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Abstract

Systems containing uncertainty are traditionally analyzed with probabilistic methods. However, for non-linear, non-Gaussian
systems solutions can sometimes be very di4cult to obtain. The focus of this work is to determine if in such cases fuzzy
dynamic system models may provide an alternative approach that more easily leads us to a good solution. In this paper,
we present a fuzzy estimator whose system model is a fuzzy dynamic system. We show that for the linear, Gaussian case
the fuzzy estimator produces the same result as the Kalman 9lter. More importantly, we show that the fuzzy estimator
can succeed for some non-Gaussian, nonlinear systems. Finally, we illustrate the application of the fuzzy estimator on a
non-linear, non-Gaussian, time-varying rocket launch problem where we show that it performs better than the extended
Kalman 9lter. From a broad perspective this paper essentially shows how to build on Zadeh’s seminal ideas in fuzzy sets,
logic, and systems and use Kalman’s seminal ideas on optimal estimators to construct a novel fuzzy estimator for non-linear
estimation problems. While this seems to reconcile some of the fundamental ideas of Zadeh and Kalman it is unfortunate that
the fuzzy estimator can be very computationally complex to implement for practical applications. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In control system and estimator design, the estab-
lishment of a system model is quite fundamental.
Many traditional approaches assume that models are
available in the form of ordinary di#erential equa-
tions or discrete-time di#erence equations. In the
cases where there exists uncertainty the models are
generally assumed to be in the form of stochastic dif-
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ferential or di#erence equations. In many cases it is
very di4cult to obtain stochastic models, especially
if the process is highly complex. Even when models
are available it is sometimes di4cult to propagate the
uncertainty through the system dynamics according to
the axioms of probability theory, especially for non-
linear systems. Therefore, in this article, we examine
the use of an alternative yet practical framework
of fuzzy dynamic system models for dealing with
systems exhibiting uncertain behavior. It is hoped
that the use of these fuzzy dynamic models will
provide a foundation on which to build solutions to
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challenging engineering problems that would other-
wise be di4cult to solve using probabilistic methods.
This article introduces an “optimal” state estimator,

based on fuzzy set theory, that is capable of dealing
with systems with random disturbances and “uncer-
tainty”. We will refer to this as a fuzzy dynamic model
based state estimator (or “fuzzy estimator” for short)
as we will use a fuzzy dynamic system model of the
process in the estimator. As one would imagine, this
estimator should be similar to that of the Kalman 9lter
[15] when a linear system with Gaussian disturbances
is considered. To illustrate these similarities, we show
here that the fuzzy estimator is, in a sense to be made
clear later, equivalent to the Kalman 9lter under these
conditions. While such a result may not be surprising
to persons familiar with conventional estimation the-
ory, it is of signi9cant value to the fuzzy systems com-
munity as it draws connections to conventional ideas
and helps provide insights into the behavior of general
fuzzy dynamic systems. Further, the fuzzy estimator
is similar to the nonlinear 9ltering approach based on
the Fokker–Planck equation presented in [25].
The fuzzy estimator introduced in this article relies

on a fuzzy dynamic system model of the process and
the uncertainty. The fuzzy dynamic system model is
used to propagate uncertainty in a way analogous to
that of the mean and covariance estimator of a Kalman
9lter. Here, the membership function is viewed as be-
ing analogous to a probability density function. In
this way, the fuzzy dynamic system model lends itself
directly for use in a state estimator for non-linear, non-
Gaussian systems. Note however, this is done with sig-
ni9cant increase in computational complexity as the
fuzzy dynamic system model is propagating a function
and not just two parameters of a function like mean
and covariance. Next, we overview related research.
Over recent years, fuzzy dynamic system models

have been used in several control applications. For
example, Chand and Hansen [2] developed a fuzzy
roll controller for a Nexible aircraft wing. Cumani [3]
develops analysis techniques for fuzzy feedback sys-
tems where both the plant and the controller are mod-
eled as fuzzy systems. Oliveira and Lemos [18] use
fuzzy dynamic models for long-range predictive con-
trol. There a control law was generated to minimize a
quadratic cost. In [17] Oliveira examined the optimal
linguistic=numeric interface that exists in many control
systems employing fuzzy dynamic systems. Pedrycz

and Oliveira [22] examine dynamic models using
static fuzzy systems where dynamics enter the model
by tapped delay lines. It is shown that the internal
feedback can generate a null fuzzy representation of
the state in the absence of fuzzy sets at the inputs of
the static model. Therefore, they advocate the use of
a pretuned fuzzy model input–output interface as a
“regenerative device”.
Others have studied identi9cation of fuzzy dynamic

systems (i.e. the use of algorithms and plant data to
generate fuzzy dynamic models). Each of the sys-
tem identi9cation methods described next are based
on 9nding the fuzzy relation R in the fuzzy dynamic
system (Xk+1 =Xk ◦R). 1 For example Lee et al. [13]
developed a two-stage method for fuzzy dynamic sys-
tem identi9cation. The 9rst stage involves developing
a heuristic approach to approximate the fuzzy rela-
tion. The second stage is a recursive identi9cation al-
gorithm based on the prediction error and minimiza-
tion of a quadratic performance index. Pedrycz in [20]
gives a general discussion on fuzzy identi9cation, pre-
diction, sensitivity, and stability. Finally, Shaw and
Kruger [23] present another recursive estimator. They
compare the results of both an identi9ed 9rst- and
second-order fuzzy model with a set of industrial data.
Some have examined adaptive control via simul-

taneous system identi9cation and control of fuzzy
dynamic systems. An example of this is given by
Czogala and Pedrycz [4,5]. Furthermore, Pedrycz et al.
[21] provide a short paper expanding on some of the
ideas concerning identi9cation given in [4]. In [7],
Graham and Newell perform fuzzy adaptive control
of a simple 9rst-order process. The same technique
was used by Graham and Newell [6] to perform fuzzy
identi9cation and control of a liquid level rig.
Although fuzzy set theory has been used in other

ways in state estimators [16,24] and one can, of course,
use least squares, gradient, and clustering methods to
train standard and Takagi–Sugeno fuzzy systems to
perform an estimation task [19], it seems that little
attention has been paid to the application of fuzzy
dynamic systemmodels in estimators. This is the focus
of this paper an early version of which appeared in
[10].

1 This notation will be explained in detail in Section 2.
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Fig. 1. Block diagram of the fuzzy model-based state estimator.

2. Basic framework

The basic framework of the fuzzy dynamic model
based state estimator is shown in Fig. 1. The process
whose states are to be estimated includes the sys-
tem and the output measuring device, each with
corresponding disturbances. As shown in Fig. 1, the
system’s dynamics are expressed by a discrete-time
stochastic equation of the form

xk+1 =f(xk ; uk ; wk); (1)

zk = g(xk ; vk); (2)

where xk ∈Rn is the system state, uk ∈Rr is the system
input, wk ∈Rp is a white-noise input disturbance, zk ∈
Rs is the process output, and vk ∈Rl is a white-noise
output disturbance. In general, f : Rn+r+p → Rn and
g : Rn+l → Rs are non-linear functions. We shall

refer to this model as the process “truth model” as
it should be the best known representation of the real
system behavior. Notice in the above system model
that the system input is assumed to be measured per-
fectly. We do this without loss of generality since the
“disturbances” or errors in measuring the process in-
put uk can be absorbed into wk . Also, it is not nec-
essary that measurements are available at every time
step kT . In many applications the measurements may
become unavailable for periods of time or they may
occur at a varying rate over time.
The fuzzy estimator consists of three basic compo-

nents, namely a fuzzy dynamic system model, a fuzzy
measurement model, and a measurement update block;
hence, conceptually its structure bears some similar-
ity to the Kalman 9lter [15]. A detailed description of
each of these components is presented next.
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2.1. Fuzzy dynamic system model

The fuzzy dynamic system model is designed so
that it accurately characterizes the system behavior
and its uncertainty. As illustrated in Fig. 1, it mea-
sures the system input and predicts the true system
output and uncertainty in the form of a fuzzy rela-
tional state variable. Notice that unlike what has been
presented in the current literature, the fuzzy dynamic
system modeled here is propagating the full fuzzy re-
lation describing the state and not a fuzzy set for each
independent state variable. The reason for doing this
is due to the fact that the fuzzy relation describing
the state vector has a membership function that can
be considered analogous to a joint probability density
function. By propagating the full fuzzy relation we
capture and maintain information similar to the cross-
correlation. Those who have worked extensively with
the Kalman 9lter will appreciate the bene9ts of having
good cross-correlation information. Ignoring it is like
having all the o#-diagonal elements of the Kalman 9l-
ter covariance matrix forced to zero. Next we explain
how to produce the fuzzy dynamic system model in
Fig. 1 from the stochastic system model above.
Using the (non-fuzzy) stochastic model in Eq. (1)

or a reduced-order approximation of this model, the
fuzzy dynamic system model in Fig. 1 can be gener-
ated using fuzzy composition or by use of the fuzzy
extension principle. The details of how this is done is
described later in this section. First, we will review
some basic fuzzy system theory to establish notation
for this paper. We begin by de9ning the triangular
norm and co-norm [9].
Triangular norm: The triangular norm, de-

noted ⊗ : [0; 1]×; : : : ;×[0; 1]→ [0; 1], is an oper-
ation de9ned for n membership function values
{x1; x2; : : : ; xn}. Commonly used triangular norms in
fuzzy system design include the following:

⊗{x1; x2; : : : ; xn}= min{x1; x2; : : : ; xn}; (3)

⊗{x1; x2; : : : ; xn}= x1 · x2·; : : : ; ·xn; (4)

⊗{x1; x2; : : : ; xn}

= max{0; x1 + x2+; : : : ; + xn − n+ 1}: (5)

Triangular co-norm: The triangular co-norm,
denoted ⊕ : [0; 1]×; : : : ;×[0; 1]→ [0; 1], is an op-

eration de9ned for n membership function values
{x1; x2; : : : ; xn}.
Commonly used triangular co-norms in fuzzy sys-

tem design include the following:

⊕{x1; x2; : : : ; xn}= max{x1; x2; : : : ; xn}; (6)

⊕{x1; x2; : : : ; xn}
= x1 + x2+; : : : ;+xn − x1x2 − x1x3−; : : : ;−xn−1xn
+ x1x2x3+; : : : ;+xn−2xn−1xn−; : : : ;
+= − x1x2; : : : ; xn; (7)

⊕{x1; x2; : : : ; xn}= max{1; x1; x2; : : : ; xn}: (8)

It is important to point out that the name “triangular
norm” is used since all properties of a norm are ap-
plicable over the domain [0; 1].
Using de9nitions of the triangular norm and co-

norm the operations of union and intersection of or-
dinary sets can be extended to fuzzy sets. Consider
the fuzzy sets U 1 and U 2 de9ned on the universe of
discourse U with membership functions �U 1 (u) and
�U 2 (u), respectively. The most widely accepted de9-
nitions of fuzzy set operations are as follows.
Union: The union of U 1 and U 2, denoted U 1 ∪U 2,

is a fuzzy set with a membership function de9ned by

�U 1∪U 2 (u)= ⊕{�U 1 (u); �U 2 (u): u∈U}: (9)

Intersection: The intersection of U 1 and U 2, de-
notedU 1 ∩U 2, is a fuzzy set with a membership func-
tion de9ned by

�U 1∩U 2 (u)= ⊗{�U 1 (u); �U 2 (u): u∈U}: (10)

The⊗ and⊕ symbols are used to denote any triangular
norm or co-norm, respectively. Now consider fuzzy set
operations over more than one universe of discourse
such as the Cartesian product.
Cartesian product: If U1; U2; : : : ; Ur are fuzzy

sets de9ned as subsets of the universes of discourse
U1;U2; : : : ;Ur , respectively, the Cartesian product
is a fuzzy set, denoted U1×U2× · · ·×Ur , with a
membership function de9ned by

�U1×U2×···×Ur (u1; u2; : : : ; ur)

=⊗{�U1 (u1); �U2 (u2); : : : ; �Ur (ur)}; (11)
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where u1; u2; : : : ; ur are elements of U1;U2; : : : ;Ur

respectively.
The Cartesian product of two or more fuzzy sets

is called a fuzzy relation. Next, we can de9ne fuzzy
composition and the fuzzy extension principle. These
operations will be used later in this article to determine
functions of fuzzy sets.
Fuzzy composition: Assume that U and R are

fuzzy relations de9ned on U1×U2×; : : : ;×Ur and
U1×U2×; : : : ;×Ur ×Y; respectively, the “fuzzy
composition” of U and R is a fuzzy relation denoted
by U ◦R and has a membership function de9ned as
�U◦R(y)

=⊕{⊗{�U (u1; u2; : : : ; ur);
�R(u1; u2; : : : ; ur ; y): (u1; u2; : : : ; ur)

∈U1×U2×; : : : ;×Ur and y∈Y}:
(u1; u2; : : : ; ur)∈U1×U2×; : : : ;×Ur}: (12)

Fuzzy extension principle: Let U be a fuzzy set
de9ned on the universe U=U1×U2×; : : : ;×Ur

with membership function �U (u1; u2; : : : ; ur). Let
T be a mapping from U1×U2×; : : : ;×Ur to
Y1×Y2×; : : : ;×Ys such that y=T (u1; : : : ; ur). The
extension principle states that fuzzy set Y =T (U )
has a membership function given by

�Y (y)=




⊕{�U (u1; : : : ; ur): u1; u2; : : : ; ur ;
y=T (u1; : : : ; ur)}

�Y (y)= 0 if T−1(y)= ∅
(13)

where T−1(y) is the inverse image of y and ∅ denotes
the null set.
The fact that a triangular norm is used in the de9ni-

tion of the fuzzy composition and extension principle
is important. The triangular inequality ensures that
we are no more certain about the “outputs” (y) than
we are about the inputs (u). Hence the basic mecha-
nism behind the mapping of fuzzy sets makes some
intuitive sense. Now that we have de9ned notation we
now consider the construction fuzzy dynamic systems.

2.1.1. Construction of fuzzy dynamic model via
fuzzy composition
To use fuzzy composition it is convenient to gener-

ate a list of fuzzy rules that characterizes the behavior

of the stochastic dynamic behavior in Eq. (1). A rule
base is generated so that it contains enough rules to en-
sure completeness (i.e. there exist enough rules that at
least one is activated for all realizations of the vectors
xk ; uk ; and wk). Suppose the ith rule is de9ned so that
it is activated in the region of space around the set of
values xk = xi ∈Rn; uk = ui ∈Rr , and wk =wi ∈Rp.
Here we de9ne the following fuzzy relations:

X i
k =F(xi); (14)

Ui=F(ui); (15)

Wi=F(wi); (16)

X i
k+1 =F(f(xi; ui; wi)); (17)

U (k)=F(uk); (18)

whereF represents the process of fuzzi9cation around
a single element. The subscripts on X i

k and X
i
k+1 are

used only to distinguish cases; not to indicate that they
are changing in time.
To illustrate the fuzzi9cation operator F, consider

the vector xi= [xi1; : : : ; x
i
n]
T. One possible fuzzi9ca-

tion scheme might produce a fuzzy singleton relation
X i=F(xi) with membership function

�X i(x)=
{
1 if x= xi;
0 otherwise:

(19)

Or another possibility might be a normalized jointly
Gaussian function

�X i(x)= e(1=2)[(x−xi)TC−1(x−xi)]; (20)

where C is a symmetric positive-de9nite matrix.
Hence the fuzzi9cation operator simply turns crisp
values into fuzzy sets.
Using the fuzzy relations de9ned in Eqs. (14)–(18),

one can generate a fuzzy knowledge base such that
the ith rule is given by

If X (k) is X i
k and U (k) is U

i and W (k) is Wi

Then X (k + 1) is X i
k+1

where X (k) and X (k + 1) are fuzzy relations char-
acterizing the current and the next state, respectively,
W (k) is a fuzzy relation characterizing the process
disturbance input, and U (k) is a fuzzy relation char-
acterizing the process input.
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This rule can be denoted mathematically by a fuzzy
relation of the form

Ri=X i
k ×Ui ×Wi ×X i

k+1: (21)

Assuming there exist many such rules, the overall
fuzzy relation describing the entire rule base is de-
noted by the union of these rules

R=
⋃
i

Ri: (22)

Thus, the fuzzy dynamic system model can be ex-
pressed by the following:

X (k + 1)= [X (k)×U (k)×W (k)] ◦R: (23)

The choice of the fuzzy relation W (k) is based on
a fuzzy characterization of the process disturbance
at time kT . One possible choice for the membership
function of W (k) is simply a normalized version of
the joint probability density function of wk . In many
cases, the characteristics of the process disturbance in-
put will not change in time so often the fuzzy relation
W (k) will be constant.

2.1.2. Construction of fuzzy dynamic model via the
fuzzy extension principle
Another way to construct a fuzzy dynamic model is

by transforming the stochastic model in Eqs. (1) and
(2) to a fuzzy model via the fuzzy extension princi-
ple. First consider Eq. (1). For time kT de9ne X (k)
to be the fuzzy relation describing the state, U (k) is
the fuzzy relation for the process input, and W (k) is
the fuzzy relation for the process input disturbance.
Hence, the fuzzy relation for the process state at time
(k+1)T can be found via the fuzzy extension principle

�Xk+1(xk+1)

=




⊕{�X (k)×U (k)×W (k)(xk ; uk ; wk):

xk ; uk ; wk ; xk+1 =f(xk ; uk ; wk)}
0 if f−1(xk+1)= ∅:

(24)

This is the approach we will use in the development
of the fuzzy estimator.

2.2. Measurement update block

In the fuzzy estimator in Fig. 1 measurement up-
dates are performed using conditional fuzzy sets. As

will be shown, this method of performing measure-
ment updates places certain constraints on the design
of the fuzzy measurement model. Consequently, it is
di4cult to explain the design of the fuzzy measure-
ment model without 9rst describing the operation of
the measurement update block.
The measurement update block performs the func-

tion of improving the fuzzy relational state estimate
X (k) using information provided by system measure-
ments. Here we derive the fuzzy measurement update
equations in a “fuzzy Bayesian” manner by generat-
ing a new fuzzy relation for the state conditioned on
system measurements.
Since the state equation in Eq. (1) is Markov,

the algorithm will be recursive. If the process is
Markovian, measurement updates need only be
based on the current measurement since by
de9nition previous measurements will not provide
additional information. However, if the process is
non-Markovian, some bene9t may be gained by per-
forming updates based on some portion of the mea-
surement history. However, the determination of what
portion of the measurement history should be used is
beyond the scope of this article.
A fuzzy set, denoted A, conditioned on fuzzy set

B= Qb (a fuzzy singleton), denoted A |B= Qb where Qb
is a speci9c element on the universe of discourse for
B, has a membership function often de9ned by the
following:

�A|B=Qb (a)=
�A×B(a; Qb)

�B( Qb)
; (25)

where �A×B(a; b) is the membership function for
A×B and �B(b) is the membership function for B
(this is a “fuzzy Bayesian rule”). Note that since the
denominator of Eq. (25) is a scalar constant for a
speci9c value of b= Qb, it acts only as a scaling fac-
tor. Therefore, for reasons that will become clear in
later sections, we propose another de9nition for the
conditional fuzzy set

�A|B=Qb (a)=N(�A×B(a; Qb)); (26)

whereN is a normalization operation that normalizes
the functions so that peak has a value of 1. Note that
this de9nition only requires A×B and not B. Conse-
quently, use of this de9nition results in a reduction
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of the number of computations required by the fuzzy
measurement model.
Now that we have de9ned conditional fuzziness, it

is possible to derive the measurement update equa-
tion. Since the process in Eqs. (1) and (2) is Markov,
measurement updates are to be performed based on
the current measurements. The fuzzy relation, X̃+(k),
describing the fuzzy state after the measurement up-
date is given by

X̃+(k)= X̃ (k) |Z(k)= zk (27)

which has a membership function

� X̃+(k)(xk) = � X̃ (k)|Z(k)=zk (xk ; zk)

=N(� X̃ (k)×Z(k)(xk ; zk)): (28)

Hence, the fuzzy measurement model described next
should be designed so that it computes an estimate of
X̃ (k)×Z(k).

2.3. Fuzzy measurement model

The fuzzy measurement model is designed so that
it properly characterizes the measuring device and
its white noise disturbances vk . It receives the fuzzy
state relation estimate X̃ (k) from the fuzzy dynamic
system model to generate a prediction of the fuzzy
relation X̃ (k)×Z(k). Similar to the fuzzy dynamic
system model, the measurement model is designed us-
ing the fuzzy extension principle or fuzzy composi-
tion. For example, if � X̃ (k)(xk) and �V (k)(vk) are the
membership functions for fuzzy sets X̃ (k) and V (k),
respectively, their Cartesian product can be formed to
obtain � X̃ (k)×V (k)(xk ; vk). Using the fuzzy extension
principle we get

� X̃ (k)×Z(k)(xk ; zk)

=




⊕{� X̃ (k)×V (k)(xk ; vk) : zk = g(xk ; vk)}
0 if there does not exist vk such that

zk = g(xk ; vk) is satis9ed:

It is sometimes desirable to design the fuzzy dy-
namic system model based on a reduced order ap-
proximation of the stochastic model in Eq. (1). As a
result of this approximation, added uncertainty is cre-
ated. Therefore, sometimes it becomes necessary to

absorb this added uncertainty into the characterization
of V (k) (and possibly W (k)). Of course, this opens a
whole set of issues concerning reduced-order design
optimization which is beyond the scope of this article.

2.4. Defuzzi>cation and optimality

So far, we have described a method for generating a
fuzzy estimate of the system state using a fuzzy model
of the process and measurement feedback based on
conditional fuzzy sets. However, in many applications
the fuzzy relation estimate X̃ (k) must be defuzzi9ed
to a speci9c vector x̃(k) to be of practical use. Hence,
the optimality of the x̃(k) depends greatly on the cho-
sen defuzzi9cation method.
In the next sections of this article, we show that

when the system is linear, the disturbances are
Gaussian, and the fuzzy estimator is designed as
speci9ed above the membership function for X̃ (k) is
a “normalized version” of the joint probability den-
sity function that would be obtained using a Kalman
9lter. Although it is yet to be proven, there is no
reason to doubt that the fuzzy estimator might produce
a “good” estimate of the normalized joint probabil-
ity density function (membership function) for some
non-linear systems with non-Gaussian disturbances
that are characterized with fuzzy sets. When it is pos-
sible to show that the fuzzy estimator produces a good
estimate of the normalized joint probability function,
one can talk about optimality using probabilistic ar-
guments similar to those used for the Kalman 9lter.
Often, analysis of this type will provide insight to the
best possible scheme for defuzzi9cation.
In the Kalman 9lter, the conditional mean is cho-

sen as the optimal estimate because it is the mean,
mode, and median of the joint Gaussian probability
density function. When the membership function of
the state relation estimate X̃ (k) is considered analo-
gous to a joint probability density function, compu-
tation of the mean is akin to performing a center of
area defuzzi9cation [11,12] (or center of volume, etc.
for higher-dimension relations). Likewise, computa-
tion of the mode is akin to performing amean of max-
imum defuzzi9cation [11,12]. Hence, in general, the
defuzzi9cation algorithm will be either the center of
area or mean of maximum. Maybeck [15] describes
a number of optimality criterion used for specifying
techniques for extracting the optimal solution from a
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probability density function. These might actually as-
sist in the choice of defuzzi9cation strategies.

3. Linear Gaussian case

In this section we consider linear systems with
Gaussian-shaped membership functions. We will
show that the fuzzy estimator described above will
produce a result that is analogous to Kalman 9lter in
the sense that the “center” and “spread” of the mem-
bership functions propagate the same as the mean and
covariance of the Kalman 9lter.

3.1. Truth model

Here the truth model is a linear stochastic model of
the form

xk+1 =Axk + wk; (29)

zk =Hxk + vk ; (30)

where xk ; xk+1 ∈Rn are the current and next state, re-
spectively, wk ∈Rp is a white noise process distur-
bance, zk ∈Rm is the current measurement, vk ∈Rl is
a white noise output measurement disturbance, and
A∈Rn×n; H ∈Rm×n are constant matrices. Notice
that to simplify the math below we set the process
input uk ∈Rr to zero. Also, to obtain the result pre-
sented in this section, A is assumed to be invertible
which implies that AT is invertible (i.e. the system has
no eigenvalues at zero). Provided that the above linear
discrete-time model was created from a continuous-
time system A will always be invertible so this does
not present a serious restriction.
Let the uncertainty in xk ; wk , and vk be modeled by

Gaussian-shaped membership functions of the form

� X̃ (k)(xk)= exp
{− 1

2 [(xk − x̃k)TP−1
k (xk − x̃k)]

}
;

(31)

�W (k)(wk)= exp
{− 1

2 [(wk)
TQ−1(wk)]

}
; (32)

�V (k)(vk)= exp
{− 1

2 [(vk)
TR−1(vk)]

}
; (33)

where x̃k denotes the “center” for the state, Pk ∈Rn×n;
Q∈Rp×p; R∈Rl×l denote the “spread” in the
state, input disturbance, and output disturbance,
respectively.

3.2. Propagation of the state

If we use the product for the triangular norm in the
Cartesian product, we get

� X̃ (k)×W (k)(xk ; wk)

= exp{− 1
2 [(xk − x̃k)TP−1

k (xk − x̃k)]

− 1
2 [(wk)

TQ−1(wk)]}: (34)

Hence, if we use the max operator for the triangular
co-norm in the fuzzy extension principle the problem
of 9nding �X (k+1)(xk+1) becomes one of maximizing
Eq. (34) subject to Eq. (29). Upon performing this
operation we obtain the following theorem.

Theorem 3.1. Given a linear system as in Eq. (29)
assume that the fuzzy extension principle was used
(with product as the triangular norm and max for the
co-norm) to generate X̃ (k+1). Let X̃ (k) and W (k)
have membership functions given in the Eqs. (31)
and (32); respectively. The membership function for
X̃ (k+1) can be shown to be the following Gaussian-
shaped function:

� X̃ (k+1)(xk+1)

= exp
{− 1

2 [(xk+1 − x̃k+1)TP−1
k+1(xk+1 − x̃k+1)]

}
;

(35)

where

x̃k+1 =Ax̃k ; (36)

Pk+1 =ATPkA+ Q: (37)

Theorem 3.1 is proved fully in Appendix A. Note
that Eqs. (36) and (37) are the same as those ob-
tained for the mean and variance in the discrete-time
Kalman 9lter during state propagation [15]. Although
these equations are the same as the Kalman 9lter equa-
tions, they were obtained in a very di#erent manner,
namely from axioms of fuzzy sets and not probability
theory. Hence, they cannot be interpreted the same as
the Kalman equations. They are update equations for
membership functions for a fuzzy dynamic system.
The same can be said of the update equations found in
Eqs. (43) and (44) for the measurement update equa-
tions in the next section.
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3.3. Measurement updates

Since the given stochastic process is known to be
Markovian, measurement updates are performed using
the following equation:

X̃+(k)= X̃ (k) |Z(k)= zk (38)

whose membership function is given by

� X̃+(k)(xk)=N(� X̃ (k)×Z(k)(xk ; zk)): (39)

If we use the product as the triangular norm in a
Cartesian product we get

�X (k)×V (k)(xk ; vk)

= exp
{− 1

2 [(xk − x̃k)TP−1
k (xk − x̃k)]

− 1
2 [(vk)

TR−1(vk)]
}
: (40)

Hence, if we use the max operator for the triangular co-
norm in the fuzzy extension principle the problem of
9nding �X (k)×Z(k)(xk ; zk) becomes one of maximizing
Eq. (40) subject to Eq. (30). Then we normalize to
obtain �X+(k)(x+k ). Upon performing these operations
we get the following theorem.

Theorem 3.2. Given a linear system as in Eq. (30)
assume that the fuzzy extension principle (with prod-
uct as the triangular norm and max as the co-norm)
is used to generate X̃ (k + 1). Let X̃ (k) and V (k)
have membership functions given in the Eqs. (31)
and (33); respectively; the membership function for
X̃
+
(k) can be shown to be the following Gaussian-

shaped function:

� X̃+(k)(x
+
k )

=N(� X̃ (k)×Z(k)(xk ; zk)) (41)

= exp{− 1
2 [(xk − x̃+k )

T(P+k )
−1(xk − x̃ +k )]}; (42)

where

x̃+k+1 =P
+
k P

−1x̃k + P+k H
TR−1zk ; (43)

P+k = [P
−1
k + HTR−1H ]−1: (44)

The proof of Theorem 3.2 is shown in Appendix A.
Note that Eqs. (43) and (44) are the same as that which

are obtained for the mean and variance in the discrete-
time Kalman 9lter during measurement updates [15].
While for the linear Gaussian case we are able to show
very close relationships between the fuzzy estimator
and Kalman 9lter via Theorems 3.1 and 3.2, in the
non-linear case the two methods produce quite di#er-
ent results. For the non-linear case one normally re-
sorts to using the “extended” Kalman 9lter [15] which
relies on the use of the system model and an on-line
linearization of this model. The optimality and conver-
gence properties of the Kalman 9lter are lost for the
non-linear case which opens the possibility that other
estimators may perform better. The fuzzy estimator
does not need to perform an on-line linearization of
the system model since its approach does not build on
a linear estimation result like the extended Kalman 9l-
ter. In the next section, we analytically show how to
specify a fuzzy estimator that is in a sense optimal, and
hence we show that it can out-perform the extended
Kalman 9lter. Following this we provide a non-linear
rocket launch estimation problem where the fuzzy es-
timator out-performs the extended Kalman 9lter.

4. Non-linear non-Gaussian case

Using fuzzy composition on discretized member-
ship functions it is possible to implement a fuzzy
estimator for practically any shaped membership func-
tion and any non-linear system. However, this is done
with a signi9cant increase in computational complex-
ity. The reason is due to the fact that we are prop-
agating all elements of the discretized membership
function instead of a few parameters of the function
such as the “center” and “spread” as was done for the
linear Gaussian case.
The goal of this section is to identify membership

functions that maintain their basic shape when propa-
gated in a fuzzy dynamic system when the underlying
dynamics are linear (such as the case of the Gaussian-
shaped membership functions) or non-linear. We will
show in this section that the uniform shaped member-
ship function exhibits this property.
Since a jointly uniform probability function has not

been de9ned (at least in the knowledge of the authors)
on which we could base the de9nition of a membership
function, we will constrain our analysis to 9rst-order
systems. Consider the case where the system dynamics
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are characterized by the following:

xk+1 =f(xk) + wk; (45)

zk = g(xk) + vk ; (46)

where xk ∈R is the system state, wk ∈R is a white
noise input disturbance, zk ∈R is the process output,
and vk ∈R is a white noise output disturbance. We as-
sume that the functions f :R→R and g :R→R are
increasing or decreasing non-linear monotonic func-
tions of xk . Notice that we do not include a system
input uk ∈R. We do this with little loss of generality
since the input signal can be absorbed into wk .
As shown in Fig. 3, the membership functions for

xk ; wk , and vk are uniform shaped such that at time k,

�Xk (xk)= u(xk − ax(k))− u(xk − bx(k)); (47)

�Wk (wk)= u(wk − aw(k))− u(wk − bw(k)); (48)

�Vk (vk)= u(vk − av(k))− u(vk − bv(k)); (49)

where u(·) is the unit step function, bx(k)¿ax(k);
bw(k)¿aw(k), and bv(k)¿av(k). Notice that the uni-
form distribution is characterized by two parameters.
Therefore, it is necessary to only keep track of ax(k)
and bx(k) in the fuzzy estimator. We show how to do
this next.
Due to the fact that we obtain Dirac delta func-

tions when taking a derivative of uniform membership
functions, we found it di4cult to solve this problem
using the Lagrange method that was used for the linear
Gaussian case. However, since this is a simple 9rst-
order system, a graphical solution is easily obtained.
Notice that when the product is used for the trian-

gular norm in the Cartesian product we obtain

�Xk×Wk (xk ; wk) = {u(xk − ax(k))− u(xk − bx(k))}

×{u(wk − aw(k))− u(wk − bw(k))}
(50)

which is equal to zero everywhere except when
ax(k)6xk6bx(k) and aw(k)6wk6bw(k) where
�Xk×Wk (xk ; wk)= 1. This region is illustrated by the
gray shaded area in Figs. 4(a) and (b). Our goal is to
solve the following problem:

�Xk+1(xk+1) = sup{�Xk×Wk (xk ; wk):

xk+1 =f(xk) + wk}: (51)

Notice in Fig. 4(a) we show contour lines for the equa-
tion x̃k+1 =f(xk) +wk where f(xk) is monotonic in-
creasing and x̃k+1 represents 9xed values of xk+1. It
is easy to see that the contours that pass through the
shaded region of Fig. 4(a) have a maximum value of
one. All other contours have a maximum value of zero.
Also it is easy to see that the minimum value of x̂k+1,
denoted ax(k + 1), and maximum value of x̂k+1, de-
noted bx(k+1), that passes through the shaded region
in Fig. 4(a) are computed by

ax(k + 1)=f(ax(k)) + aw(k); (52)

bx(k + 1)=f(bx(k)) + bw(k); (53)

respectively. Likewise, Fig. 4(b) shows contour lines
for the equation x̃k+1 =f(xk) + wk where f(xk) is
monotonic decreasing and x̃k+1 represents 9xed values
of xk+1. From Fig. 4(b) it is easy to see that the mini-
mum value of x̃k+1, denoted ax(k+1), and maximum
value of x̃k+1, denoted bx(k + 1), that passes through
the shaded region in Fig. 4(b) are computed by

ax(k + 1)=f(bx(k)) + aw(k); (54)

bx(k + 1)=f(ax(k)) + bw(k); (55)

respectively. Thus, the next state has a uniform shaped
membership function given by

�Xk+1(xk+1) = u(xk+1 − ax(k + 1))

− u(xk+1 − bx(k + 1)): (56)

It is easily shown by induction that during propagation
the membership function for Xk is uniform shape for
all k where the end values ax(k+1) and bx(k+1) are
propagated according to Eqs. (52) and (53), respec-
tively, or Eqs. (54) and (55), respectively. The best
estimate of the state at time kT is computed using the
center of gravity defuzzi9cation method to obtain

x̃k =
bx(k) + ax(k)

2
: (57)

Next we solve the measurement update equation.
Notice that if the product is used for the triangular

norm in the Cartesian product we obtain

�Xk×Vk (xk ; vk) = {u(xk − ax(k))− u(xk − bx(k))}
×{u(vk − av(k))− u(vk − bv(k))}

(58)
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which is equal to zero everywhere except when
axk6xk6bxk and avk6vk6bvk where �Xk×vk (xk ; vk)
= 1. Our goal is to solve the following problem:

�Xk×Zk (xk ; zk) = sup{�Xk×Vk (xk ; vk):

zk = g(xk) + vk}: (59)

Since g(xk) is monotonic there is only one zk corre-
sponding to each xk and vk . Hence, the solution to
Eq. (59) is computed by substituting vk = zk − g(xk)
into Eq. (58) for vk to obtain

�Xk×Zk = {u(xk − axk)− u(xk − bxk)}

×{u(zk − g(xk)− avk)

− u(zk − g(xk)− bvk)}; (60)

which is equal to zero everywhere except when
axk6xk6bxk and g(xk) + avk6zk6g(xk) + bvk
where �Xk×Zk (xk ; zk)= 1. This region is illustrated by
the gray shaded area in Figs. 2(a) and (b) for mono-
tonic increasing and monotonic decreasing g(xk),
respectively. The measurement update is computed by

�X+k (x
+
k )=N{�Xk×Zk (xk ; zk)}: (61)

This is equivalent to taking a slice out of �Xk×Zk (xk ; zk)
at the level of zk as shown in Figs. 2(a) and (b). Hence,
for monotonic increasing g(xk) it is easy to see from
Fig. 2(a) that the new ax(k) and bx(k) after measure-
ment update is given by

a+x (k)= max{ax(k); g(xk) + bv(k)}; (62)

b+x (k)= min{bx(k); g(xk) + av(k)}; (63)

respectively. Likewise, for monotonic decreasing
g(xk) it is easy to see from Fig. 2(b) that the new
ax(k) and bx(k) after measurement update is given by

a+x (k)= max{ax(k); g(xk) + av(k)}; (64)

b+x (k)= min{bx(k); g(xk) + bv(k)}; (65)

respectively. In both cases it is important to check that
a+x (k) does not exceed bx(k) and that b

+
x (k) is greater

than ax(k). Again the best estimate of the state after
measurement update is computed using the center of
gravity defuzzi9cation method to obtain

x̃+k =
b+x (k) + a+x (k)

2
: (66)

4.1. Extended Kalman >lter

To establish notation, we summarize here the ex-
tended Kalman 9lter equations provided in [1] which
will be used for comparison with the fuzzy estimator.
Let the system of interest be characterized by the dy-
namics model and measurement model

xk+1 = f (xk ; k) + wk ; (67)

zk = g(xk ; k) + vk ; (68)

respectively, where xk ∈Rn is a random state vec-
tor at time t= kT with covariance Pk ∈Rn×n, wk ∈Rn
is assumed to be a Gaussian white noise input dis-
turbance vector independent of xk with covariance
Qk ∈Rn×n, zk ∈Rm is the process measurement vec-
tor, and vk ∈Rm is assumed to be a Gaussian white
noise measurement disturbance independent of xk and
wk with covariance Rk ∈Rm×m.
The extended Kalman 9lter estimate is propagated

forward from the sample time t= kT to time t=(k +
1)T by the following di#erence equations:

x̃k+1 = f (x̃k ; k); (69)

Pk+1 =F(x̃k ; k)PkFT(x̃k ; k) +Qk ; (70)

where F(xk ; k)∈Rn×n is the partial derivative matrix

F(x̃k ; k),
@f (xk ; k)
@xk

∣∣∣∣
xk=x̃k

: (71)

The extended Kalman 9lter measurement update in-
corporates the measurement zk by means of the fol-
lowing equations:

Kk =PkGT(x̃k ; k){G(x̃k ; k)PkGT(x̃k ; k) + Rk}−1;
(72)

x̃+k = x̃k + Kk{zk − g(x̃k ; k)}; (73)

P+k =Pk − KkG(x̃k ; k)Pk ; (74)

where GT(x̃k ; k)∈Rm×n is the partial derivative
matrix

G(x̃k ; k),
@g(xk ; k)
@xk

∣∣∣∣
xk=x̃k

: (75)

For more details see [15].
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Fig. 2. Uniform membership functions for Xk × Zk with example contour lines for (a) a monotonic increasing function g(xk) and for (b)
a monotonic decreasing function g(xk).

Fig. 3. Uniform membership functions for xk , wk , and vk .

Fig. 4. Uniform membership functions for Xk ×Wk with example contour lines for (a) a monotonic increasing function f(xk) and for (b)
a monotonic decreasing function f(xk).



J.R. Layne, K.M. Passino / Fuzzy Sets and Systems 122 (2001) 45–72 57

4.2. Linear system, linear measurement, and
uniform disturbances

We wish to study the following linear system with
a linear measurement equation:

xk+1 =1:0xk + wk; (76)

zk =0:5xk + vk : (77)

The disturbances wk and vk have uniformly shaped
membership functions such that aw(k)= −3:0; bw(k)
= 3:0; av(k)= − 0:5, and bv(k)= 0:5 for all k. Re-
call that the variance of a uniform density function
f(x)= (1=(b− a)){u(x − a)− u(x − b)} is given by
(b− a)2=12.
In this study we performed 20 Monte Carlo runs

of the above system where a single run consisted of
100 discrete time iterations with measurement updates
performed every 10 iterations. Fig. 5(a) shows the
results for run number 1 of 20 runs for both the fuzzy
estimator and the Kalman 9lter. Fig. 5(b) shows the
20 run Monte Carlo statistics for both 9lters. From
the results shown in Fig. 5 it is di4cult to determine
which 9lter performed the best. In fact theMonte Carlo
results show such a small di#erence that the plots are
practically on top of each other. However, Table 1
below shows the energy in the error signal (computed
as 12e

Te) for the 20 Monte Carlo runs (boxed numbers
in the table indicate cases where the fuzzy estimator
outperforms the Kalman 9lter). Notice that the fuzzy
estimator outperforms the Kalman 9lter 15 out of 20
runs. It is important to point out that this performance
is not an isolated case but was typical of the many
trial runs of the simulation.

4.3. Linear system, non-linear measurement, and
uniform disturbances

We wish to study the following linear system with
a non-linear measurement equation:

xk+1 =1:0xk + wk; (78)

zk =0:0005x3k + vk : (79)

The disturbances wk and vk have uniformly shaped
membership functions such that aw(k)= −3:0; bw(k)
= 3:0; av(k)=− 0:5, and bv(k)=0:5 for all k.

Fig. 5. Linear system, linear measurement, and uniform distur-
bances: (a) 9rst run results, (b) 20 run Monte Carlo analysis
(“STD” is standard deviation).

In this study we performed 20 Monte Carlo runs of
the above system where a single run consisted of 100
discrete time iterations with measurement updates per-
formed every 10 iterations. Fig. 6(a) shows the results
for run number 1 of 20 runs for both the fuzzy estima-
tor and the extended Kalman 9lter. Fig. 6(b) shows
the 20 run Monte Carlo statistics for both 9lters. The
Monte Carlo results show that the fuzzy estimator per-
forms signi9cantly better than the extended Kalman
9lter. Table 2 below shows the energy in the error
signal (computed 1

2e
Te) for the 20 Monte Carlo runs

(boxed numbers in the table indicate cases where the
fuzzy estimator outperforms the Kalman 9lter). No-
tice that the fuzzy estimator outperforms the Kalman
9lter 15 out of 20 runs. Again this performance is not
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Table 1
Energy in error – linear system, linear measurements, and uniform
disturbances

Run Kalman 9lter Fuzzy estimator
no. error energy error energy

1 0.0206 0.0204

2 0.5384 0.5228

3 0.0035 0.0031

4 0.0148 0.0151

5 0.2295 0.2201

6 0.1003 0.0972

7 0.0202 0.0205

8 0.2908 0.2774

9 1.1933 1.1538

10 0.0024 0.0014

11 0.0058 0.0079

12 1.4112 1.3619

13 2.1468 2.0758

14 0.0280 0.0265

15 0.0104 0.0111

16 0.0440 0.0407

17 0.4370 0.4088

18 0.0138 0.0140

19 0.0412 0.0389

20 0.7661 0.7444

an isolated case but was typical of the many trial runs
of the simulation.

4.4. Non-linear system, linear measurement, and
uniform disturbances

We wish to study the following non-linear system
with a linear measurement equation:

xk+1 =0:01x3k + wk; (80)

zk = 1:0xk + vk : (81)

The disturbances wk and vk have uniformly shaped
membership functions such that aw(k)= −2:0; bw(k)
= 2:0; av(k)= − 0:5, and bv(k)= 0:5 for all k.

Fig. 6. Linear system, non-linear measurement, and uniform dis-
turbances: (a) 9rst run results, (b) 20 run Monte Carlo analysis
(“STD” is standard deviation).

In this study we performed 20 Monte Carlo runs of
the above system where a single run consisted of 100
discrete time iterations with measurement updates per-
formed every 10 iterations. Fig. 7(a) shows the results
for run number 1 of 20 runs for both the fuzzy estima-
tor and the Kalman 9lter. Fig. 7(b) shows the 20 run
Monte Carlo statistics for both 9lters. From the results
shown in Fig. 7 it is di4cult to determine which 9lter
performed best. In fact, the Monte Carlo results show
such a small di#erence that the plots are practically
on top of each other. However, Table 3 below shows
the energy in the error signal (computed as 12e

Te) for
the 20 Monte Carlo runs (boxed numbers in the table
are used to indicate cases where the fuzzy estimator
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Table 2
Energy in error – linear system, non-linear measurements, and
uniform disturbances

Run Extended Kalman 9lter Fuzzy estimator
no. error energy error energy

1 9.9088 0.9492

2 8.6008 3.2983

3 5.0778 0.7673

4 13.893 1.0984

5 2.0858 0.0001

6 0.6675 0.8350

7 0.3584 1.3149

8 0.0114 4.7174

9 0.1984 0.3036

10 7.0437 0.7604

11 10.549 0.3871

12 2.0992 0.6510

13 8.0853 4.2605

14 14.511 2.8257

15 2.6094 6.5030

16 7.6547 1.7186

17 6.3317 0.5599

18 10.412 4.3276

19 5.8117 0.2005

20 3.9570 0.0394

outperforms the extended Kalman 9lter). Notice that
the fuzzy estimator outperforms the Kalman 9lter 16
out of 20 runs. Again this performance is not an iso-
lated case but was typical of the many trial runs of the
simulation.

4.5. Non-linear system, non-linear measurement,
and uniform disturbances

We wish to study the following non-linear system
with a non-linear measurement equation:

xk+1 =0:01x3k + wk; (82)

zk =1:0x3k + vk : (83)

Fig. 7. Non-linear system, linear measurement, and uniform dis-
turbances: (a) 9rst run results, (b) 20 run Monte Carlo analysis
(“STD” is standard deviation).

The disturbances wk and vk have uniformly shaped
membership functions such that aw(k) = −2:0; bw(k)
= 2:0; av(k)= − 0:5, and bv(k)= 0:5 for all k.
In this study we performed 20 Monte Carlo runs of

the above system where a single run consisted of 100
discrete time iterations with measurement updates per-
formed every 10 iterations. Fig. 8(a) shows the results
for run number 1 of 20 runs for both the fuzzy esti-
mator and the Kalman 9lter. Fig. 8(b) shows the 20
run Monte Carlo statistics for both 9lters. From the re-
sults shown in Fig. 8 it is di4cult to determine which
9lter performed the best. In fact, the Monte Carlo re-
sults show such a small di#erence that the plots are
practically on top of each other. However, Table 4
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Table 3
Energy in error – non-linear system, linear measurements,
and uniform disturbances (“0:8398e−3” represents the number
0:8398× 10−3)

Run Extended Kalman 9lter Fuzzy estimator
no. error energy error energy

1 0:8398e−3 0.8375e-3

2 0.0098 0.0096

3 0:1869e−3 0.1743e-3

4 0:1955e−3 0.1578e-3

5 0:2385e−4 0:8722e−4
6 0.0089 0.0088

7 0.0085 0.0080

8 0.0146 0.0148

9 0.0044 0.0042

10 0.0203 0.0197

11 0.0057 0.0052

12 0:1605e−4 0.0120e-4

13 0.0015 0.0019

14 0.0067 0.0065

15 0:3056e−3 0.2923e-3

16 0.0030 0.0029

17 0.0018 0.0016

18 0.0024 0.0027

19 0.0018 0.0014

20 0.0052 0.0051

below shows the energy in the error signal (computed
as 1

2e
Te) for the 20 Monte Carlo runs (boxed num-

bers in the table are used to indicate cases where the
fuzzy estimator outperforms the extended Kalman 9l-
ter). Notice that the fuzzy estimator outperforms the
Kalman 9lter 18 out of 20 runs. Again this perfor-
mance is not an isolated case but was typical of the
many trial runs of the simulation.

5. Rocket launch estimation problem

In previous sections we investigate systems where
the propagated membership function maintained a

Fig. 8. Non-linear system, non-linear measurement, and uniform
disturbances: (a) 9rst run results, (b) 20 run Monte Carlo analysis
(“STD” is standard deviation).

similar shape as the initial membership function for
all time. In such cases it is necessary to only keep
track of a 9nite number of parameters that charac-
terize the membership function. In this section we
investigate a rocket launch estimation problem where
the membership function cannot be characterized by a
few parameters because the shape can change signi9-
cantly over time. Here, it is necessary to discretize the
universe of discourse so that we keep track of a 9nite
number of discrete points of the membership function
rather than a continuum of points that completely
characterizes the membership function.
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Table 4
Energy in error – non-linear system, non-linear measurements,
and uniform disturbances (“0:1572e−3” represents the number
0:1572× 10−3)

Run Extended Kalman 9lter Fuzzy estimator
no. error energy error energy

1 0.0013 0.0005

2 0:1572e−3 0.0565e-3

3 0.0219 0.0184

4 0.0223 0.0182

5 0.0237 0.0217

6 0:4345e−3 0.0998e-3

7 0:1471e−4 0:8272e−4
8 0.0059 0.0052

9 0.0027 0.0021

10 0.0099 0.0083

11 0.0052 0.0031

12 0.0018 0.0008

13 0.0021 0.0017

14 0.0054 0.0050

15 0.0022 0.0013

16 0.0012 0.0020

17 0.0058 0.0016

18 0.0028 0.0007

19 0.0116 0.0064

20 0.0050 0.0033

5.1. The fuzzy estimator with discrete universes of
discourse: implementation code

Since it may not be clear to the reader how one
might implement the fuzzy estimator using discrete
universes of discourse, we provide pseudo-code for a
second-order stochastic process. Using the code pre-
sented here it is easy to generalize these results to
higher-order systems.
Consider the following second-order stochastic

process:

x1(k + 1)=f1(x1(k); x2(k); w(k)); (84)

x2(k + 1)=f2(x1(k); x2(k)); (85)

where x1(k) and x2(k) are the system states at time
kT and w(k) is a white noise input disturbance. Also,
assume that measurements are given by the following
equation:

z(k)= g(x1(k); x2(k); v(k)); (86)

where v(k) is a white noise output disturbance.
Fig. 9 shows the main variables that need to be de-

9ned for this problem. For example, the 9rst line de-
9nes a real array XRELC for the current fuzzy relation
state with indices for state x1 ranging from −NX 1 to
NX 1 and indices for x2 ranging from −NX 2 to NX 2.
When indexing the membership functions de9ned in
Fig. 9, we will use the integer M to index state x1; N
to index state x2; O to index the input noise w; P to
index the output noise v, and Q to index the mea-
surement z. Also, it is important to note that the in-
dex corresponds to a speci9c value on the appropri-
ate universe of discourse. For example, assume that
x1 is de9ned on the interval [−10; 10]. To convert
from the index M to a speci9c value of x1 we must
perform the following multiplication x1 =M ·M2X 1
where M2X 1=10=NX 1. Likewise, similar conver-
sions are made for x2 with N2X 2; w withO2W; v with
P2V , and z with Q2Z .
Propagation of the fuzzy relation is summarized in

the pseudo-code in Fig. 10. This pseudo-code imple-
ments the fuzzy dynamic system model of the fuzzy
estimator. First we 9nd the membership function for
X ×W using the multiply operation for the triangular
norm. Then we 9nd the maximum of this membership
function subject to the constraints of Eqs. (84) and
(85) to determine the next fuzzy state (i.e. we are im-
plementing the fuzzy extension principle). The code
in Fig. 10 is repeated for each iteration until a mea-
surement is available to be processed.
Measurement updates of the fuzzy relation for the

state in the fuzzy estimator are summarized in the
pseudo-code in Fig. 11. This code implements the
measurement update equation. First we 9nd the mem-
bership function for X×V using the multiply operation
for the triangular norm. Then we 9nd the maximum
of this membership function subject to the constraint
of Eq. (86) to determine the membership function for
X ×Z . Next, we use the fuzzy Bayes rule to determine
next fuzzy state after measurement update using the
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Fig. 9. Variables that need to be de9ned to implement the fuzzy estimator (“REAL” indicates that the variable is a real number).

Fig. 10. Pseudo-code for propagation of the fuzzy relation state in the fuzzy estimator.

current measurement. Then we normalize the result so
that its maximum value occurs at one.
To use the fuzzy estimator’s result (i.e. XRELN) in

applications it is sometimes necessary to defuzzify the
fuzzy relation to some crisp value. For the results pre-
sented in this dissertation we used the center of gravity
defuzzi9cation technique summarized in pseudo-code
in Fig. 12.

5.2. Computational complexity

Notice that for the fuzzy relation propagation, the
measurement update equations, and the center of grav-
ity defuzzi9cation routines we must completely loop
through the fuzzy relation array for the state one or
more times. This leads to signi9cant computational
complexity. It is easy to see that the fuzzy relation
propagation for the fuzzy state requires 16 ∗ NX 1 ∗
NX 2 ∗ NW iterations. Likewise, the number of iter-
ations for measurement updates is 8 ∗ NX 1 ∗ NX 2 ∗
(2 ∗ NV + 1) and the number of iterations for a cen-
ter of gravity defuzzi9cation is 4 ∗ NX 1 ∗ NX 2. No-
tice that propagation and measurement update require

on the order of 16 ∗ NX 1 ∗ NX 2 ∗ NW computations
while defuzzi9cation is a relatively small number by
comparison.
Assume NX 1=NX 2=NW =NV =1000 then

both propagation and measurement update require
approximate 16(1000)3 = 1:6× 1010 iterations which
is quite large. If we increase to third order system
this becomes 16(1000)4 = 1:6× 1013. Notice that it
quickly becomes too large to solve reasonably even on
a modern digital computer. Clearly, the computational
complexity is a serious limitation when implementing
the fuzzy estimator. However, it may be possible to
combine several operations to optimize the code. Fur-
thermore, the computational complexity may become
less of a constraint as computers are quickly evolving
to higher speeds and larger memories.
Next we develop a fuzzy estimator for a rocket

launch problem.

5.3. Rocket model

A mathematical model for a single stage rocket is
presented by BarrVere et al. [23] and Mandell et al.
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Fig. 11. Pseudo-code for measurement updates of the fuzzy relation state in the fuzzy estimator.

[24] and is expressed by the following di#erential
equation:

Wh(t) = c(t)
(

m
M − mt

)
− go

(
R

R+ h(t)

)

−0:5 ḣ2(t)
(
/aACd
M − mt

)
+ w(t); (87)

where h(t) is the altitude of the rocket (above sea
level) at time t, w(t) is a disturbance resulting from,
for example, gravitational anomalies, and for our sim-
ulations the rocket parameters are:
1. M =20100:00 kg — initial mass of the rocket and
fuel,

2. m=100:0 kg=s — exhaust gases mass Now rate
(approximately constant for some solid propellant
rockets),

3. A=1:0 m2 — maximum cross sectional area of the
rocket,

4. go=9:8 m=s2 — the acceleration due to gravity at
sea level,

5. R=6:37× 106 m — radius of the earth,

Fig. 12. Pseudo-code for the center of gravity defuzzi9cation.

6. /a = 1:21 kg=m3 — density of air,
7. Cd = 0:3 — drag coe4cient for the rocket,
8. c(t)= 4000:0 m=s — the velocity of the exhaust
gases.
The rocket is assumed to have an altimeter which

provides measurements of the rocket altitude (e.g. a
baro altimeter). Here, we model the altitude measure-
ment, denoted z(t), as the sum of the true altitude, h(t),
and a measurement disturbance, denoted v(t), i.e.

z(t)= h(t) + v(t): (88)
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For our simulation measurements are assumed to be
taken every 20 s.
The mathematical model in Eq. (87) was developed

based on the simple dynamics of a point mass. How-
ever, in general, rockets dynamics are studied in the
realm of exterior ballistics. This type of analysis often
tends to be very complex and falls outside the scope
of this article. However, even in this restricted context
the modeled dynamics provide a complex example for
state estimation.
For example, due to the loss of fuel resulting from

the combustion and exhaust the rocket has a time-
varying mass. Furthermore, it can be determined by
inspection of Eq. (87) that the system is a non-linear
process. The primary purpose for considering this ap-
plication is to investigate the capability of the fuzzy
dynamic estimator for estimating states of highly non-
linear, time-varying systems. Furthermore, we will
compare these results to that of the extended Kalman
9lter.

5.4. Discretization of the Rocket Model

Our analysis in this article has been constrained to
discrete-time systems. Therefore, the model presented
in the previous subsection must be discretized so that
the fuzzy dynamic model based estimator can be im-
plemented. Here, we use a simple Euler integration
technique to discretize the system. Hence, the dis-
cretized system dynamics are given by

x1(k + 1)= x1(k) + Tx2(k); (89)

x2(k + 1)

= x2(k)+T
[(

c(k)m
M − mTk

)
−
(

goR
R+ x1(k)

)

−
(
0:5x22(k)/aACd
M − mTk

)]
+ wd(k); (90)

where T is the sample period, x1(k) is the rocket al-
titude at time kT , x2(k) is the rocket velocity at time
kT , and wd(k) is the discretized noise at time kT . We
found that a sample period of T =2 s produced ac-
curate results. The discretized measurement equation

does not change. Measurements are given by

z(k)= x1(k) + v(k): (91)

For the simulation, we assume that wd(t) and v(t)
are white noise disturbances with Cauchy probability
density functions; hence we choose the membership
functions that characterize these as

�W (wd)=
1

1 + (wd=15)2
; (92)

�V (v)=
1

1 + (wd=1000)2
: (93)

5.5. Extended Kalman >lter design

In designing the extended Kalman 9lter, Eqs. (89)–
(91) must be linearized to obtain

F(x̃k ; k) =
@f (xk ; k)
@xk

∣∣∣∣
xk=x̃k

=


 1 T

TgoR
〈R+ x̃1(k))2

1− T x̃2(k)/aACd
M − mkT


 ;
(94)

G(x̃k ; k)=
@g(xk ; k)
@xk

∣∣∣∣
xk=x̃k

= [1 0]: (95)

Also, we need to de9ne the covariance matrices Q
and R. This choice was di4cult since the covariance
of a Cauchy distribution is unde9ned. We tried various
choices for the variance. The following choice for the
Q and R matrices produced good results:

Q=
[
0 0
0 152

]
; (96)

R=10002: (97)

5.6. Fuzzy estimator design

In designing the fuzzy estimator, we discretized the
universes of discourse so that each state’s member-
ship function is represented by 1000 discrete points.
Since there are two states in this problem, this means
that the fuzzy relation characterizing these states are
represented by a 1000× 1000 array. The 1000 points
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Fig. 13. Rocket altitude estimates with Cauchy disturbances:
(a) 9rst run results, (b) 15 run Monte Carlo analysis (“STD” is
standard deviation).

for the rocket altitude discretizes altitudes on the in-
terval [0; 200 000]. Likewise, the 1000 points for al-
titude velocity discretizes the set of velocities on the
interval [0; 2000].
The membership functions for the noise process

noise, wd(t), is discretized by 120 points which repre-
sent noises values on the interval [−15; 15]. Likewise,
the membership function for the measurement noise,
v(t), is discretized by 120 points which represent val-
ues on the interval [−1000; 1000].
The center of gravity defuzzi9cation technique was

used to convert the fuzzy relation state to a “crisp”
state estimate.

Fig. 14. Rocket velocity estimates with Cauchy disturbances:
(a) 9rst run results, (b) 15 run Monte Carlo analysis (“STD” is
standard deviation).

5.7. Simulation results

We simulated the rocket for 200 s. Measurements
were provided to the Kalman 9lter and the fuzzy es-
timator every 20 s. Hence, we had 10 measurements
for every run. We simulated 15 such launches of the
rocket.
The initial conditions for the extended Kalman 9lter

for each run were zero for both the altitude and the
velocity. Since we know that the rocket is launched
from a stationary position at ground level, the extended
Kalman 9lter’s covariance matrix was set to zero. The
fuzzy estimator’s state was set to a fuzzy singleton at
zero altitude and zero velocity.
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Table 5
Energy in altitude error – rocket launch with Cauchy disturbances
(“1:1069e9” represents the number 1:1069× 109)

Run Kalman 9lter Fuzzy estimator
no. error energy error energy

1 1:1069e9 0.2710e9

2 3:2948e9 0.5430e9

3 0:7444e9 0:7550e9

4 0:8057e9 0.3737e9

5 0:6832e9 0.2153e9

6 0:9067e9 0.2388e9

7 1:0646e9 0.2078e9

8 2:5950e9 1.4402e9

9 3:5383e9 1.0915e9

10 4:8707e9 0.4013e9

11 0:6368e9 0.1299e9

12 1:9402e9 0.4322e9

13 0:1577e9 0.0267e9

14 0:8353e9 0.2032e9

15 4:1994e9 0.7887e9

Figs. 13(a) and 14(a) show the altitude and velocity
results, respectively, for run number 1 of 15 runs for
both the fuzzy estimator and the extended Kalman
9lter. Figs. 13(b) and 14(b) show the 15 run Monte
Carlo statistics for both 9lters. From the Monte Carlo
results for altitude error it is clear that the fuzzy 9lter
outperformed the extended Kalman 9lter. The Monte
Carlo result for the velocity error is not as conclusive.
Tables 5 and 6 show the energy in the altitude and

velocity error, respectively, (computed as 1
2e
Te) for

the 15 Monte Carlo runs (boxed numbers are used in
the tables to indicate cases where the fuzzy estimator
outperforms the Kalman 9lter). Notice that the fuzzy
estimator outperforms the Kalman 9lter 14 out of 15
runs for the altitude and 10 out of 15 runs for the
velocity. These results show that the fuzzy estimator
is outperforming the Kalman 9lter in both the altitude
and velocity estimates.

Table 6
Energy in velocity error – rocket launch with Cauchy disturbances
(“1:1069e9” represents the number 1:1069× 109)

Run Kalman 9lter Fuzzy estimator
no. error energy error energy

1 0:3771e7 0.3622e7

2 0:4791e7 0.4683e7

3 0:5573e7 0:6107e7

4 0:4758e7 0.4737e7

5 0:1169e7 0.1167e7

6 0:1536e7 0:1698e7

7 0:1538e7 0.1526e7

8 3:3999e7 3.4159

9 0:1945e7 0.1416e7

10 0:4445e7 0.4262e7

11 0:1680e7 0:1815e7

12 0:2024e7 0.1959e7

13 0:0514e7 0:0542e7

14 0:1828e7 0.1815e7

15 0:4466e7 0.4410e7

6. Concluding remarks

In this article we have presented a state estima-
tor that was developed using fuzzy dynamic system
models. We have shown that for linear systems and
Gaussian-shaped membership functions the fuzzy
state estimator produces the exact same result as the
Kalman 9lter. Consequently, we believe it is possible
to 9nd other classes of systems whose solution is
di4cult to obtain with probabilistic methods but eas-
ily obtained using the fuzzy estimator approach. For
example, we investigated and compared simulation
results for several 9rst order stochastic systems driven
by uniform distributed white noise. These results in-
cluded a combination of both linear and non-linear
propagation and measurement equations. For each
system studied we found that the fuzzy estimator
outperformed the extended Kalman 9lter. Finally, we
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showed that the fuzzy estimator outperformed the
extended Kalman 9lter for a rocket launch system
driven by white Cauchy distributed noise.
In [15] it is shown that convergence of the Kalman

9lter’s estimate to the true value is guaranteed only
when the system is stochastically controllable and ob-
servable. Therefore, one future research direction is
to de9ne and characterize these concept for fuzzy dy-
namic system models. Clearly another area for future
study is the development of e4cient computational
strategies for the fuzzy estimator.
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Appendix A . Proofs of theorems

A.1. Proof of state propagation equation,
Theorem 3.1

The problem of 9nding the state propagation
equation is to solve the following optimization prob-
lem obtained by application of the fuzzy extension
principle.

Maximize

� QX (k)×W (k)(xk ; wk)

= exp{− 1
2 [(xk − x̃k)TP−1

k (xk − x̃k)]

− 1
2 (wk)

TQ−1(wk)]} (A.1)

subject to

xk+1 =Axk + wk: (A.2)

We will let Pk and Q be positive de9nite symmetric
matrices. Hence, we have the following relationships

Pk =PTk ; (A.3)

P−T
k =P−1

k ; (A.4)

Q=QT; (A.5)

Q−T =Q−1: (A.6)

Begin by forming the Lagrangian

L= exp{− 1
2 [(xk − x̃k)TP−1

k (xk − x̃k)]

− 1
2 [(wk)

TQ−1(wk)]} − 1T[Axk + wk − xk+1]:

(A.7)

Recall the following:

@( xTAx)
@x

=2Ax ; (A.8)

@( xTAy)

@x
=Ay ; (A.9)

@( xTAy)

@y
=ATx: (A.10)

Take the partial derivatives of the Lagrangian in
Eq. (A.7)

@L
@xk

=−P−1
k (xk − x̃k)�X (k)×W (k)(xk ; wk)− AT1=0;

(A.11)

@L
@wk

=− Q−1wk�X (k)×W (k)(xk ; wk)− 1=0; (A.12)

@L
@1
=− [Axk + wk − xk+1]= 0: (A.13)

From Eqs. (A.11) and (A.12) we obtain

1=−A−TP−1
k (xk − x̃k)�X (k)×W (k)(xk ; wk) (A.14)

=−Q−1wk�X (k)×W (k)(xk ; wk): (A.15)

Notice that this equation requires that AT be invertible.
Rearranging this equation yields

(xk − x̃k)=PkATQ−1wk: (A.16)

From Eqs. (A.13) and (A.16) we get

(xk − x̃k)=PkATQ−1[xk+1 − Axk ]: (A.17)

Rearranging this equation yields

xk = [I + PkATQ−1A]−1[PkATQ−1xk+1 + x̃k ]:

(A.18)

If Q−1 is positive de9nite (which we assume) and A is
non-singular (which we assume), the matrix ATQ−1A



68 J.R. Layne, K.M. Passino / Fuzzy Sets and Systems 122 (2001) 45–72

is symmetric positive de9nite [8]. Further, since prod-
uct of two symmetric matrices is symmetric, then
PkATQ−1A is symmetric and due to [8] also posi-
tive de9nite. Hence, the inverse [I +PkATQ−1A]−1 in
Eq. (A.18) exists. Notice that

xk − x̃k = [I + PkATQ−1A]−1

× [PkATQ−1xk+1 + x̃k ]− x̃k ; (A.19)

= [I + PkATQ−1A]−1[PkATQ−1xk+1 + x̃k

− [I + PkATQ−1A]x̃k ]; (A.20)

= [I + PkATQ−1A]−1(PkATQ−1)

× [xk+1 − Ax̃k ]: (A.21)

From Eqs. (A.13) and (A.18) we get

wk = xk+1 − Axk ; (A.22)

= xk+1 − A[I + PkATQ−1A]−1

× [PkATQ−1xk+1 + x̃k ] (A.23)

= A[I + PkATQ−1A]−1{[I + PkATQ−1A]

×A−1xk+1 − PkATQ−1xk+1 − x̃k} (A.24)

= A[I + PkATQ−1A]−1A−1

× [xk+1 − Ax̃k ]: (A.25)

Again notice that we need A−1 to exist. Substi-
tute Eqs. (A.21) and (A.25) into Eq. (A.1) to get
�X̃ (k+1)(xk+1) from the fuzzy extension principle

�X̃ (k+1)(xk+1) = exp{− 1
2 (xk+1 − Ax̃k)T

×P−1
k+1(xk+1 − Ax̃k)}; (A.26)

where

P−1
k+1 = {[I + PkATQ−1A]−1[PkATQ−1]}T

×P−1
k {[I + PkATQ−1A]−1[PkATQ−1]}

+ {A[I + PkATQ−1A]−1A−1}T

×Q−1{A[I + PkATQ−1A]−1A−1}: (A.27)

The remaining portion of this proof focuses on sim-
plifying this equation.
Recall the matrix inversion lemma (MIL), where if

all the indicated inverses exist,

[ QA+ QB QD QC]−1

= QA−1 − QA−1 QB[ QD−1 + QC QA−1 QB]−1 QC QA−1: (A.28)

Using the matrix inversion lemma with QA= I; QB=
ATQ−1A; QC =Pk , and QD= I we get

[I + PkATQ−1A]−T

= [I + ATQ−1APk ]−1 (A.29)

= I − ATQ−1A(I + PkATQ−1A)−1Pk: (A.30)

Substitute Eq. (A.30) into Eq. (A.27) to obtain

P−1
k+1 = [Q

−1APk ][I − ATQ−1A(I + PkATQ−1A)−1Pk ]

×P−1
k [I + PkATQ−1A]−1[PkATQ−1]

+A−T[I − ATQ−1A(I + PkATQ−1A)−1Pk ]

×ATQ−1A[I + PkATQ−1A]−1A−1: (A.31)

Rearranging the above equation yields

P−1
k+1 = [Q

−1A][I − PkATQ−1A(I + PkATQ−1A)−1]

× [I + PkATQ−1A]−1[Pk ][ATQ−1]

+A−T[I − AQ−1A(I + PkATQ−1A)−1Pk ]

× [ATQ−1A][I + PkATQ−1A]−1A−1: (A.32)

P−1
k+1 = [Q

−1A][I − PkATQ−1A(I + PkATQ−1A)−1]

× [I + PkATQ−1A]−1[Pk ][ATQ−1]

+ [Q−1A][I − (I + PkATQ−1A)−1PkATQ−1A]

× [I + PkATQ−1A]−1A−1: (A.33)

From applying the matrix inversion lemma in
Eq. (A.28) we 9nd

[I + PkATQ−1A]−1

= [I − PkATQ−1A(I + PkATQ−1A)−1] (A.34)

= [I − (I + PkATQ−1A)−1PkATQ−1A]; (A.35)
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where QA= I; QB=PkATQ−1A; QC = I , and QD= I in
Eq. (A.34) and QA= I; QB= I; QC =PkATQ−1A, and
QD= I in Eq. (A.35). Substituting Eqs. (A.34) and
(A.35) into Eq. (A.33) yields

P−1
k+1 = [Q

−1A][I + PkATQ−1A]−2[PkATQ−1]

+ [Q−1A][I + PkATQ−1A]−2A−1 (A.36)

= [Q−1A][I + PkATQ−1A]−2

× [PkATQ−1 + A−1] (A.37)

= [Q−1A][I + PkATQ−1A]−2

× [I + PkATQ−1A]A−1 (A.38)

= [Q−1A][I + PkATQ−1A]−1A−1 (A.39)

= [Q−1A][I + PkATQ−1A]−1[(I + PkATQ−1A)

−PkATQ−1A]A−1 (A.40)

= [Q−1A][I − [I + PkATQ−1A]−1

×PkATQ−1A]A−1 (A.41)

=Q−1 − Q−1A[I + PkATQ−1A]−1PkATQ−1

(A.42)

= [Q + APkAT]−1; (A.43)

where the last step was obtained via the matrix in-
version lemma (with QA=Q; QB=A; QC =PkAT, and
QD= I). Substituting Eq. (A.43) into Eq. (A.26) yields

�X̃ (k+1)(xk+1) = exp{− 1
2 (xk+1 − x̃k+1)T

×P−1
k+1(xk+1 − x̃k+1)}; (A.44)

where

x̃k+1 =Ax̃k ; (A.45)

Pk+1 =APkAT + Q: (A.46)

Eqs. (A.45) and (A.46) are recognized as the Kalman
9lter propagation equations [15].

A.2. Proof of measurement update equation,
Theorem 3.2

Since fuzzy composition requires employing a max
operation, the problem of 9nding the state propaga-
tion equation is to solve the following optimization
problem:

Maximize

� QX (k)×V (k)(xk ; vk) = exp{− 1
2 [(xk − x̃k)TP−1

k (xk − x̃k)]

− 1
2 [(vk)

TR−1(vk)]} (A.47)

subject to

zk =Hxk + vk : (A.48)

Notice that if we are given a speci9c zk and xk then
vk is uniquely speci9ed by

vk = zk − Hxk : (A.49)

At 9rst glance this problem appears similar to the one
obtained for the propagation equations. However, in
this problem we are maximizing Eq. (A.47) with re-
spect to vk only and not both zk and vk . This is done
simply by substituting Eq. (A.49) into Eq. (A.47) to
obtain

�X̃ (k)×Z(k)(xk ; zk)

= exp{− 1
2 [(xk − x̃k)TP−1

k (xk − x̃k)]}

× exp{− 1
2 [(zk − Hxk)TR−1(zk − Hxk)]}

=exp{− 1
2 [x

T
k P

−1
k xk − xTk P

−1
k x̃k

− x̃Tk P
−1
k xk + x̃Tk P

−1
k x̃k ]}

× exp{− 1
2 [(z

T
k R

−1zk − zTk R
−1Hxk

− xTk H
TR−1zk − xTk H

TR−1Hxk)]}

=exp{− 1
2 [x

T
k (P

−1
k + HTR−1H)xk

− xTk (P
−1
k x̃k + HTR−1zk)]}

× exp{− 1
2 [− (x̃Tk P−1

k + zTk R
−1H)xk

+ x̃Tk P
−1
k x̃k + zTk R

−1zk ]}: (A.50)
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De9ne

4= xTk (P
−1
k + HTR−1H)xk − xTk (P

−1
k x̃k + HTR−1zk)

− (x̃Tk P−1
k + zTk R

−1H)xk ; (A.51)

and substitute into Eq. (A.50) to obtain

� X̃ (k)×Z(k)(xk ; zk)

= exp{− 1
2 [4 + x̃Tk P

−1
k x̃k + zTk R

−1zk ]}
=exp{− 1

2 [4 + x̃Tk P
−1
k x̃k + zTk R

−1zk ]}
× exp{− 1

2 [− (zk − Hx̃k)T(R+ HPkHT)−1

× (zk − Hx̃k)]}
× exp{− 1

2 [(zk − Hx̃k)T(R+ HPkHT)−1

×(zk − Hx̃k)]}: (A.52)

The matrix [R+HPkHT] is invertible because R and
Pk are positive-de9nite matrices. De9ne the following:

5= x̃Tk P
−1
k x̃k + zTk R

−1zk − (zk − Hx̃k)T

×(R+ HPkHT)−1(zk − Hx̃k) (A.53)

= x̃Tx [P
−1
k − HT(R+ HPkHT)−1H ]x̃k

+ zTk [R
−1 − (R+ HPkHT)−1]zk

+ zTk (R+ HPkHT)−1Hx̃k

+ x̃Tk H
T(R+ HPkHT)−1zk : (A.54)

Then Eq. (A.52) becomes

� QX (k)×Z(k)(xk ; zk)

= exp{− 1
2 [4 + 5]}

× exp{− 1
2 [(zk − Hx̃k)T(R+ HPkHT)−1

×(zk − Hx̃k)]}: (A.55)

From the matrix inversion lemma in Eq. (A.28)
(with QA = R, QB = H , QC = HT, and QD = Pk)

(R+ HPkHT)−1

=R−1 − R−1H (P−1
k + HTR−1H)−1HTR−1:

(A.56)

Substitute the above into Eq. (A.54),

5= x̃Tk [P
−1
k − HTR−1H + HTR−1H

× (P−1
k + HTR−1H)−1HTR−1H ]x̃k

+ zTk [R
−1H (P−1

k + HTR−1H)−1HTR−1]zk

+ zTk R
−1Hx̃k − zTk R

−1H (P−1
k + HTR−1H)−1

×HTR−1Hx̃k x̃Tk H
TR−1zk − x̃Tk

×HTR−1H (P−1
k + HTR−1H)−1HTR−1zk

(A.57)

= x̃Tk [P
−1
k − HTR−1H [I − (P−1

k + HTR−1H)−1

×HTR−1H ]]x̃k + zTk [R
−1H (P−1

k + HTR−1H)−1

×HTR−1]zk + zTk R
−1H [Pk − PkP−1

k (P−1
k

+HTR−1H)−1HTR−1HPk ]P−1
k x̃k + x̃Tk P

−1
k

× [Pk − PkHTR−1H (P−1
k + HTR−1H)−1]

×HTR−1zk : (A.58)

Note that by matrix inversion lemma, Eq. (A.28)

I − (P−1
k + HTR−1H)−1HTR−1H

= [I + PkHTR−1H ]−1; (A.59)

Pk − PkP−1
k (P−1

k + HTR−1H)−1HTR−1HPk

= [P−1
k + P−1

k PkHTR−1H ]; (A.60)

Pk − PkHTR−1H (P−1
k + HTR−1H)−1

= [P−1
k + HTR−1HPkP−1

k ]; (A.61)

where QA = I , QB = I , QC = HTR−1H , and QD = Pk in
Eq. (A.59), QA = P−1

k , QB = P−1
k , QC = HTR− 1H , and

QD = Pk in Eq. (A.60), and QA = P−1
k , QB = HTR−1H ,

QC = P−1
k , and QD = Pk in Eq. (A.61). Substituting

Eqs. (A.59) and (A.60) into Eq. (A.58) yields

5= x̃Tk [P
−1
k − HTR−1H [I + PkHTR−1H ]−1]x̃k
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+ zTk [R
−1H (P−1

k + HTR−1H)−1HTR−1]zk

+ zTk R
−1H [P−1

k + P−1
k PkHTR−1H ]−1P−1

k x̃k

+ x̃Tk P
−1
k [P−1

k + HTR−1HPkP−1
k ]−1HTR−1zk

(A.62)

= x̃Tk P
−1
k [Pk − PkHTR−1H [I + PkHTR−1H ]−1Pk ]

×P−1
k x̃k + zTk [R

−1H (P−1
k + HTR−1H)−1

×HTR−1]zk + zTk R
−1H [P−1

k + HTR−1H ]−1

×P−1
k x̃k + x̃Tk P

−1
k [P−1

k + HTR−1H ]−1HTR−1zk :

(A.63)

From matrix inversion lemma (with QA = P−1
k , QB =

HTR−1H , QC = I , and QD = I)

[Pk − PkHTR−1H [I + PkHTR−1H ]−1Pk ]

= [P−1
k + HTR−1H ]−1: (A.64)

Substitute this into Eq. (A.63) to obtain

5= x̃Tk P
−1
k [P−1

k + HTR−1H ]−1P−1
k x̃k

× zTk [R
−1H (P−1

k + HTR−1H)−1]HTR−1zk

+ zTk R
−1H [P−1

k + HTR−1H ]−1P−1
k x̃k

+ x̃Tk P
−1
k [P−1

k + HTR−1H ]−1HTR−1zk (A.65)

= {x̃Tk P−1
k [P−1

k + HTR−1H ]−1

+ zTk R
−1H [P−1

k + HTR−1H ]−1}

×{P−1
k x̃k + HTR−1zk}

= [x̃Tk P
−1
k + zTk R

−1H ][P−1
k + HTR−1H ]−1

× [P−1
k x̃k + HTR−1zk ]: (A.66)

Hence the sum 4 + 5 becomes

4 + 5

= xTk (P
−1
k + HTR−1H)xk − xTk (P

−1
k x̃k

+HTR−1zk)]− (x̃Tk P−1
k + zTk R

−1H)xk

+ [x̃Tk P
−1
k + zTk R

−1H ][P−1
k + HTR−1H ]−1

× [P−1
k x̃k + HTR−1zk ] (A.67)

= {xTk − [x̃Tk P−1
k + zTk R

−1H ]

× [P−1
k + HTR−1H ]−1}{[P−1

k + HTR−1H ]xk

− [P−1
k x̃k + HTR−1zk ]} (A.68)

= {xk − [P−1
k + HTR−1H ]−1

× [P−1
k x̃k + HTR−1zk ]}T[P−1

k + HTR−1H ]

×{xk − [P−1
k + HTR−1H ]−1

× [P−1
k x̃k + HTR−1zk ]}: (A.69)

Substitute Eq. (A.69) into Eq. (A.55) to obtain

�X (k)×Z(k)(xk ; zk)

= exp{− 1
2 [(xk − x̃+k )

T(P+k )
−1(xk − x̃+k )

T]}

× exp{− 1
2 [(zk − Hx̃k)T(R+ HPkHT)−1

×(zk − Hx̃k)]}; (A.70)

where

x̃+k = P+k P
−1
k x̃k + P+k H

TR−1zk ; (A.71)

P+k = [P−1
k + HTR−1H ]−1: (A.72)

Recall that the measurement update is performed by
normalizing Eq. (A.70), i.e.

�X+(k)|Z(k)=zk (X
+
k ) =N(�X (k)×Z(k)(xk ; zk)): (A.73)

Since the last term in Eq. (A.70) is a simple constant
for a given zk and x̃k this reduces to

�X+(k)|Z(k)=zm(X
+
k )

= exp{− 1
2 [(xk − x̃+k )

T(P+k )
−1(xk − x̃+k )

T]};
(A.74)

where

x̃+k =P
+
k P

−1
k x̃k + P+k H

TR−1zk ; (A.75)

P+k = [P
−1
k + HTR−1H ]−1: (A.76)
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Notice that Eq. (A.74) is a normalized Gaussian
membership function and Eqs. (A.75) and (A.76) are
easily recognized as being analogous to the familiar
measurement update equations for the Kalman 9lter
[15].
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