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Abstract Foraging theory is typically used to model animal decision making. We
describe an agent such as an autonomous vehicle or software module as a forager
searching for tasks. The prey model is used to predict which types of tasks an
agent should choose to maximize its rate of reward, and the patch model is used
to predict when an agent should leave a patch of tasks and how to choose within-
patch search patterns. We expand and apply these concepts to fit an autonomous
vehicle control problem and to provide insight into how to make high-level control
decisions. We also discuss extensions of the basic models, showing how a risk-
sensitive version can be used to alter policies when time or fuel is limited. Throughout
the applications, we examine ways an agent can estimate environmental parameters
when such parameters are not known.
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1 Introduction

Foraging theory is used in the field of behavioral ecology to model animal decision
making [1–3]. Evolutionary considerations often lead to optimization models of
adaptive behavior, which is behavior shaped by natural selection. A wide range
of characteristics have been considered including factors affecting animal survival,
such as energetic shortfall and predation, and effects of constraints due to animal
physiology and foraging environment. Some models have been tested experimentally
while others have provided general insights and unifying principles. Here, we develop
an analogy where we view an agent such as a vehicle, processor, or software module
as an animal and its domain of operation as a foraging environment. We explain
how to view tasks and objectives of agents as foraging activities and objectives. Then,
using a “biomimicry” philosophy [4], we apply foraging theory to the development of
decision-making strategies for agents. Our primary goal is to illustrate the potential
significance of merging the fields of engineering and behavioral ecology and to
introduce the use of simple, existing models from behavioral ecology for engineering
design. In doing so, we hope to gain better insights into how to design decision-
making strategies that are optimized for a given set of objectives and domain of
operation, and yet have “robustness” properties like those often seen in nature.

1.1 Biomimicry of Foraging

From a biological perspective, the environment is comprised of a forager and prey
or food items. Each forager’s primary “goal” is to obtain energy, and the only way in
which to do so is by attacking and consuming prey. The forager must make decisions
about how to interact with its environment to maximize some correlate of Darwinian
fitness. If there are different types of prey, which types should be attacked? Why
not specialize on particular types to avoid wasting time on substandard prey? On the
other hand, why not generalize and take advantage of all opportunities? How much
time should be spent in a particular patch of prey or nutrients? If the next patch is far
away, should more time be spent in the current patch despite the depletion of rewards
within the patch? These optimal diet problems are studied using the so-called prey
and patch models from foraging theory.

It is easy to view the foraging problem in terms of engineering applications. In
robotics and manufacturing, a robot on a factory floor that must travel to various
locations and perform a series of tasks can be thought of as a forager with the
tasks being thought of as prey [5]. If the robot must handle buffers (queues) with
tasks that arrive at various times, the buffers can be thought of as patches. The
robot must decide how long to process each buffer. In military missions, autonomous
vehicles can be thought of as foragers that must search for and engage targets or
patches of targets [6]. Software agents that are distributed throughout the internet
can be thought of as foragers searching for computers on which to perform different
tasks. Another example is the controller of a distributed dynamical system [7]. The
controller can be viewed as searching for regions of error, which, when engaged,
exhibit characteristics of reward depletion. The theory presented in the rest of the
article is kept general enough so that the relevance to applications such as these is
clear; however, our application of interest is that of autonomous vehicles performing
a search operation.
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1.2 Overview and Relations to Literature

This paper discusses many of the key ideas related to the prey and patch models in
classical foraging theory [1] and their applicability to agent design in engineering.
We also illustrate the value of risk-sensitive versions of the models which incor-
porate environmental stochasticity [8–10]. Our applications of the theory focus on
the problem of autonomous vehicle control. While the autonomous vehicle literature
is vast, and many issues loosely related to our focus are considered, the work most
relevant to the problems addressed here is in [11–13]. These works use a general
framework of stochastic search and focus on establishing metrics for vehicle success;
however, higher level control problems such as target type choice are not addressed.

We are able to make several novel contributions with respect to the problems not
considered in the literature via our foraging-theoretic approach. We first present the
prey model theory and then apply the theory to the autonomous vehicle problem.
Our results illustrate what price to pay for recognition of targets and how to choose
target types to attack. We then present the patch model theory followed by an
application to autonomous vehicle control for a generic search problem of the type
studied in [13]. Unlike in [13], we are able to show how a vehicle can determine
the optimal time to leave a patch of objects given that the vehicle has know-
ledge of its environment. If environmental information is unknown, on-line estima-
tion techniques can be used. Finally, we use risk-sensitive foraging theory to show
how a vehicle should alter its decisions in the face of limited fuel, another problem
not considered in [11–13]. Moreover we provide a novel approach that has not
appeared in the literature to estimating gain functions in an uncertain environment
so that a risk-sensitive version of the patch model may be used in time-limited
situations. In all cases when we apply the theory, we highlight cases where underlying
assumptions are not met and how this affects the prediction accuracy for the models
and the design of decision-making strategies. We emphasize that the high-level
control problems we consider have not been previously studied, and other known
optimization techniques are not applicable. The only connection to the literature lies
in the stochastic search framework we consider in our examples. Because of this it
is difficult to compare with other approaches to the problems we address; however,
we do consider several intuitive, alternative techniques when we test the theory in
simulation, and comparison with these techniques provides insight into the usefulness
of the theory in particular situations.

2 Prey Model: Search or Process?

The prey model describes an agent searching for tasks of different types in a
particular environment. Each task holds a certain point value corresponding to the
increment in the success level of an agent if it successfully processes (i.e., executes)
the task. Processing is the equivalent of a biological forager handling prey. Point
values quantify reward. The job of the agent is to search for tasks, recognize a task
once it is encountered, and then decide whether or not to process the task. Both
recognition and detection depend on sensing capabilities. For autonomous vehicles,
these capabilities are usually defined by the technology of the sensing equipment,
such as infrared, vision, doppler radar, or bistatic radar, and by a sensing footprint
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which is the field of view of the sensing equipment. The prey model, in its original
form, assumes that a task is recognized correctly and that no time is required
for recognition. To summarize, the prey model holds that agents search for tasks,
correctly recognize a task instantaneously upon encounter, and then decide whether
to process the task or to pass over it and continue to search. The derivation of the
basic prey model is given next and directly follows [1].

2.1 Prey Model Theory

Let there be n types of tasks described by: ei, the expected time required to process
a task of type i, vi, the expected number of points obtained from processing a task of
type i, λi, the rate of encounter with tasks of type i (assumed to occur via a Poisson
process), and pi, the probability of processing a task of type i if it is found and
recognized. Probability of processing is the decision of the agent. The net rate of
point gain of the agent is

J =

n∑

i=1
piλivi

1 +
n∑

i=1
piλiei

− s (1)

where s is the point cost of search per unit time. The goal is to find the pi that
maximizes J. It is easy to show that this is either pi = 1 or pi = 0 (the zero-one rule).
In other words, to maximize its rate of point gain, an agent must either process a task
of type i every time it encounters it or never process it at all. The question then is
which tasks the agent should process and which tasks it should ignore.

The optimal policy for an agent is described by the prey model algorithm. First,
define the rate of point gain that results from processing task type i (vi/ei) as the
profitability of the task, and rank the tasks in the environment according to their
profitability such that v1/e1 > v2/e2 > · · · > vn/en. If task type j is included in the
agent’s “task pool,” those task types that the agent will process once encountered,
then all task types with profitabilities greater than that of type j will be included
in the task pool as well. Thus, the prey algorithm states that, after ranking the task
types by profitability, include types in the task pool starting with the most profitable
type until

j∑

i=1
λivi

1 +
j∑

i=1
λiei

>
v j+1

e j+1
.

The highest j that satisfies this equation is the least profitable task type in the task
pool. In other words, if task types in the environment are ranked according to prof-
itability with i = 1 being the most profitable, and if type j + 1 is the most profitable
type such that the agent will benefit more from searching for and processing types
with profitability higher than that of j + 1, then tasks of types 1 through j should be
processed when encountered and all other tasks should not. If the equation does not
hold for any j, then all task types should be processed when encountered.
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The exclusion of type j + 1 does not depend on the rate of encounter with type
j + 1. This exclusion implies that if the expected missed opportunity gains exceed the
immediate gains of processing a particular type, then it does not benefit the agent to
process the type, no matter how often the agent comes across it. Equivalently, if a
type’s rate of encounter exceeds a critical threshold, then less profitable types should
be ignored regardless of how common they are.

2.2 Assumptions

Here, we comment on the practical use of the model and its assumptions. The
model assumes that the agent has complete information, that is, it knows all of
the parameters above. The agent is not omniscient, knowing the outcome of every
situation, but it does know the parameters and rules of the model. Addressing the
reasonableness of this assumption, both the expected processing time ei and the
expected points obtained vi are parameters that are known or can be estimated by
an agent in many engineering applications. On the other hand, knowledge of the
rate of encounter with tasks λi often may not be a realistic assumption. In many
situations, λi can be estimated or calculated. For example, a vehicle with sensor width
W searching systematically for tasks can calculate the average rate of encounter with
tasks as λ = NtWu/A, where Nt is the number of tasks in a domain of area A and
u is the vehicle’s velocity. While this information may not hold for all situations or
environments, the classical prey model makes the assumption that λi is known or can
be calculated.

An additional assumption of the prey model is that the agent has infinite life, for
example, infinite fuel or ammunition for an autonomous vehicle. Also, since the rate
of encounter is constant, an infinite number of tasks are assumed to exist. This idea
might imply the ability of tasks to arrive within the environment, an infinite number
of spatial task arrangements, or an infinite number of ways that the agent can move
through the environment.

2.3 Changed Sensing Constraints

The detection and recognition of tasks is entirely dependent upon the sensing
capabilities of the agent, and the prey model assumes that tasks are immediately
recognized with perfect accuracy. Extensions of the prey model may be used to
address situations where this assumption does not hold. For instance, alterations of
the model that incorporate nonzero recognition time, imperfect resemblance, and
the value of recognition are discussed in [1].

We present an example of these extensions here by examining the value that an
agent might place on the ability to recognize a task immediately upon encounter. For
instance, suppose the n = 2 case is altered so that the agent cannot tell the types apart
unless it pays a recognition cost of rv points and rt seconds. Assume that if rv = rt = 0,
the agent would specialize on type 1 tasks. It is known [1] that the agent is willing to
pay for recognition for the set of (rv, rt) pairs that satisfies

k > αrv + βrt, (2)
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where

k = λ2

λ1 + λ2
[λ1v1e2 − v2(1 + λ1e1)],

α = 1 + λ1e1 + λ2e2, and

β = λ1v1 + λ2v2.

The constant k sets an upper limit on the price the agent is willing to pay for
recognition. Examining k, the agent is not willing to pay as much as v2/e2 approaches
λ1v1/(1 + λ1e1), the expected rate from specialization on type 1s. This result makes
sense because as v2/e2 approaches this rate, the immediate gains resulting from
processing a task of type 2 do not differ as much from the expected missed opportu-
nity gains. This effect causes the agent to be indifferent, in which case recognition is
not useful.

3 Prey Model Application to Autonomous Vehicles

The prey algorithm could be applied to an autonomous mobile robot that moves
about a manufacturing facility and processes spatially distributed tasks. In that
application, a task could be to assemble a part or take some other action on a
product (e.g. drilling, polishing, painting). Here, we consider an autonomous vehicle
in a military application, but with slight modifications it can be thought of as an
underwater or space exploration application. In particular, we envision a scenario
of search similar to one considered in [11, 12] (these works are similar only in the
stochastic nature of search – they do not consider the task-processing decisions
we do here), and we implement the scenario in simulation. A single autonomous
vehicle searches for objects in a domain of operation that is 10 by 10 km. Objects may
be, for example, targets, threats, decoys, etc. The vehicle must perform one or more
of three activities on an encountered object: classify an object once found, attack the
object, and then verify that the attack was successful and the object was destroyed.
A task then is considered to be a specific activity or activities performed on a given
object. In the application that follows, we define the processing of a single task as the
combined activities of classification, attack, and verification of an object. Since the
processing of a task is with respect to a particular object, we describe the vehicle as
searching for objects and deciding whether to engage the object. In a manufacturing
or exploration problem the control difference is how tasks and their processing are
defined.

The objects are considered to be individual items, that is, they have no relation
to each other and the vehicle can only engage one object at a time. The vehicle is a
flying autonomous vehicle with the ability to move on top of objects in the domain.
Searching is implemented in a fixed pattern, where the vehicle begins near the origin
of a two-dimensional coordinate plane, proceeds in the vertical x2 direction, reaches
the edge of the domain (x2 = 10 km), turns around and searches in the −x2 direction
but shifted by 500 m in the x1 direction. We refer to this search path as a “lawnmower
pattern”. Sensing capabilities are defined by a sensing footprint that is a 500 by 500 m
square 800 m in front of the vehicle, within which perfect sensing is assumed. The
vehicle travels at a constant velocity of 120 m/s and has a minimum turning radius of
800 m, a reasonable value for autonomous air vehicles. The controller of the vehicle
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determines the shortest path that completes the required activities once an object
is found.

To illustrate the theoretical prey model concepts, consider the n = 2 case with
an average of 50 type 1 objects and 80 type 2 objects. This information allows us
to calculate the average rates of encounter as λ1 = (50Wu)/|A| = 0.030 objects/s
for type 1 and λ2 = (80Wu)/|A| = 0.048 objects/s for type 2, where |A| = 100002,
W = 500 m, and u = 120 m/s. Object values are chosen as v1 = 40 and v2 = 10, and
engagement times are e1 = e2 = 180 s (180 s is the average time required to perform
the three activities mentioned above and is the same for each object type). These
parameter values cause the vehicle to exclude type 2 objects from its task pool as
shown below.

The vehicle is assumed to have knowledge of λi, ei, and vi a priori. Ranking
the objects according to profitability results in v1/e1 = 40/180 > v2/e2 = 10/180.
According to the algorithm, the decision of whether to engage type 2 objects is
based on the expected rate of point gain that results from alternatively choosing to
search for and engage type 1 objects only. This expected rate is (λ1v1)/(1 + λ1e1) =
0.188 points/s. Therefore, because λ1v1

1+λ1e1
> v2

e2
, the vehicle would benefit more from

continuing on and searching for type 1 objects when a type 2 object is encountered
than it would from engaging the type 2 object.

3.1 Heuristic Implementation of the Prey Model

Now that we have illustrated the potential for implementing the prey model al-
gorithm, our main interest is in studying where the algorithm may fail in real
applications. First, consider the case where five type 1 and 150 type 2 objects exist
in the domain and v1 and v2 are set to 40 and 10, respectively. The prey model
algorithm predicts that type 2 objects should not be engaged when encountered.
(This prediction may initially be counterintuitive due to the large number of type
2 objects; however, the choice of engaging type 1 objects is independent of the rate
of encounter with type 2 objects.)

Simulating the application described above results in an average rate of point
gain of 0.0326 points/s (calculated as the number of points obtained divided by the
time taken to gain them) when using the algorithm’s specialization prediction and
a higher rate of 0.0521 points/s when engaging all types. The prey model algorithm
fails to yield the optimal rate, and this is due to an inaccuracy in the vehicle model.
When the vehicle searches according to the lawnmower pattern, the minimum turn
radius constraint requires the vehicle to swing outside of the domain at the end of
each “search strip” to begin search of the next strip. This extra movement increases
the search time and decreases the overall rate of point gain. In the above case, the
extra search time is enough to degrade the performance of specialization from the
theoretical expected rate of point gain of 0.0779 to 0.0326 points/s. Generalization,
however, only decreases from the theoretical rate of 0.0575 to 0.0521 points/s. The
purpose of this example is to highlight the effect of physical constraints in real
applications that potentially affect the assumptions and predictions of the model.
Of course, in this case, if the extra search time is known a priori, it may be included
in the model either by adjusting the rates of encounter or by including a search cost.

Another problem that arises in real applications is due to the fact that the prey
model theory deals solely with averages. It uses average rates of encounter to predict
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the strategy that maximizes the average rate of point gain. In real applications,
deviation of an encounter rate from the average may result in suboptimal predictions
of the prey model for individual missions. Such a deviation may result from the
finite domain the vehicle is operating in. The model assumes infinite time, implying
an infinite domain of operation which is clearly not realizable. For a given average
encounter rate with a task, a finite domain cuts short the opportunity to achieve the
average. In the cases we consider above, though, we assume an average number of
objects in a finite domain and calculate the average rate of encounter using these
values. Thus, if the number of objects encountered is the actual average, the actual
rate of encounter with objects will be the average rate despite the finite domain.
However, if the realization of the random number of objects is not the average,
the rate of encounter will diverge from the average, potentially affecting the model
predictions.

We have discussed several problems with the application of the prey model to real
situations: lack of knowledge of encounter rates, physical constraints not taken into
account in the model, and potential for poor performance during deviations from the
average. One way to address these concerns is to use heuristic methods that exploit
vehicle memory. For example, consider a vehicle that is able to keep track of the
number of encounters it has had with a particular object type i, and hence has the
ability to update its estimate λ̂i of the rate of encounter for that type. The prey model
algorithm can then be implemented at each time instant using the current estimates
of the rates of encounters to decide whether to engage a particular object type upon
an encounter [1]. Consider, for example, a situation with many low-valued type 2
objects and very few high-valued type 1 objects. In this case, the vehicle initially
will not be aware of the presence of type 1 or type 2 objects and so will engage any
type it encounters. However, upon encountering a type 1 object, the vehicle has the
potential to decide to stop engaging type 2 objects and search only for type 1 objects.
This decision is made by the prey model algorithm, which depends on vi, ei, and λ̂1. If
the vehicle decides to set p2 = 0 and then does not encounter another type 1 object
for a period of time, λ̂1 will eventually decrease to the point that the vehicle decides
to give up waiting for another type 1 object and resume engaging type 2 objects.
If v1 is increased, the vehicle will take longer to switch p2 from 0 back to 1 after
encountering the type 1 object because the now-more-valuable type 1 objects are
worth waiting for a little longer. This change is expected because the expected rate
of point gain from type 1 objects increases with increasing v1; therefore, it will take a
smaller λ̂1 to drop this expected rate of gain below the profitability of a type 2 object.

After simulating the heuristic rate-estimation approach for the original example
at the beginning of this section, we find that p2 = 1 for the duration of the simulation,
and the vehicle obtains an average rate of point gain of 0.0519 points/s. Thus, in this
case, the heuristic approach results in the rate maximizing strategy of generalization.
However, after increasing the value of type 1 objects to v1 = 80, the vehicle ignores
type 2 objects for a period of time (approximately 800 s) after each of the first two
encounters with type 1 objects, and obtains a rate of point gain of 0.0591 points/s.

3.2 The Value of Recognition for Autonomous Vehicles

Suppose the single autonomous vehicle case is modified so that the vehicle can no
longer immediately recognize the type of object it has encountered. For example,
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suppose there is one type of target and a decoy for it. To distinguish between the two
types, the vehicle must pay a recognition cost of rv points and rt s. Equation 2 can then
be used to gain insight into the price the vehicle is willing to pay for this recognition
ability. For example, if the vehicle has the ability to continuously update a rate-
of-encounter estimation λ̂i of objects as assumed in the heuristic implementation
discussed above, then λ̂i can be used in the prey model algorithm to determine
whether to engage a given object type. In addition, Eq. 2 can be used to determine
whether to pay for the cost of recognition.

An autonomous vehicle following this procedure was simulated using the same
parameter values as in the previous simulations. Here type 2 objects can be thought
of as decoys for the higher-value type 1 objects. With this in mind, let us arbitrarily
set the object type values as v1 = 60 and v2 = 10. We assume the vehicle knows an
object’s type after engagement. This allows for calculation of λ̂i regardless of the
recognition decision. The activity of classification is part of the engagement process
and is not related to type recognition. Figure 1 shows p2 (top panel) and the decision
of whether to pay for recognition (bottom panel) as a function of time for rv = 1.0
with rt = 0. This value of rt simplifies the simulation and does not affect illustration
of the important concepts. The vehicle initially happens to encounter only type 2
objects (the decoys) so that λ̂1 = 0, which causes p2 to be 1 and an unwillingness
to pay for recognition (there is no point in paying to recognize a nonexistant object
type). Once the single type 1 object is encountered, the updated λ̂1 causes the vehicle
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Fig. 1 Autonomous vehicle probability of engagement and recognition decision with rv = 1.0.
Recognition value of 1 is a willingness to pay the recognition cost
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to begin paying rv for the ability to recognize the high-valued type 1 objects. At some
point, however, after not encountering any more type 1’s, λ̂1 drops to the point that
type 1 objects are too scarce to pay the cost of recognizing them. Although p2 is
constantly being updated based on λ̂1, it only influences the engagement decisions
of the vehicle when recognition is enabled. If recognition is not enabled, the vehicle
engages all objects regardless of the value of p2. Therefore, in Fig. 1, even though the
prey model algorithm tells the vehicle to ignore decoys until well after the decision to
quit paying for recognition, decoys are still engaged because the cost of recognition
outweighs the missed opportunity cost that accompanies engagement of the common
decoys.

As the cost of recognition decreases, the amount of time the vehicle is willing
to pay for recognition increases. Once rv reaches zero, the amount of time that
recognition is enabled equals the amount of time that p2 = 0. This result makes sense
because when rv = rt = 0, the problem becomes the original prey model problem.
In addition, the derivation of Eq. 2 is based on the assumption that if rv = rt = 0,
the agent will ignore type 2 objects; therefore, if this condition is met, p2 and the
recognition decision correspond exactly with one another.

4 Patch Model: How Long to Process?

The patch model describes an agent travelling between sources of point gain in the
form of patches. We assume each patch is comprised of a group of tasks. The decision
the agent must make is how long to remain in a patch once it is entered. The currency
to be maximized is rate of point gain. The patch model we present next directly
follows [1].

4.1 Patch Model and the Marginal Value Theorem

There are n types of patches which are described with three variables: λi is the rate
at which the agent encounters patches of type i while searching (encounters are
assumed to be sequential and follow a Poisson process), ti is the time spent within
patches of type i, and vi(ti) is the gain function for patches of type i. The gain function
is the expected net number of points obtained as a result of spending ti time within
patch type i. Patch residence time ti includes search and task processing within the
patch and is the decision variable for the agent.

The gain function vi(ti) describes the net number of points that an agent expects
to gain for spending a certain amount of time within a patch of type i. We assume the
gain is zero when the time spent within the patch is zero (vi(0) = 0) and that the gain
function is negatively accelerated due to task depletion. Many types of gain functions
exist, two of which are shown in Fig. 2. Figure 2a represents no within-patch search
cost (unless tasks can regenerate) while b shows a case where within-patch search
cost eventually causes point gain to decrease.

The average rate of point gain for an agent is

J =

n∑

i=1
λivi(ti) − s

1 +
n∑

i=1
λiti

(3)
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Fig. 2 Possible gain functions. As an agent spends time within a patch, its instantaneous rate of point
gain decreases as a result of patch depletion

where s is the point cost of search per unit time. The patch residence time for patch
type i that maximizes J is the one satisfying

v̇i(ti) = J. (4)

Thus, the optimal patch residence time t̂i is the one that causes the instantaneous
(marginal) rate of point gain in patches of type i to be equal to the long-term average
rate of point gain. Therefore, an agent should remain in a particular patch until
the marginal rate of point gain when leaving the patch is equal to the long-term
average rate of point gain in the domain. This idea is known as the marginal value
theorem.

4.2 Graphical Solution

The primary problem of the patch model is finding each t̂i for all i ∈ 1, 2, . . . , n that
satisfies Eq. 4. Depending on the gain function vi(ti), this problem may or may not be
a feasible task. To give some insight into the problem, we look at the simplest case: a
single patch type with no search costs (s = 0). In this situation, Eq. 4 becomes

v̇( t̂ ) = λv( t̂ )

1 + λt̂
, (5)

where t̂ is the optimal patch residence time. This equation can be solved graphically
for t̂ as shown in Fig. 3. Point gain is plotted on the vertical axis, and the horizontal
axis is divided, with the travel time between patches 1/λ on the left side and the
patch residence time on the right side. With this representation, the total time spent
searching and processing tasks is the distance from a point 1/λ on the travel time
axis to a point t on the patch residence time axis. The overall rate of point gain for
the agent is v(t)

1/λ+t , which is the slope of the line from (1/λ, 0) to (t, v(t)). The solution

to Eq. 5 is then the t̂ yielding v̇( t̂ ) = v(t̂
1/λ+t̂

. This scenario is shown in Fig. 3 for two
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Fig. 3 Illustration of marginal-value theorem for one patch type and s = 0. The optimal patch
residence time can be found graphically by constructing a line tangent to the gain function that passes
through the between-patch travel time point on the left horizontal axis

cases. These two cases illustrate the important fact that as between-patch travel time
increases (from 1/λ′ to 1/λ′′), the agent should spend more time within the patch
(compare t̂′ to t̂′′).

For practical applications of the patch model to the control of agents, the graphical
solution to the marginal value theorem is not generally feasible. However, the
optimal patch residence time can be found analytically or numerically for certain
gain functions. One example is an exponential function,

v(t) = β(1 − e−αt). (6)

This function illustrates the case in Fig. 2a with no search cost. Plugging Eq. 6 into
Eq. 5 and rearranging results in

λeαt̂ = α + αλt̂ + λ. (7)

While Eq. 7 cannot be solved analytically, computational tools such as Matlab can
solve specific realizations of it. It can be shown graphically that the solution t̂ exists
and is unique.

4.3 Discrete Marginal Value Theorem

A discrete version of the marginal value theorem is used to address simultaneous
encounters [1]. Consider an agent that enters a patch where it simultaneously
encounters tasks of two types. Suppose only one of the tasks can be processed. An
example is in an autonomous vehicle application where the vehicle’s sensor footprint
detects more than one target at a time. If the targets have the ability to sense that they
have been detected, only one of them can be engaged because the targets the vehicle
decides not to engage will escape during the engagement of the chosen target. We
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Fig. 4 Discrete marginal value theorem for simultaneous encounters. If travel time to the patch is
shorter than the critical travel time 1/λc, then the type 1 task should be processed. On the other hand,
if travel time is longer than 1/λc, then the type 2 task should be processed

can view the problem as a discrete version of the patch model; the patch residence
time is the processing time of the task that is chosen.

Let v1 and v2 be the gains received for processing task types 1 and 2, respectively,
and let e1 and e2 be the corresponding processing times. Suppose type 1 is smaller
yet more profitable than type 2, so that v2 > v1 but v1/e1 > v2/e2. Under these
conditions, Fig. 4 shows the discrete marginal value theorem and its prediction for
the rate maximizing choice of which task to process. The axes are defined as in Fig. 3.
The constant 1/λc is a critical travel time between patches that distinguishes between
when the agent should choose task type 1 and when it should choose task type 2. This
critical travel time is

1

λc
= v1e2 − v2e1

v2 − v1
.

An agent should choose the smaller more profitable task if λ > λc, and choose the
larger less profitable task if λ < λc. If λ = λc, the agent is indifferent.

4.4 Combining the Prey and Patch Models

Both the prey and patch models assume that the decision intrinsic to the other model
is already made. For example, the patch model assumes that the decision of whether
to enter a particular patch is given; all that needs to be determined is when to leave
the patch. Removing these assumptions results in the combination of the two models
[1]. The question becomes which patches to enter and for how long. Application of
the combined model to the control of agents is a direct extension of the concepts
discussed here and in Section 2.
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4.5 Assumptions

An agent is assumed to have knowledge of all of the model parameters a priori. This
knowledge includes the rate of encounter with patches λi, which follows a Poisson
process. The rate of encounter with tasks within the patch, however, is independent
of ti, and is not subject to any constraints except that the gain function vi(t) must hold.
This issue raises the question of which gain function applies and when the parameters
of that gain function are known. While a priori knowledge of v(t) may not be feasible
in many situations, it may be possible to estimate it. For example, Stone [13] derives a
version of the exponential gain function for a vehicle searching for a single target in a
domain. Under the assumptions of a uniform target distribution, a random uniformly
distributed vehicle search path, and with knowledge of the vehicle sensor’s sweep
width and the area of the domain being searched, a detection function is derived that
gives the probability of detecting the target for a given length of search path. This
function is given by

b(z) = 1 − e−zW/A, (8)

where z is the length of the vehicle’s search path, W is the sweep width of the vehicle’s
sensor, and A is the area of the domain being searched. Although our concern is
the expected amount of points gained for a given amount of time spent within a
patch, this case provides an example of how a gain function appropriate for a given
environment might be derived.

5 Patch Model Application to Autonomous Vehicle Control for Search

Here we demonstrate the utility of the patch model for the control of an agent
performing a search operation such as exploration of an unknown environment. We
address a specific aspect of the autonomous vehicle control problem, namely how
a vehicle searching for objects in a “patchy” environment should make decisions.
We first describe the search problem and then discuss the applicability of the patch
model.

5.1 Patch Model Application when Assumptions are Met

Suppose a single autonomous vehicle searches for objects in a domain that is 20
by 20 km. These objects are grouped in patches distributed according to a Poisson
process. Within each patch, objects have a uniform random distribution. Imagine the
domain as a two-dimensional plane with horizontal (x1) and vertical (x2) axes. The
vehicle searches for patches in a “lawnmower pattern.” Once a patch is encountered,
the vehicle enters the patch and searches for objects. It is assumed that the vehicle
knows the boundaries of a patch, there is only one patch type, and the vehicle enters
all patches upon encounter. When the vehicle’s footprint moves over an object, it is
considered found and the appropriate points are awarded. Note that this differs from
the prey model application in that no activities need to be performed on a found
object. Here, the processing of a task is simply the discovery of an object, so we are
studying a search problem as Stone does in [13]. The decision the vehicle must make
is how long to search for objects in a particular patch.
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Following [13], suppose the vehicle’s search path within patches is random but
uniform, so the gain function is given by Eq. 8, but modified so it is a function of
time and not length of search path. In addition, it is scaled by the total number of
points available in the patch Vp to provide an expected point gain for a given patch
residence time. These modifications give

v(t) = Vp(1 − e−tuW/A), (9)

where u is the velocity of the vehicle. Note that Vp is equivalent to β in Eq. 6 and does
not affect the optimal patch residence time since it does not appear in Eq. 7. Assume
the width of the vehicle’s sensor footprint W = 500 m, the area of the domain being
searched (the patch area) A = 4, 0002 m2, and the velocity u = 120 m/s. All patches
contain 75 objects each with a value of 1 point, thus Vp = 75. Substituting these values
into Eq. 9 results in the gain function given by the dashed curve in Fig. 5. The solid
curve is the average realized gain function of the simulated vehicle, showing that
Eq. 9 is a good approximation. One cause for the difference between the theoretical
and simulated gain functions is the fact that the vehicle’s footprint swings out of
the patch at times. For example, even though the vehicle is still in the patch, a turn
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Fig. 5 Random search gain function. The dashed curve is the theoretical gain function for random
search within patches, and the solid curve is the average gain function of a simulated autonomous
vehicle. Error bars show the value of the gain function one standard deviation above and below the
mean of the 150 runs
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might bring its footprint out of the patch momentarily where no objects exist. This
characteristic is not accounted for in Eq. 9.

If the vehicle has knowledge of the rate of encounter with patches in addition
to the parameters in Eq. 9, the optimal patch residence time can be calculated by
solving Eq. 7. The rate of encounter with patches is (NpWu)/Ad, where Np is the
expected number of patches. Thus, if an average of 40 patches exists in the domain,
λ = 40(500)(120)

20,0002 = 0.006 s−1 (166.7 s travel time between patches) and the optimal
patch residence time t̂ from Eq. 7 is 251.5 s. However, the vehicle may not have this
information. The remainder of this section discusses the situation where the vehicle
has no a priori knowledge of the number of patches and thus the patch encoun-
ter rate.

5.2 Heuristic Implementation of the Patch Model

Consider a vehicle performing the same search operation described above, but with
the exception that the vehicle has no information about the number of patches.
Therefore, the optimal patch residence time cannot be calculated due to lack of
information regarding patch encounter rate. A heuristic approach is to assume the
vehicle has the ability to estimate its instantaneous rate of point gain within a
particular patch as well as its overall rate of point gain. Under these assumptions, the
vehicle can continuously monitor its rate of gain within a patch and decide to leave
the patch when the instantaneous rate drops to the overall rate within the entire
domain. This method is discussed as being the marginal-value rule by Stephens and
Krebs in Chapter 4 of [1] and is a simple procedure that eliminates the need for a
priori knowledge of gain functions for different patch types.

However, one issue that arises is how to calculate the instantaneous rate of point
gain within a patch. Due to the discrete nature of the object distribution, smooth
gain function curves are not characteristic of the patch environment discussed here.
Derivative calculations are thus impossible. A sensible alternative is to calculate
the slope between neighboring changes of the gain function. However, this slope
estimation presents a problem if the vehicle finds all objects within a patch before
it decides to leave. One solution is to assume the vehicle has memory not only
of the previous gain function change, but the last two gain function changes. The
instantaneous rate estimation can then be continuously calculated using the slope
between the present gain function value and the value associated with the gain
function change two changes prior to the current point in time. If all objects within a
patch are found before leaving and this rate estimation approach is used, the current
patch residence time will eventually become large enough to cause the instantaneous
rate to drop to the point where the vehicle decides to leave the patch. The slope
method given here is one simple way to approach the problem at hand. Many other
methods for on-line estimation of a function exist in areas such as estimation theory
and neural networks but are outside the scope of this article.

Suppose the heuristic approach described above is used as part of the vehicle’s
controller in the search operation. As before, the search path for patches is a
lawnmower pattern, and search within patches is random but uniform. Assume an
average of 30 patches exist in the domain, 20 objects exist within each patch, and
patches are 2, 0002 m2. A Monte Carlo simulation is performed with each of 500 runs
consisting of the vehicle searching the domain for 15,000 m in the horizontal direction
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(30 lawnmower “strips”). At the beginning of each run, patches are distributed
according to a Poisson process and objects within each patch are randomly but
uniformly distributed. The average overall rate of point gain for each run is calculated
as the total number of points obtained during the run divided by the total elapsed
time for that run. The average overall rate of point gain of the 500 runs is 0.0146
points/s and its standard deviation is 0.0030 points/s, which suggests a sufficient
number of runs.

As a means of comparison, the vehicle’s patch residence time is changed so that
it decides to leave the patch when its instantaneous rate of within-patch point gain
is approximately zero. In other words, it leaves the patch when all objects within
the patch are assumed to have been found. The Monte Carlo results for this control
approach provide an average overall rate of point gain for 500 runs of 0.0094 points/s
with a standard deviation of 0.0011 points/s. These results demonstrate that the
marginal value theorem is superior to this alternative approach.

The vehicle’s goal is to find objects within patches and in the examples above
the search path used within patches is random but uniform. Another way to search
within patches might be to use a lawnmower pattern, which is the same pattern
used to search for the patches themselves. The average simulated gain function for
this search method is shown in Fig. 6. As expected, due to the systematic nature of
search, v(t) is approximately a straight line, which levels off after the patch has been
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Fig. 6 Lawnmower search gain function. Error bars correspond to one standard deviation above and
below the mean
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searched extensively. Because the classical patch model’s assumption of a negatively
accelerated gain function does not hold in this case, there is no predicted effect of
travel time on patch residence time. Instead, it can easily be seen in Fig. 7 that the
optimal policy is simply to remain in the patch until all of the objects have been
depleted.

Monte Carlo simulation, where the vehicle searches systematically and leaves after
fully searching the patch, results in an average overall rate of point gain for 500 runs
of 0.0188 points/s with a standard deviation of 0.0044 points/s. Note that this rate
exceeds the rate obtained by using a random search path within patches. However,
this increase in performance may come at the expense of increased complexity
of the search pattern. Implementation of the lawnmower pattern might require a
more accurate and complex vehicle controller. In particular, the vehicle must keep a
straight path for a fixed amount of time and then repeat it with an opposite heading
precisely one sensor width away from the previous path.

Whether a within-patch, lawnmower search pattern achieves a higher overall rate
of point gain (the slope of the dashed lines in Fig. 7) than a random search depends
on the rate of encounter with objects within the patch as well as the number of
objects in the patch. Hence, this approach provides a method that can be used to
determine when an agent searching within patches should do so extensively using a
lawnmower pattern or should do so for a certain patch residence time using a random
search. Keep in mind, though, that while the heuristic approach to the marginal value
theorem can be used in environments with different patch types, graphical analyses
such as those in Figs. 3 and 7 assume a single patch type. Therefore, the comparison
of search methods mentioned above holds only for environments with a single patch
type. A bar graph summary of the simulation results of this section is shown in Fig. 8.

These analyses provide insights regarding effects of search costs and information.
The cost of searching within a patch is assumed to be embedded in the gain function
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Fig. 7 Optimal patch residence time for a within-patch, lawnmower search pattern. Regardless of
the encounter rate with patches, the optimal patch residence time is precisely the time at which the
vehicle has exhausted the patch
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Fig. 8 Simulation summary. Monte carlo simulation results for 500 runs of an autonomous vehicle
performing a search operation in a patchy environment. The within-patch search techniques con-
sidered are: random search and leaving according to the marginal value theorem (MVT), random
search and leaving when all objects have been found, and lawnmower search and leaving when the
patch has been searched exhaustively. Error bars show one standard deviation

since it is a description of net point gain. The agent only knows the relationship
between time spent within a patch and its net point gain. The cost of search between
patches, on the other hand, is explicitly represented by s in Eq. 3. The graphical,
and in some cases analytic, solutions to the marginal value theorem discussed above
are based on Eq. 5, which assumes s = 0. Optimal solutions may differ when s �= 0.
However, the heuristic approach to the marginal value theorem (the marginal value
rule) discussed above is not based on Eq. 5 but rather the marginal value theorem
itself. Therefore, in addition to being applicable to multiple patch-type environments,
this approach is valid for nonzero search costs as long as the agent incorporates this
cost into its rate estimation.

6 Time or Fuel Limitations and Risk-sensitivity

A limitation in many applications is a time constraint within which the agent must
acquire a required number of points. This constraint may be due to a number
of factors such as limited fuel capacity for autonomous vehicles. The question
that arises is whether an agent should alter its task pool or patch residence-time
decision depending on how much time or fuel remains. One approach to solving this
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problem is to use risk-sensitive foraging theory [9]. The key idea is that animals may
be sensitive to the variance in reward that accompanies foraging options. A depen-
dence on variance arises when the success of a forager is a nonlinear function of the
forager’s state, usually energy reserves.

A simple example of risk-sensitivity is a time- or fuel-limited agent that must
obtain a required number of points Vr by a critical time Tc. The currency, J(Vf )

where Vf is the number of points acquired during Tc, is a step function with the
step occurring at Vf = Vr. An agent is either successful or unsuccessful depending on
the number of points it has obtained by Tc. Suppose an agent has two options with
the same mean, yet Option 1 is risky with some variance while Option 2 has zero
variance. Assume the time remaining to Tc is small enough that the agent has just one
decision remaining. Intuitively, if the agent has not yet met the point requirement
and if the mean of the two options is such that obtaining it will boost the agent’s
points over Vr, then the agent should be risk averse because it needs only choose
Option 2 to meet its requirement with certainty. However, if the mean point gain
does not provide sufficient points to meet Vr, then the agent is sure to fail by choosing
Option 2. Therefore, the agent should be risk prone and choose Option 1. The fitness
function here is a discontinuous step function; however, a mathematical justification
for our intuitive conclusion in the case of continuous convex or concave functions is
described by means of Jensen’s inequality [2].

Here, we use risk-sensitive foraging theory to discuss changes in the decisions
predicted by both the prey and patch models when a requirement must be met within
a time limit. In each case, we first provide the theory and then apply the theory to the
autonomous vehicle control problem.

6.1 Risk-sensitive Prey Model

To address the fuel/time constraint problem with respect to the question of special-
ization, we need to evaluate the risks associated with choices predicted by the prey
model. For simplicity, we initially assume just two task types. The mean net rates of
point gain under the basic prey model for Option 1 (specializing on type 1 tasks) and
Option 2 (processing all tasks encountered) are given in Eq. 1 as

μ1 = λ1v1

1 + λ1e1
− s

and

μ2 = λ1v1 + λ2v2

1 + λ1e1 + λ2e2
− s,

respectively. The variances in point gain per unit time associated with these decisions
are

σ 2
1 = λ1v

2
1

(1 + λ1e1)3

and

σ 2
2 = β2

α

[

λ1

[
v1

β
− e1

α

]2

+ λ2
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v2

β
− e2

α

]2
]

,
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where α = 1 + λ1e1 + λ2e2 and β = λ1v1 + λ2v2 [8]. Unlike the example given above,
the decisions here do not have the same mean results. The agent thus has the choice
at any point in time to choose between two mean-variance combinations so that it
maximizes its probability of acquiring Vr by Tc. This problem can be modeled as a
diffusion process [14] with the optimal solution for an agent with x points at time t
given in [9] as choosing Option 1 if and only if

x < Vr + k(t − Tc), (10)

where

k = μ2σ1 − μ1σ2

σ1 − σ2
. (11)

Equation 10 is a switching line that depends on the agent’s current point gain and
the time remaining. Above the line, the agent should process both types of tasks
encountered and below the line the agent should process only type 1. The optimal
decision depends on the number of points the agent has acquired thus far. If the agent
has enough points with respect to the time remaining (above the line), it should play
it safe and choose the less risky option. On the other hand, if the agent does not have
enough points and time is running out, it should be risk prone.

An example for an autonomous vehicle searching for objects with a fuel-life of
2.5 h is shown in Fig. 9 with λ1 = 0.0003 s−1, λ2 = 0.0150 s−1, v1 = 40, v2 = 1.5, s = 0,
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Fig. 9 Optimal object type choice for a risk-sensitive autonomous vehicle
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and Vr = 60. If the vehicle had no time restrictions, it would be optimal to engage
all objects encountered. However, as the vehicle begins to run out of fuel, it may,
depending on the points it has obtained, begin skipping type 2 objects to wait for the
riskier type 1 objects. As t approaches Tc, the switching line approaches Vr since
an agent with just one decision remaining should be risk averse if its point total
exceeds the requirement and risk prone if its point total is below the requirement.
Examining Eq. 11, it can be seen that increasing μ1 − μ2 (increasing the mean rate of
reward of Option 1 with respect to Option 2) decreases the slope of the line while
the point (Tc, Vr) remains constant. Eventually, the slope becomes negative and
the vehicle should engage only type 1 objects. On the other hand, as μ2 − μ1

increases, it eventually becomes optimal to engage both types of objects.
Monte Carlo simulations were run for a risk-sensitive and a risk-insensitive

autonomous vehicle under the conditions listed for Fig. 9 but for a range Tc. Figure 10
shows the probability of a vehicle’s succeeding, ps, as a function of Tc. The value
of ps for a particular Tc is calculated by using the mean and standard deviation of
the point gain of 500 simulation runs (a random normal variable due to the central
limit theorem) to “standardize” the point gain to zero mean and unit variance. The
probability of succeeding is then found by means of the cumulative distribution
function of a standard normal random variable. At very small and very large critical
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Fig. 10 Probability of success for a rate maximizing and a risk-sensitive autonomous vehicle as a
function Tc



J Intell Robot Syst (2007) 49:39–65 61

times, a risk-sensitive agent has no advantage over a rate-maximizing agent since
both are either sure to fail or sure to succeed depending on the situation. However,
at intermediate values of Tc, especially around 0.5–2.0 h in the autonomous vehicle
example, a risk-sensitive vehicle has a higher probability of succeeding due to its
exploitation of the variance in the environment.

6.2 Risk-sensitive Patch Model

Stephens and Charnov address the time constraint problem in [10] by formulating
the patch model in terms of risk sensitivity. The mean and variance of the number of
points acquired by an agent within a critical time limit Tc as a function of the patch
residence time t are given in [10] as

μ(t) = v(t)Tc

(1/λ) + t
(12)

and

σ 2(t) = Tc(1/λ2)[v2(t)]
[(1/λ) + t]3

, (13)

respectively. Here we assume the existence of only one patch type and no between-
patch search costs. Since the point gain within a patch is assumed to be deterministic
by means of the gain function, the randomness arises from the stochastic encounter
with patches.

The change in mean and standard deviation as an autonomous vehicle spends
time searching randomly within a patch is shown in Fig. 11. This plot is obtained
by evaluating Eqs. 12 and 13 for increasing values of t and plotting these values on a
mean versus standard deviation graph. Suppose the critical time Tc is 10,800 s or 3 h.
Suppose Vr is the number of points the autonomous vehicle must obtain by Tc. The
optimal patch residence time is the one with the smallest z-score, z = (Vr − μ)/σ ,
as explained in [10]. This time can be found graphically by constructing the line that
originates at the point requirement Vr plotted on the mean axis and is tangent to the
σ -μ curve. This line maximizes the slope and hence minimizes z. The corresponding
patch residence time is the optimal choice. This z-score analysis is valid due to
the fact that the sum of a large number of independent patch experiences has an
approximately normal distribution (the central limit theorem).

The patch residence time predicted by the marginal value theorem, which strictly
maximizes the mean, is denoted t∗ in Fig. 11. It is then easy to see that if the expected
point gain resulting from mean maximization, μmax, is greater than Vr, the agent
should be risk averse and remain in the patch longer than t∗. On the other hand,
if μmax < Vr, the agent should be risk prone and leave sooner than t∗. The reason
that leaving before t∗ is risky is because a shorter patch residence time results in a
lower overall average point gain yet a larger variance. Examples of the two cases
discussed here are shown in Fig. 11 with patch residence times t′ (risk prone) and t′′
(risk averse) for requirements V ′

r and V ′′
r , respectively. Note that if the requirement

is infinite, the agent should be as risky as possible, choosing the patch residence time
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Fig. 11 Mean and standard deviation of point gain as a function of patch residence time for
an autonomous vehicle. The optimal patch residence time for a risk-sensitive agent is found by
constructing the line of maximal slope that originates at the requirement Vr and (tangentially)
touches the curve

resulting in the maximum standard deviation. This choice is because the agent has no
chance except to gamble.

If the gain function is known a priori, the optimal patch residence time for a risk-
sensitive autonomous vehicle can be found by substituting Eqs. 12 and 13 into the
z-score equation and minimizing the resulting function of patch residence time.
While this may be difficult to do analytically, it can be achieved using various
computational tools such as Matlab. On the other hand, if an agent does not
have knowledge of the gain function, one potential solution is to perform on-
line estimation. For example, consider an agent with memory that can be used to
calculate an average gain function for the environment. The gain function estimate
at a particular patch residence time is found by averaging all point gains at that
patch residence time previously obtained. As time approaches infinity, the estimated
gain function approaches the actual gain function. The agent can then use this gain
function along with Eqs. 12 and 13 to calculate an estimated z-score for its current
patch residence time. At the next time instant, a new z-score can be calculated.
Once the z-score begins to increase, the agent should leave the patch and search
for a new one. One potential problem arises since random perturbations may cause
premature patch departure times. There are two possible approaches to solve this
problem. One approach is to allow the agent to have a moving “window” of a certain
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time length within which the z-score must strictly increase for the agent to leave the
patch. Another approach is to force the agent to remain in the first few patches for a
specified length of time so as to “learn” the environment.

A risk-sensitive autonomous vehicle performing the same search operation as in
the previous applications is simulated using the z-score technique with various critical
time limits to demonstrate the benefit of risk sensitivity. An average of 45 patches
exist in the 20,000 by 20,000 m domain, each with 20 objects valued at 1 point. The
vehicle has a point requirement Vr = 150 points, a z-score computation window of
25 s is used, and the vehicle must remain in the first three patches for 450 s. The
results, compared with the heuristic rate-maximizing approach (the marginal value
rule) are shown in Fig. 12, which plots Tc versus probability of success. Each point is
obtained by using the average and standard deviation of the vehicle’s point gain after
500 simulation runs to standardize the point gain, a normal random variable. The
cumulative distribution function of a standard normal random variable is then used
to calculate ps. The results reveal that while an agent is sure to fail for small critical
times and succeed for large critical times regardless of strategy, a risk-sensitive agent
has a higher probability of succeeding than a rate-maximizing agent for intermediate
values of Tc. However, a small region exists around 0.25 h where a rate maximizer
has a higher ps. This anomaly is a result of the fact that the risk-sensitive agent is
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Fig. 12 Monte carlo simulation results for a rate-maximizing and a risk-sensitive autonomous vehicle
as a function of Tc
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forced to remain in the first three patches for a long time, which may be costly at
low critical times. This issue suggests the need to select techniques in which a vehicle
attempts to learn its environment. Clearly, the optimal z-score window size and initial
patch departure times depend on environmental conditions and requirements. For
instance, if Tc is very small or if there are very few patches, remaining in initial
patches for an extended period is not beneficial.

One final point should be made regarding Fig. 12. The point requirement for the
vehicle is relatively low, and the larger ps for the risk-sensitive agent is a result of
playing it safe for long critical times. Figure 11 shows that for Vr > μmax, the risk-
sensitive and rate-maximizing patch residence times do not differ much due to the
nature of the vehicle’s σ -μ curve. Thus, when Vr > μmax, a risk-sensitive approach
may not prove very productive for this particular case.

7 Conclusions

By treating decision-making agents as analogous to biological foragers, we have used
foraging theory to develop high-level control strategies for an agent given certain
environmental information. The problems considered here have not been previously
studied. We demonstrated application of the theory in simulation for an autonomous
vehicle. We have shown how the classical prey model can be used to determine
which types of targets the vehicle should engage. Correspondingly, we used the
patch model to predict patch residence time and make decisions about how to search
within patches. If environmental information is incomplete, estimation techniques
can be implemented. In addition, extensions of the classical models were used to
explore, for example, recognition costs and decision adjustments under time or fuel
limitations. We hope this initial attempt to apply optimality models from behavioral
ecology to engineering problems will inspire much future work. An important future
direction is the physical implementation of the theory in real applications. Such work
will reveal issues such as sensing constraints that are either not addressed in the
theory or are difficult to quantify in real systems. For example, we use the prey and
patch models to control a temperature system where the controller is thought of as a
forager searching for regions of error on a temperature grid in [15]. While this is not
a vehicular application, it reveals issues associated with real, physical systems as well
as the ability to apply the theory to a broad range of systems.

It is impossible to exploit the full range of theoretical results from behavioral
ecology for engineering applications in a single article. A number of opportunities
besides the ones presented here exist [16], some of which may result in cross-
fertilization back to behavioral ecology. For example, Mangel and Clark in [3]
present examples of dynamic, state-variable models in which dynamic programming
can be used to derive the optimal policy for an animal. Also, Dukas provides an
alteration of the classical prey model in [17] that accounts for prey conspicuousness
and animal attention to different prey types. Finally, in [18], we show how to utilize
social foraging theory [19] for multiagent engineering design problems.
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