(kT ) +
TVe(kT − T ). Similar to the fuzzy model, we imple-
mented 11 fuzzy sets with symmetric and triangular
shaped membership functions, which are also evenly
distributed on the corresponding universes of discourse.
The scaling gains for the fuzzy inverse model were
selected as gye = 0.0005, gyc = 0.001, and gp = 1
respectively. These scaling gains gye, gyc, and gp are
selected by following the design procedure described
in detail in [7, 8].

4. Simple fault tolerance test results

The simple fault tolerance test is performed in order
to study the controller’s performance under a specific
fault test with no partitions between zones such that a
proper operation of the smart lights can be guaranteed
for a commercial application. Moreover, we are more
concerned with the capability of the “learning” control
algorithm (i.e., FMRLC) to perform on-line adaptation
of the fuzzy rule-base to overcome a system failure
compared to the performance of the nonadaptive con-
trol algorithm (i.e., fuzzy controller). Implementation
results for a simple fault tolerance case are separated
into two main cases: single zone and multiple zones
light bulb failure.

4.1. Single zone light bulb failure

When a light bulb failure (i.e., when a bulb blows
out) is introduced in the experimental testbed at t = 30
seconds in zone 1 (i.e., upper left corner), the PI fuzzy
controller is able to maintain uniform lighting in the
remaining seven zones as illustrated in Fig. 8. The unit
“Volt” is used to measure the light levels in Fig. 8
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Fig. 8. Light levels at each zone for the PI fuzzy controller with no
partition between zones under zone 1 light bulb failure.

because these measurements result from the voltage
signals of the acquisition circuitry in Fig. 3. Clearly,
the light level in zone 1 drops to a fixed value given by
the cross-illumination effect imposed by the neighbor-
ing zones. Notice in Fig. 8 that very small undershoots
can be seen in zones 2, 3, 4, 5, and 7 due to the presence
of the failure produced in zone 1.

By looking at the applied voltage level to the light
bulbs (i.e., control signal) on each zone for this par-
ticular case given in Fig. 9, we can observe how the
controller reacts to the zone 1 failure after t = 30 sec-
onds. Zones 2, 3, 4, 5, and 7 control signals show a
significant change in the shape of the applied voltage
which is connected with the presence of the undershoots
mentioned above. These undershoots are not desirable
but they are so small and fast that it will not even be
perceptible by a human eye. Moreover, this unbalance

Fig. 9. Applied voltage level to the light bulbs at each zone for the PI
fuzzy controller with no partition between zones under zone 1 light
bulb failure.

Fig. 10. Light levels at each zone for the direct adaptive PI fuzzy
controller with no partition between zones under zone 1 light bulb
failure.

introduced by the zone 1 failure is clearly not perturb-
ing the light sensors in zones 6 and 8 showing the
disturbance rejection of the fuzzy controller.

Next, a light bulb failure is generated in zone 1 at t =
30 seconds for the direct adaptive PI fuzzy controller
(i.e., FMRLC). As shown in Fig. 10, this controller
is able to maintain uniform lighting in the remaining
seven zones. From Fig. 10, the presence of a learning
control algorithm is evident. The existence of a very
fast overshoot for the raising reference and a very fast
undershoot for the falling reference is caused by the
way the inverse fuzzy model gains are tuned. This does
not mean that this is a poor performance, in fact, the
adaptive fuzzy controller is tuned in such a way that it
is quick to adapt to abrupt changes in the plant parame-
ters (e.g., light bulb failures) as is presented with these
experimental results.

Fig. 11. Applied voltage level to the light bulbs at each zone for the
direct adaptive PI fuzzy controller with no partition between zones
under zone 1 light bulb failure.



A
U

TH
O

R
 C

O
P

Y

2612 J.J. Velasquez and K.M. Passino / Fuzzy fault tolerant control for smart lights

The applied voltage level to the light bulbs on each
zone for this particular case is given in Fig. 11. Again,
the faster response of the adaptive fuzzy controller is
seen as well as a better disturbance rejection. Moreover,
comparing the light level results for the fuzzy controller
(i.e., Fig. 8) and the direct adaptive fuzzy controller (i.e.,
Fig. 11), very fast undershoots of less than 0.2 seconds
are only seen in the zones 2 and 3 (i.e, immediate neigh-
boring zones of zone 1) for the adaptive fuzzy controller
compared to slow undershoots of more than 0.5 seconds
given in zones 2, 3, and 4 for the fuzzy controller when
a light bulb failure is introduced in zone 1 (i.e., at t = 30
seconds). A detailed view of the failure effects will be
presented for the multiple zone light bulb failure case
in the following subsection for further understanding of
this phenomena. This result points out that a properly
tuned adaptive control algorithm is a good candidate
for controlling a smart lights system.

4.2. Multiple zone light bulb failure

This failure is generated by shutting down the light
bulbs (i.e., blowing them out) in four zones of the
experimental testbed. For this multiple zone failure,
the learning control algorithm is expected to track the
desired light level in the remaining controlled zones,
and shows a faster response to the system disturbance
as well as a smaller undershoot.

A light bulb failure is created in zones 3, 4, 5, and 6
at t = 30 seconds. The PI fuzzy controller keeps track
of the desired light level for this particular type of four-
zone simultaneous failure as illustrated in Fig. 12. A
typical reaction of the controller (i.e., undershoot at fail-
ure time) to reject the plant disturbance is observed in
zones 1, 2, 7, and 8 respectively.

Fig. 12. Light levels at each zone for the PI fuzzy controller with no
partition between zones under zones 3, 4, 5, and 6 light bulb failure.

As presented in Fig. 12, the uncontrolled zones 3, 4,
5 and 6 have a fixed light level after the failure occurs.
In average, all the uncontrolled zones have the same
light level between t = 30 seconds and t = 40 seconds
and slightly different light levels between t = 40 sec-
onds and t = 60 seconds because of the reduction of
the desired reference level, and hence, a decrease in
the cross-illumination effect due to the remaining con-
trolled zones (i.e., zones 1, 2, 7, and 8). This is an
interesting type of failure for two reasons: first, the
introduced disturbance to the plant has a greater impact
because the four failing zones are neighboring zones
to each other, and secondly, two separated areas (i.e.,
zones 1-2 and zones 7-8) are created by assuming that
they are far enough that there are no cross-illumination
effects between them.

As given in Fig. 13, the applied voltage levels drop
to zero in zones 3, 4, 5, and 6 when the failure is acti-
vated. Once the failure is active, zones 1, 2, 7, and 8
instantly increase the applied voltage level to the light
bulbs so that they can compensate the failure. This fast
voltage increase is reflected in the light level for the con-
trolled zones by means of an undershoot as presented
in Fig. 12 for this failure case. Moreover, a closer look
at these undershoots will provide additional informa-
tion on how the PI fuzzy controller is able to reject this
specific disturbance. From Fig. 14, a critically damped
system response is illustrated in all controlled zones.
Furthermore, zone 7 exhibits the highest undershoot
peak at approximately 0.75 Volts below the desired ref-
erence level and a settling time of approximately 1.2
seconds. Zone 8 shows the second highest undershoot
peak at approximately 0.5 Volts below the desired light

Fig. 13. Applied voltage level to the light bulbs at each zone for the
PI fuzzy controller with no partition between zones under zones 3, 4,
5, and 6 light bulb failure.
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Fig. 14. Light level in controlled zones 1, 2, 7, and 8 for the PI fuzzy
controller with no partition between zones under zones 3, 4, 5, and 6
light bulb failure.

Fig. 15. Light levels at each zone for the direct adaptive PI fuzzy
controller with no partition between zones under zones 3, 4, 5, and 6
light bulb failure.

reference level and a settling time of approximately 1
second. Zones 1 and 2 present the same undershoot peak
at 0.375 Volts below the desired light reference level and
a settling time of approximately 0.625 seconds.

Next, a light bulb failure is initiated in zones 3, 4, 5,
and 6 at t = 30 seconds for the direct adaptive PI fuzzy
controller. Implementation results given in Fig. 15 illus-
trate how the learning control algorithm keeps track of
the desired light level reference after introducing a light
bulb failure in four neighboring zones (i.e., increased
plant disturbance effect). Notice from Fig. 15 that the
fixed light level in the uncontrolled zones is compa-
rable to the ones obtained for the nonapdative fuzzy
controller. The overall system response of both con-
trollers is very similar until we take a closer look to
the disturbance rejection as illustrated in Fig. 17. The

Fig. 16. Applied voltage level to the light bulbs at each zone for the
direct adaptive PI fuzzy controller with no partition between zones
under zones 3, 4, 5, and 6 light bulb failure.

Fig. 17. Light level in controlled zones 1, 2, 7, and 8 for the direct
adaptive PI fuzzy controller with no partition between zones under
zones 3, 4, 5, and 6 light bulb failure.

adaptive fuzzy controller exhibits very fast overshoots
and undershoots whenever a change in the desired ref-
erence light level occurs in the plant but those peaks
can be neglected due to very fast convergence.

As shown in Fig. 16, the applied voltage level by
the adaptive control algorithm is slightly lower (a few
millivolts), as compared with the nonadaptive control
algorithm, for all the controlled zones (i.e, zones 1, 2,
7, and 8) given in Fig. 13.

Implementation results of the direct adaptive PI fuzzy
controller during the occurrence of the light bulb failure
in zones 3, 4, 5, and 6 are presented in Fig. 17. The high-
est undershoot peak is in zone 7 at 0.5 Volts below the
desired reference level which constitutes approximately
a 33.33% peak reduction compared to the nonadaptive
control algorithm (i.e., Fig. 14). The highest overshoot
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Fig. 18. Nonlinear control surface implemented by the PI fuzzy con-
troller in zone 1 at t = 60 seconds under zones 3, 4, 5, and 6 light
bulb failure.

peak is given by zones 7 and 8 at approximately 0.187
Volts above the desired reference level. Certainly, a
faster settling time of approximately 0.15 seconds is
observed from all the controlled zones as compared to
the PI fuzzy controller that represents a 70% reduction
in settling time compared with the faster settling time
zones given in Fig. 14 (i.e., zones 1 and 2).

The ability of the fuzzy controller to achieve a non-
linear control surface is seen in Fig. 6. In order to show
the learning capacity of the FMRLC, we present the
nonlinear control surface achieved when a light bulb
failure is introduced in zones 3, 4, 5, and 6 at t = 30
seconds. Fig. 18 shows the nonlinear control surface
implemented by the direct adaptive PI fuzzy controller
in zone 1 at the end of the experiment (i.e, t = 60 sec-
onds). Notice from Fig. 18 how the FMLRC algorithm
introduced some significant changes in the control sur-
face if we compare with the fuzzy nonlinear control
surface given in Fig. 6.

5. On/off fault tolerance test results

For this experiment, we introduced an on/off fault
tolerance test (i.e., where the bulb goes off then later
come back on) in single zone and multiple zones sce-
narios with no partitions between zones. The on/off
light bulb failure is five seconds long. We are inter-
ested in extensively studying the ability of the FMRLC
to reject plant disturbances by learning about the new
plant parameters. On the other hand, we are also con-
cerned with comparing both adaptive and nonadaptive
control algorithms at the same implementation setting.

Fig. 19. Light levels at each zone for the PI fuzzy controller with no
partition between zones under zone 1 on/off light bulb failure.

5.1. Single zone on/off light bulb failure

The following set of results illustrate the system
response for the PI fuzzy controller when an on/off light
bulb failure is generated in the experimental testbed at
t = 30 seconds in zone 1 (i.e., upper left corner). As
shown in Fig. 19, at t = 27.5 seconds the light bulb fail-
ure is initiated in zone 1 and then at t = 32.5 seconds the
control is given back to the nonadaptive control algo-
rithm. Notice in Fig. 19 that a considerable overshoot
peak at approximately 1.75 Volts above the desired light
reference level is observed in zone 1 and is propagated
to a lesser extent in the other remaining zones as we
move away from zone 1. This phenomenon shows the
high coupling between the zones due to the maximized
cross-illumination effect. In spite of the significant over-
shoot produced in zone 1 by the on/off failure, the
PI fuzzy controller maintains the uniform illumination
across the entire smart lights testbed as illustrated in
Fig. 19. This behavior again illustrates the disturbance
rejection capability of a fuzzy controller.

From Fig. 20 we observe the applied voltage level
defined by the nonadaptive control algorithm. In zone
1 it is clear that the on/off failure is introduced between
27.5 and 32.5 seconds of implementation time. Once the
control is returned to the controller, the control output is
saturated at 10 Volts for few seconds until it is decreased
to a steady value. Zone 3 (followed by zone 2) exhibits
the highest undershoot peak due to its close proximity
to zone 1 (as defined in Fig. 1). Next, implementation
results from Fig. 21 show the capability of the adaptive
control algorithm to quickly adapt to a significant plant
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Fig. 20. Applied voltage level to the light bulbs at each zone for the PI
fuzzy controller with no partition between zones under zone 1 on/off
light bulb failure.

Fig. 21. Light levels at each zone for the direct adaptive PI fuzzy
controller with no partition between zones under zone 1 on/off light
bulb failure.

disturbance (i.e., the on/off failure). Comparing with
the results given in the previous subsection, the adap-
tive algorithm shows a faster speed of convergence to
the desired reference level and smaller overshoots and
undershoots as compared to the nonadaptive algorithm.
Also, good reference light level tracking is achieved by
the adaptive control algorithm.

The applied voltage level defined by the adaptive con-
trol algorithm is illustrated in Fig. 22. Observe from Fig.
22 that the adaptive control algorithm does not resem-
ble the same control signal as given by the nonadaptive
algorithm (i.e., Fig. 20). Clearly, the learning process
forces some significant changes in the control signal as
given in zones 2 and 3 respectively which shuts down
the light bulbs in these zones until zone 1 controller is
able to start tracking the reference light level again.

Fig. 22. Applied voltage level to the light bulbs at each zone for the
direct adaptive PI fuzzy controller with no partition between zones
under zone 1 on/off light bulb failure.

Fig. 23. Light levels at each zone for the PI fuzzy controller with no
partition between zones under zones 3, 4, 5 and 6 on/off light bulb
failure.

5.2. Multiple zone on/off light bulb failure

Real-time implementations introducing an on/off
light bulb failure in multiple zones of the testbed with
no partition between zones are investigated next. We
generate the on/off failure in the time window between
t = 27.5 and t = 32.5 seconds. Again, we expect that
the adaptive control algorithm will outperform the non-
adaptive control in all the real-time implementations by
means of recovering the desired light reference level in
as many of the zones as possible.

An on/off light bulb failure is produced in zones 3, 4,
5, and 6 between t = 27.5 and t = 32.5 seconds. This
implementation scenario represents the case where the
plant disturbance due to the on/off failure is maximized.
Results prove the poor system performance with the
PI fuzzy controller as shown in Fig. 23. Clearly, the
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Fig. 24. Applied voltage level to the light bulbs at each zone for the
PI fuzzy controller with no partition between zones under zones 3, 4,
5 and 6 on/off light bulb failure.

nonadaptive control algorithm fails to maintain the
desired reference light level in zones 2, 7 and 8. Actu-
ally, only zone 1 (i.e., the only remaining non failing
zone) is able to track the reference input only few sec-
onds before the reference input is lowered to 5 Volts.
Also, notice in Fig. 23 that zone 7 exhibits a steady state
error and zones 2, 7, and 8 present an undershoot after
t = 40 seconds (i.e., reference input of 5 Volts).

Next, an on/off light bulb failure is created in zones
3, 4, 5, and 6 between t = 27.5 and t = 32.5 seconds
for the adaptive fuzzy controller. Recall that the PI
fuzzy controller failed to recover the tracking in zones
2, 7, and 8 between t = 32.5 and t = 40 seconds (i.e.,
Fig. 23). From Fig. 25 is apparent that the adaptive fuzzy
controller is able to recover the tracking in zones 2 and
6 but there is still a small steady state error (few milli-
volts) in zone 7. As shown in Fig. 26, the light bulb in
zone 7 remains turned off between t = 32.5 and t = 40
seconds which justifies the presence of the steady state
error.

In spite of the inability of the adaptive PI fuzzy con-
troller to regulate zone 7 between t = 27.5 and t = 32.5
seconds, when the reference input is lowered to 5 Volts
at t = 40 seconds the adaptive control algorithm is able
to track the desired reference light level in all the zones,
eliminating the undershoot in zones 2, 7, and 8 and the
steady state error in zone 7. Notice from Fig. 26 that
the adaptive algorithm can maintain all the light bulbs
turned on immediately after the last reference input is
introduced at t = 40 seconds.

In Fig. 18, we illustrated the ability of the FMRLC
to adapt the nonlinear control surface during a mul-
tiple zone light bulb failure. Again, it is desirable to
emphasize the learning capacity of the FMRLC by

Fig. 25. Light levels at each zone for the direct adaptive PI fuzzy
controller with no partition between zones under zones 3, 4, 5 and 6
on/off light bulb failure.

Fig. 26. Applied voltage level to the light bulbs at each zone for the
direct adaptive PI fuzzy controller with no partition between zones
under zones 3, 4, 5 and 6 on/off light bulb failure.

Fig. 27. Nonlinear control surface implemented by the direct adaptive
PI fuzzy controller in zone 1 at t = 35 seconds under an on/off light
bulb failure in zones 3, 4, 5 and 6.
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Fig. 28. Nonlinear control surface implemented by the direct adaptive
PI fuzzy controller in zone 1 at t = 60 seconds under an on/off light
bulb failure in zones 3, 4, 5 and 6.

presenting the nonlinear control surface achieved when
an on/off light bulb failure is introduced in zones 3,
4, 5, and 6 between t = 27.5 and t = 32.5 seconds.
Notice from Fig. 27 how the FMRLC quickly adapts
the nonlinear control surface compared to the multiple
zone light bulb failure case given in Fig. 18. Moreover,
observe from Fig. 28 how the FMRLC kept adapting
the control surface by the end of the experiment (i.e.,
t = 60 seconds). This clearly proves the benefits of hav-
ing an adaptive control algorithm in order to obtain a
satisfactory performance under several scenarios.

6. Sensor failure test results

The sensor failure test provides the situation where
the illumination is maximized (i.e., light bulb is turned
on at maximum applied voltage) in the zone when
the failure occurs and an over-illumination unbalance
is introduced to the testbed via the cross-illumination
between zones. This test is performed for half-height
partitions between zones in order to attenuate the cross-
illumination effect so that the impact of the sensor
failure can be analyzed and compensated by the fuzzy
controller.

6.1. Two-zone sensor failure

Sensor failures are generated in zones 3 and 6 at t =
30 seconds. For this sensor failure case, the PI fuzzy

Fig. 29. Light levels at each zone for the PI fuzzy controller with half
partition between zones under zones 3 and 6 sensor failure.

controller is able to track the desired reference lighting
level in zones 1, 2, 4, 5, 7, and 8 until t = 40 seconds as
shown in Fig. 29. Once the reference input is lowered
to 5 Volts, the fuzzy controller cannot track the voltage
reference input in all the remaining controlled zones
because each controlled zone is a neighboring zone of
a failing zone. From Fig. 29 it is evident how the voltage
level in the uncontrolled zones (i.e., zones 3 and 6) drops
to a fixed constant value. Evidently, each failing zone
has more than two neighboring zones which supports
the fact that the fuzzy controller is unable to keep the
uniform lighting after t = 40 seconds.

When the sensor failure occurs in zones 3 and 6 at
t = 30 seconds, the failure is given by a clamp at 10
Volts of the applied voltage in the corresponding failing
zones as illustrated in Fig. 30. Following the sensor fail-
ures, the remaining controlled zones react to the sensor

Fig. 30. Applied voltage level to the light bulbs at each zone for the
PI fuzzy controller with half partition between zones under zones 3
and 6 sensor failure.
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Fig. 31. Light level in controlled zones 1, 2, 4, 5, 7, and 8 for the PI
fuzzy controller with half partition between zones under zones 3 and
6 sensor failure.

failure by immediately decreasing their correspond-
ing applied voltage level in order to maintain uniform
lighting. Thus, an overshoot is generated in each con-
trolled zone (as given in Fig. 29) and it is related to
the increased cross-illumination effect that was gener-
ated by the maximum illumination (i.e., applied voltage
clamp at 10 Volts) produced in the sensor failing zones
3 and 6 as shown in Fig. 30. After t = 40 seconds, all
the light bulbs in the remaining controlled zones (i.e.,
zones 1, 2, 4, 5, 7, and 8) are turned off and the fuzzy
controller is unable to keep track of the desired voltage
reference input.

A detailed view of the light level in the controlled
zones (i.e., zones 1, 2, 4, 5, 7 and 8) in a t = 27.5 to
t = 32.5 seconds window is shown in Fig. 31. Zone 5
has the highest overshoot peak at approximately 0.40
Volts above the reference voltage and zone 2 has the
smallest overshoot peak at approximately 0.13 Volts
above the reference voltage. In addition, zone 5 has the
longest settling time of approximately 1.2 seconds and
zone 2 has the shortest settling time of approximately
0.5 seconds. Clearly, zone 5 is most affected zone by
the increased cross-illumination effect that was gener-
ated by the maximum illumination (i.e., applied voltage
clamp at 10 Volts) produced in zones 3 and 6 where the
sensors fail, and following in decreasing order zones 8,
4, 1, 7 and 2. Since the zones in the testbed are not sym-
metrically distributed (see Fig. 1), the behavior given
in Fig. 31 is expected.

Next, sensor failures are generated in zones 3 and 6 at
t = 30 seconds for the adaptive control algorithm. For
this case, where the failing zones are also neighboring
zones, the adaptive controller is able to maintain the uni-
form illumination in the tested in the controlled zones

Fig. 32. Light levels at each zone for the direct adaptive PI fuzzy
controller with half partition between zones under zones 3 and 6
sensor failure.

Fig. 33. Applied voltage level to the light bulbs at each zone for the
direct adaptive PI fuzzy controller with half partition between zones
under zones 3 and 6 sensor failure.

1, 2, 4, 5, 7 and 8 until t = 40 seconds as presented in
Fig. 32. Evidently, there is a clear decrease in the over-
shoot and undershoot peaks for those zones closer to the
failing zones compared with the nonadaptive controller
(i.e., see Fig. 29).

Notice from Fig. 32 that the uncontrolled zones
present the same fixed light level between t = 30 and
t = 60 seconds due to the sensor failures. After t = 40
seconds, all the remaining controlled zones exhibit
different fixed light levels above the desired voltage ref-
erence input which are defined by the cross-illumination
effect created by the maximum illumination (i.e.,
applied voltage clamp at 10 Volts) produced in the
failing zones 3 and 6 as illustrated in Fig. 33. The
applied voltage level given by the adaptive controller in
Fig. 33 is similar to the performance described by the
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Fig. 34. Light level in controlled zones 1, 2, 4, 5, 7, and 8 for the
direct adaptive PI fuzzy controller with half partition between zones
under zones 3 and 6 sensor failure.

nonadaptive controller in Fig. 30 but again character-
ized by a faster rejection of the sensor failure.

Looking at Fig. 34, the highest overshoot peak is
given by zone 5 at approximately 0.25 Volts above the
desired voltage reference level which is a 37.5% peak
reduction compared to the nonadaptive controller (i.e.,
Fig. 31). The highest undershoot peak is shown by zone
4 at 0.15 Volts below the desired voltage reference level.
In addition, a faster settling time of approximately 0.15
seconds is achieved in all the controlled zones which
represents a 87.5% reduction in settling time compared
with the worst case (i.e., ts = 1.2 seconds) for the non-
adaptive controller.

7. Conclusion

In this paper, we have been able to demonstrate the
potential of fuzzy control over other conventional meth-
ods for our smart lighting system in achieving uniform
illumination across the testbed despite plant variations
(i.e., changes in the partition settings), single zone and
multiple zones light bulb failures, and two-zone sen-
sor on/off failures. Based on the implementation results
presented in this paper, we have proven the benefits of
the fuzzy model reference learning controller algorithm
for controlling our smart light experimental testbed.
The FMRLC has great potential as a smart light control
algorithm for the following reasons: a detailed math-
ematical model of the plant to be controlled is not
necessary, the learning mechanism provides an auto-
matic way to adjust the fuzzy control rule-base to make
the closed-loop system behave like a desired refer-
ence model, and the adaptation mechanism provides

rejection of the effect of parameter variations and/or
disturbances which results in a more “robust” controller
compared to the (nonadaptive) fuzzy controller. As a
future direction, it would be of interest to determine
if other adaptive fuzzy/neural controllers can achieve
high performance as fault tolerant controllers for smart
lights. Some of the first methods to consider would be
those in [17] and [18]. Also, it would be quite use-
ful to consider (i) experimental testbeds with a larger
scale, and different structure (e.g., mixes of partitions
and larger open areas); and (ii) a commercial applica-
tion for a whole floor of a building, or indeed a whole
building. In all these contexts, it would be useful to
consider changes in external lighting due to the sun and
clouds, that impacts lighting in buildings via windows,
and how it impacts the control of the lighting levels
and lighting uniformity. It would also be important, for
a real application in a building, to assess the level of
energy savings that can be gained via lighting controls.
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