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Abstract

Stimulated by the growing demand for improving system performance and reliability, fault-tolerant system design has been

receiving significant attention. This paper proposes a new fault-tolerant control methodology using adaptive estimation and control

approaches based on the learning capabilities of neural networks or fuzzy systems. On-line approximation-based stable adaptive

neural/fuzzy control is studied for a class of input–output feedback linearizable time-varying nonlinear systems. This class of

systems is large enough so that it is not only of theoretical interest but also of practical applicability. Moreover, the fault-tolerance

ability of the adaptive controller has been further improved by exploiting information estimated from a fault-diagnosis unit designed

by interfacing multiple models with an expert supervisory scheme. Simulation examples for a fault-tolerant jet engine control

problem are given to demonstrate the effectiveness of the proposed scheme. r 2002 Published by Elsevier Science Ltd.
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1. Introduction

The last two decades have seen continuous improve-
ment in systems and control techniques resulting from
the spectacular progresses in control theory and
computer technologies. Meanwhile, stimulated by the
growing demand for improving the reliability and
performance of systems, many fault-diagnosis and
fault-tolerant control methods have been developed
which have the capability of detecting the occurrence of
faults and retaining satisfactory system performance in
the presence of faults (Frank, 1990; Stengel, 1991;
Patton, 1997).
Fault tolerance of dynamic systems can be achieved

either from system robustness to faults as well as other
uncertainties, or from controller reconfiguration (or
restructuring) in response to specific faults. Actually, a
well-designed control system may have some fault-
tolerance capabilities in that it can be designed (e.g., by
properly choosing feedback gains) to compensate for
some system uncertainties such as disturbances and
noise, and the fault can be considered as a certain kind
of system uncertainty. Since no information about faults

is typically utilized by control systems (e.g., in linear
‘‘robust control’’), this type of control system may be
referred to as a ‘‘passive fault-tolerant control system’’
(Veillette, Medani, & Perkins, 1992; Chen, Patton, &
Chen, 1997). However, the magnitude of faults that can
be accommodated by a fixed control structure and
parameters without using the knowledge of faults is
often limited and more restricted than that of a
reconfigurable controller (at least that is what has been
found via current simulation studies). By utilizing the
fault information obtained from fault detection and
identification, ‘‘reconfigurable control’’ modifies the
control function (parameters or structures) in response
to the faults so that it is referred to as ‘‘active fault-
tolerant control’’. An active fault-tolerant control
system can be obtained by control law re-scheduling
(Moerder, Halyo, Broussard, & Caglayan, 1989; Au-
brun, Noura, & Sauter, 1994), linear-quadratic control
(Looze, Weiss, Eterno, & Barrett, 1985; Huang &
Stengel, 1990), pseudo-inverse methods (Gao & An-
tsaklis, 1991), or adaptive control methods (Kwong,
Passino, Laukonen, & Yurkovich, 1995; Bodson &
Groszkiewicz, 1997; Boskovic & Mehra, 1998; Poly-
carpou, 1999; Diao & Passino, 2001a, b). As most plants
are inherently nonlinear and the faults may often
amplify the nonlinearities by driving the plants from a
relatively ‘‘linear’’ operating point into a more nonlinear
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operating region, the study of fault-tolerant control for
nonlinear systems has become a very active research
topic for both theoretical and practical reasons.
In the attempt to solve the fault-tolerant control

problem for systems with significant nonlinearities and a
wide operating range, methods such as neural networks
and fuzzy systems have been receiving considerable
attention due to their capabilities of forming arbitrarily
accurate approximation to any continuous nonlinear
functions. In particular, the idea of using function
approximation structures with universal approximation
properties (such as neural networks or fuzzy systems) to
deal with arbitrary continuous nonlinearities has been
widely used in adaptive control for nonlinear systems
(Spooner, Ordonez, Maggiore, & Passino, 2002; Liu &
Chen, 1993; Polycarpou & Mears, 1998; Spooner &
Passino, 1996). The neural and fuzzy approaches are
most of the time equivalent, differing between each
other mainly in the structure of the approximator
chosen. Indeed, to try to bridge the gap between the
neural and fuzzy approaches, several researchers (e.g., in
Spooner & Passino, 1996) introduce adaptive schemes
using a class of parameterized functions that include
both neural networks and fuzzy systems.
Since the faults are naturally time varying, it becomes

necessary to study fault-tolerant control in the context
of time-varying systems (not only are input and output
variables varying over time, but the input–output
relationships are also changing with respect to time,
usually, on a time scale slower than that for the
variables). However, due to the difficulties of formulat-
ing the problem and designing a control law with
guaranteed performance, compared to the relatively
mature field of linear (or even nonlinear) time-invariant
systems, fault-tolerant control for nonlinear time-vary-
ing systems is still an open problem. There are some
attempts of using adaptive control for time-varying
systems. In a monograph, Tsakalis and Ioannou (1993)
presented a major work on the topic of adaptive control
for linear time-varying systems using model reference
adaptive control and adaptive pole placement control
schemes. Usually, the parameters are required to be
varying slowly and smoothly, or discontinuously (i.e.,
jumps) but the discontinuities occur over large intervals
of time. The assumption of slow parameter variations
may be relaxed if some information about the fast
varying parameters is available a priori (Marino &
Tomei, 1998a, 1999). Adaptive control for nonlinear
time-varying systems has also been studied by some
researchers, but only restricted classes of systems are
considered and only limited results exist so far. Marino
and Tomei (1993) designed a robust state feedback
control using the backstepping design method for a class
of nonlinear time-varying systems in the strict feedback
form (with unknown unmodeled time-varying para-
meters or disturbances whose bounds are known). This

result has been extended to adaptive control in Marino
and Tomei (1998b, 1997) by adaptive output feedback
control). Although many theoretical results have been
reported for the class of nonlinear systems in the strict
feedback form (Wu & Chou, 1999; Lin, 1997; Ordonez
& Passino, 2001a, b), this class of systems may be
restricted in the sense that some practical systems, such
as the jet engine, do not belong to this class.
Furthermore, although a well-designed control system

may have some fault-tolerance capabilities, it will
become more ‘‘active’’ if the fault information can be
exploited. However, note that most fault-diagnosis
results in the literature are only developed for linear
systems. There are some nonlinear fault-diagnosis
methods being developed but they lack theoretical
analysis. To our knowledge, only the group of
Polycarpou has studied the theoretical aspects (e.g.,
robustness, fault sensitivity, and stability conditions) of
nonlinear fault-diagnosis (Polycarpou & Helmicki,
1995; Vemuri & Polycarpou, 1997).
In this paper, we propose an intelligent fault-tolerant

system design methodology using adaptive estimation
and control for nonlinear time-varying systems. The
paper is organized as follows. In Section 2 we present
on-line approximation-based stable neural/fuzzy control
for a class of input–output feedback linearizable time-
varying nonlinear systems. This class of system is large
enough (compared to the nonlinear system in the strict
feedback form) so that it may have more practical
applicability. (This will be shown via our jet engine
example where a model in the strict feedback form
cannot be used to adequately represent the engine
whereas our feedback linearizable model can do this
quite well.) Under certain assumptions on the time-
varying dynamics, uniform asymptotic tracking of a
reference signal and uniform boundedness of all internal
signals are achieved. Section 3 presents a model-based
estimation system for robust fault diagnosis by interfa-
cing multiple models with an expert supervisory scheme.
The current system status is recognized by comparing
the residuals of a bank of system models which
characterize the system behaviors in different situations.
Both robustness and fault-sensitivity results are given
for this fault-diagnosis scheme. In Section 4 we
introduce the strategies of incorporating fault diagnosis
with adaptive control to achieve active fault-tolerant
control, and in Section 5 the proposed methodology is
applied to a turbine engine (General Electric XTE46) to
demonstrate its effectiveness.

2. On-line approximation-based adaptive neural/fuzzy

control

In this section, we present an indirect adaptive control
method for a class of nonlinear time-varying systems
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which is input–output feedback linearizable. The pro-
blem formulation is given first. Later, the adaptive
control approach using the on-line learning capabilities
of radial basis function neural networks is presented,
which guarantees that all internal signals of the system
are uniformly bounded and the tracking error is
uniformly asymptotically stable.
Consider the following single-input–single-output

nonlinear time-varying system:

’x ¼ f ðx; tÞ þ gðx; tÞu; ð1Þ

y ¼ hðx; tÞ; ð2Þ

where x ¼ ½x1; x2;y;xn�T is the state vector, u is the
(scalar) input and y is the (scalar) output of the system.
The functions f : D � ½0;NÞ-Rn; g : D � ½0;NÞ-Rn

and h : D � ½0;NÞ-R are smooth time-varying func-
tions, and DCRn is a domain that contains the origin
x ¼ 0: For convenience, we assume that if u ¼ 0; 8tX0;
the origin is an equilibrium point at t ¼ 0 and for all
subsequent times, that is, f ð0; tÞ ¼ 0; 8tX0:
Note that the standard Lie derivative (i.e., LghðxÞ ¼

ð@h=@xÞTgðxÞ; L2ghðxÞ ¼ LgðLghðxÞÞ; etc.) and strong
relative degree for time-invariant systems (Khalil,
1996) are not adequate for time-varying systems;
modifications need to be made to explicitly account
for the time variability of the system. Let %Ld

f hðx; tÞ be the
dth modified Lie derivative of hðx; tÞ with respect to
f ðx; tÞ: In particular, define %Lf hðx; tÞ ¼ ð@h=@tÞ þ
ð@h=@xÞTf ðx; tÞ and, for example, %L2f hðx; tÞ ¼
%Lf ½ %Lf hðx; tÞ� ¼ ð@ %Lf h=@tÞ þ ð@ %Lf h=@xÞTf ðx; tÞ: Next, we
define the ‘‘strong relative degree’’ of the time-varying
system. A system is said to have strong relative degree
d; 1pdpn; in a region D0CD if Lghðx; tÞ ¼
Lg %Lf hðx; tÞ ¼ ? ¼ Lg %L

d	2
f hðx; tÞ ¼ 0 and Lg %L

d	1
f hðx; tÞ

a0 for all xAD0 and tA½0;NÞ: (Note that we use both
the standard and the modified Lie derivatives above to
provide a compact representation of the definition.)
Under the above definitions, if the system represented by
(1) and (2) has strong relative degree d; then the system
dynamics may be written in the normal form (Sastry &
Isidori, 1989) as

’x1 ¼ x2 ¼ %Lf hðx; tÞ
’x2 ¼ x3 ¼ %L2f hðx; tÞ

^
’xd	1 ¼ xd ¼ %Ld	1

f hðx; tÞ

’xd ¼ %Ld
f hðx; tÞ þ Lg %L

d	1
f hðx; tÞu ¼ aðx; p; tÞ þ bðx;p; tÞu

’p ¼ f0ðx; p; tÞ

with xARd ; pARn	d ; and x1 ¼ y: The normal form
decomposes the system states into an external part x and
an internal part p: For the external part, if we let yðdÞ

denote the dth derivative of y; it may be rewritten as

yðdÞ ¼ ½akðtÞ þ aðx; tÞ� þ ½bkðtÞ þ bðx; tÞ�u; ð3Þ

where akðtÞ and bkðtÞ are ‘‘known’’ dynamics of the
system (which are assumed to be bounded if x is
bounded), and aðx; tÞ and bðx; tÞ represent nonlinear
time-varying dynamics of the plant that are unknown.
We assume that for some known b0 > 0; we have jbkðtÞ þ
bðx; tÞjXb0 so that it is always bounded away from zero
(for convenience, we further assume that bkðtÞ þ bðx; tÞ >
0; however, the following analysis may easily be
modified for systems which are defined with
bkðtÞ þ bðx; tÞo0). The external part may be stabilized
by the control u (which we will show later), while the
internal part is made unobservable by the same control.
By having x ¼ 0 in the inner part, the ‘‘zero dynamics’’
of the system are given by ’p ¼ f0ð0;p; tÞ: If the plant is of
relative degree d ¼ n; then there are no zero dynamics.
Alternatively, if the relative degree don; we assume that
the zero dynamics are uniformly exponentially attractive
so that if we have some control u to let x uniformly
bounded, this also ensures uniform boundedness of p
and thus x:
The on-line learning abilities of neural networks are

considered here to approximate the time-varying dy-
namics of the nonlinear system. In particular, the linear
in the parameter radial basis function networks may
take the form of

#aðx; tÞ ¼ yTa ðtÞfaðxÞ;

#bðx; tÞ ¼ yTb ðtÞfbðxÞ;

where the vectors yaðtÞ and ybðtÞ are updated on-line and
are assumed to be defined within the compact parameter
sets Oa and Ob; respectively. (An explanation of how
neural networks or fuzzy systems can be put into this
form is contained in Passino & Yurkovich, 1998.) In
addition, we define the subspace SxDRn as the space
through which the state trajectory may travel under
closed-loop control (we are making no a priori assump-
tions here about the size of Sx). Note that besides the
tunable parameters contained in the vectors yaðtÞ and
ybðtÞ that are adjusted on-line by the update laws, it is
also very important to properly specify the structure
parameters such as the centers and shapes of the
membership functions (or receptive fields). Although
these structure parameters are defined in advance and
will not affect the stability of the adaptive controller, the
choice of these parameters should have a reasonable
cover (e.g., with uniformly distributed centers) of the
state space Sx so as to accurately approximate the
system dynamics.
We also define the actual system as

aðx; tÞ ¼ y*
T

a ðtÞfaðxÞ þ oaðx; tÞ;

bðx; tÞ ¼ y*
T

b ðtÞfbðxÞ þ obðx; tÞ;

where ynaðtÞ ¼ argminyaAOa
ðsupxASx

jyTa faðxÞ 	 aðx; tÞjÞ
and ynbðtÞ ¼ argminybAOb

ðsupxASx
jyTbfbðxÞ 	 bðx; tÞjÞ are
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the optimal time-varying parameters, and oaðx; tÞ and
obðx; tÞ are approximation errors which arise when
aðx; tÞ and bðx; tÞ are represented by finite size approx-
imators. We assume that joaðx; tÞjpWaðxÞ and
jobðx; tÞjpWbðxÞ; where WaðxÞ and WbðxÞ are known
state-dependent time-invariant bounds on the error in
representing the actual system with approximators. This
assumption generally holds according to the universal
approximation property of neural networks and fuzzy
systems by properly defining the approximator struc-
tures and parameters. (In practice, WaðxÞ and WbðxÞ are
treated as design parameters and tuned when we design
the adaptive controller.)
We view adaptive control to be a tracking problem,

that is, to design a control system which will cause the
output yðtÞ and its derivatives ’yðtÞ;y; yðdÞðtÞ to track a
desired reference trajectory ymðtÞ and its derivatives

’ymðtÞ;y; yðdÞ
m ðtÞ; respectively, which we assume to be

bounded. The reference trajectory may be defined by a
reference signal whose first d derivatives may be
measured, or by any reference input rðtÞ passing through
a reference model, with the relative degree being equal to
or greater than d: In particular, a linear reference model
may be

YmðsÞ
RðsÞ

¼
qðsÞ
pðsÞ

¼
q0

sd þ pd	1sd	1 þ?þ p0
;

where pðsÞ is the pole polynomial with stable roots.
As illustrated in Fig. 1, the indirect adaptive control

law

u ¼ uce þ usi ð4Þ

is comprised of a ‘‘certainty equivalence’’ control term

uce ¼
1

bkðtÞ þ #bðx; tÞ
ð	ðakðtÞ þ #aðx; tÞÞ þ nðtÞÞ ð5Þ

where bkðtÞ þ #bðx; tÞ is bounded away from zero (which
will be ensured later using projection) so that uce is well-
defined, and a ‘‘sliding mode’’ control term usi

usi ¼
ðWaðxÞ þ WbðxÞjucejÞ

b0
sgnðesÞ þ

Wg

b0
sgnðesÞ ð6Þ

The certainty equivalence term is used to exploit the
approximated system dynamics #aðx; tÞ and #bðx; tÞ to
construct the feedback controller. It may also take
advantage of a priori knowledge of system dynamics
akðtÞ and bkðtÞ so as to simplify the unknown dynamics
and facilitate the on-line learning process. Noting the
existence of approximation inaccuracy, the sliding mode
control term is introduced to compensate for approx-
imation errors, improve system robustness, and guar-
antee system stability.
We define the error function nðtÞ ¼ yðdÞ

m þ Zes þ %es

(with Z > 0 as a design parameter) for the reason of
guaranteeing the stability. Let the tracking error be
eðtÞ ¼ ymðtÞ 	 yðtÞ and a measure of the tracking error
be esðtÞ ¼ eðd	1ÞðtÞ þ kd	2e

ðd	2ÞðtÞ þ?þ k1 ’eðtÞ þ k0eðtÞ;
that is, in the frequency domain, esðsÞ ¼ LðsÞeðsÞ with
LðsÞ ¼ sðd	1Þ þ kd	2s

ðd	2Þ þ?þ k1s þ k0 whose roots
are chosen to be in the (open) left-half plane. Also, we
let %esðtÞ ¼ ’esðtÞ 	 eðdÞðtÞ: Note that our control goal is to
drive esðtÞ-0 as t-N and the shape of the error
dynamics is dictated by the choice of the design
parameters in LðsÞ:
Consider the gradient-based update laws:

’yaðtÞ ¼ 	Q	1
a faðxÞes; ð7Þ

’ybðtÞ ¼ 	Q	1
b fbðxÞesuce; ð8Þ

where Qa and Qb are positive definite and diagonal and
serve as adaptation gains for the parameter updates.

Fig. 1. Indirect adaptive control.
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Note that the above adaptation laws do not guarantee
that yaAOa and ybAOb so that we will use a projection
method to ensure this, in particular, to make sure that
bkðtÞ þ #bðx; tÞXb0:
To develop a stable adaptive controller for nonlinear

time-varying systems, some assumptions about the
characteristics of the time-varying dynamics are neces-
sary. Here, we assume that

j’yna;ijpkjesj;

j’ynb; j jpkjesj;

where ’yna;i and ’ynb; j are components of the vectors of ’y
n
a

and ’ynb; respectively, and k is a positive constant. This
assumption is reasonable because the tracking error is
usually large if the plant parameters vary fast. Under the
above assumption, we can have

	½*y Ta Qa ’yna þ *y TbQb ’ynb�pWgjesj;

where *yaðtÞ ¼ yaðtÞ 	 ynaðtÞ and *ybðtÞ ¼ ybðtÞ 	 ynbðtÞ are
the parameter errors, andWg > 0 is a constant indicating
the bounds of parameter rate of change with respect to
jesj: (Similar to linear time-varying systems (Tsakalis &
Ioannou, 1993), a common assumption regarding to
adaptive control for nonlinear time-varying systems is to
assume the boundedness of parameter variations, that is,
we assume ’yna and ’ynb are bounded. However, under this
assumption, the tracking error e can only be proved as
‘‘small in the mean’’ (Diao & Passino, 2000c).)
The stability result of the above indirect adaptive

controller is summarized as follows. Consider the
nonlinear time-varying system (1) and (2) with strong
relative degree d: Assume that (i) akðtÞ and bkðtÞ in (3)
are bounded if x is bounded, (ii) bkðtÞ þ bðx; tÞXb0 for
some known b0 > 0; (iii) joaðx; tÞjpWaðxÞ and

jobðx; tÞjpWbðxÞ with known WaðxÞ and WbðxÞ; (iv)
ymðtÞ; ’ymðtÞ; y; yðdÞ

m ðtÞ are measurable and bounded, (v)
xðtÞ; yðtÞ; ’yðtÞ;y; yðd	1ÞðtÞ are measurable, (vi) 1pdon

with the zero dynamics uniformly exponentially attrac-
tive or d ¼ n; and (vii) j’yna;i jpkjesj and j’ynb; j jpkjesj: Under
these conditions there exist indirect adaptive control law
(4–6) and update law (7,8) such that all internal signals
are uniformly bounded and the tracking error e is
uniformly asymptotically stable. (Refer to Diao and
Passino (2000c) for the proof.)
Note that although the indirect adaptive control law

is based on the approximation of system dynamics, the
condition of persistency of excitation is not required for
the control input or the reference trajectory. This is
because the objective of the adaptive law here is not to
have the approximator converge to the actual system
dynamics, but to have the tracking error converge to
zero. Using the Lyapunov method and without the
persistency of excitation condition, we can prove that
the tracking error is uniformly asymptotically stable,
while the approximation errors are only uniformly
bounded (Diao & Passino, 2000c).

3. Model-based estimation for robust fault diagnosis

Although the adaptive controller developed above
may serve as a fault-tolerant controller, its performance
can generally be further improved by exploiting the
information from a fault-diagnosis unit. This section
presents a model-based estimation and reasoning system
for robust fault diagnosis interfacing multiple models
with an expert supervisory scheme (illustrated in Fig. 2).
Issues of incorporating fault diagnosis with adaptive
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control to achieve integrated fault-tolerant control will
be discussed in the next section.

3.1. Residual generation using multiple models

Note that the plant may operate in many situations:
no fault or different types of faults, possibly with
manufacturing differences and deterioration. Usually,
the faults result in changes of input–output character-
istics of the system so that the faults may be detected by
evaluating the residual which is generated by comparing
the model output with the system output. However, this
residual may be affected by the existence of different
faults so that by inspecting the residual, the faults can
only be detected but not isolated. In such situations, a
‘‘multiple model’’ method may be preferable. The
multiple model approach utilizes different models to
identify different fault situations, and then isolates faults
by comparing the residuals corresponding to different
models.
Assume that there are N possible fault situations and

we have ðN þ 1Þ models fMig
N
i¼0; where the nominal

model M0 corresponds to the situation with no fault,
and the fault modelsMi; i ¼ 1; 2;y;N represent the ith
fault situations. These models may be obtained by using
nonlinear system identification with Takagi–Sugeno
fuzzy systems (as explained later in Section 5). By
running a bank of models on-line (which are selected by
the expert supervisory scheme as we will explain
later), the residuals ri are generated by ri ¼ y 	 #yi;
where y is the system output and #yi is the output of the
model Mi which corresponds to the ith fault situation.
(More discussion on the forms of the system and models
will be given later in the section of performance
evaluation.)

3.2. Decision making with an expert supervisory scheme

The determination of on-line model bank composi-
tion and the evaluation of residual signals are conducted
using an expert supervisory scheme. The advantage of
using an expert system is that the heuristic knowledge of
faults and our experience in handling faults can be easily
incorporated into the expert system in the form of rules,
and the operation of the expert system is transparent so
that we may investigate the residual evaluation process
of the expert system.

3.2.1. On-Line model bank determination

Our experience of working with the monitored system
may provide us some a priori knowledge of the faults,
for instance, the possible types of the faults and the
possible combinations of these faults. According to this,
ðN þ 1Þ models have been established which correspond
to different no-fault or fault situations. Besides, we may
know that there are some relationships among these

situations. For instance, suppose fault i is happening at
present, then the next possible fault situation may be the
existence of fault i together with fault j (a fault that
could occur in the presence of fault i), but not the
situations where there exist three faults under the
assumption that no two faults can occur simultaneously,
or no fault exists if we know that the fault cannot be
self-recovered. Therefore, at each time instant only a
subset of ðN þ 1Þ situations may happen and thus only a
subset of models are required to be on-line to generate
the residuals, which can be summarized as the rule: IF

fault situation i is currently in existence THEN a subset of

models ðSiÞ will be used as the on-line model bank to

generate residuals afterwards. In particular, the rules
may include the following:

* IF there is no fault in existence THEN the model bank

consists of no fault model and all possible single fault

models.
* IF there is a single fault in existence THEN all single

fault models except the one that has been isolated will

be removed from the model bank, and the multiple fault

models including the isolated fault and another possible

fault will be added.
* IF there are two faults in existence THEN the on-line

model bank includes the model corresponding to the

situation with these two faults, and the models

corresponding to the situations with three faults, i.e.,
these two faults and another possible fault.

The advantage of using the fault knowledge to select
the on-line model bank is to reduce the computational
complexity caused by using this multiple model fault
diagnosis approach.

3.2.2. Fault decision logic

Once the residuals are generated, the fault decision
logic is used to diagnose the faults. A sequence of
‘‘minimum residual indices’’ is first generated by

InðkÞ ¼ arg min
iASi

ðriðkÞÞ;

where InðkÞ denotes the index of the model whose
residual is the minimum, which corresponds to the most
appropriate model to represent the system at time
instant k: Note that the change of fault situations results
in the change of the input–output characteristics of the
system. Therefore, the change of index, i.e., the change
of most suitable model, may be used to indicate the
change of fault situations, i.e., the occurrence of new
faults.
The change of index may serve as a fault detector, but

not a fault isolator. Actually, the new index may not
indicate that the new fault is the one corresponding to
this index. This is because during the transient phase,
the residuals corresponding to the on-line models may
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change drastically and some of them may happen to be
very small for a short time (and become large afterwards
since they are not the one corresponding to the new
fault situation). In order to isolate the fault situa-
tions correctly, some logic rules are used to guarantee
that a fault will be isolated only if its corresponding
index remains to be the minimum index at least for T0
seconds (to indicate the suitability of the model). The
time delay term T0 will be used to ensure robustness of
fault diagnosis (which we will discuss later) and its value
may be obtained by trial and error to balance the
robustness and sensitivity of fault isolation. The results
of isolation is represented by a fault index Fn as shown
in Fig. 2. Actually, the fault-diagnosis strategy of using
a time delay term may affect fault sensitivity to some
extent but it is often useful in isolating faults accurately
(which is more important), and it generally does
not affect the sensitivity of fault detection. As a result,
we will have a fault-diagnosis scheme that can detect
a fault relatively fast, but isolate the fault type a
little more slowly but accurately, which is quite
reasonable.

3.2.3. Performance evaluation

To evaluate the above fault-diagnosis method, an
analytical framework has been developed to study its
performance, in particular, the robustness and the fault
sensitivity (Diao & Passino, 2000a, b). The robustness of
fault diagnosis refers to the ability to prevent false
alarms in the presence of modeling uncertainties, that is,
if the system is in the ith fault situation, the fault-
diagnosis system should indicate the ith fault situation
rather than the jth fault situation where jai: The
robustness of the above fault-diagnosis system can be
proved by studying the error dynamics under certain
assumptions of system uncertainty and modeling accu-
racy, i.e., the ith model can represent the system
dynamics in the ith fault situation accurately enough
compared to the modeling uncertainties, and the
difference between the jth model ðjaiÞ and the ith
fault situation is large enough compared to the
modeling uncertainties. Moreover, the time delay term
T0 in the fault-isolation scheme is used to consider the
case where the estimated output of a ‘‘wrong’’ model
approaches the system output for a short period
of time and then departs again. Note that the effects
of the faults are usually large; hence, the above
assumptions can often be satisfied in real applications.
(Refer to Diao and Passino (2000a) for the proof.) Fault
sensitivity of fault diagnosis refers to the ability to
correctly determine the existence of a fault and
then isolate its type. The fault-sensitivity result of the
above fault-diagnosis scheme can also be achieved
using a similar approach (Diao and Passino,
2000b).

4. Achieving active fault-tolerant control

Without any knowledge of the faults, the adaptive
controller is capable of accommodating the faults by
learning and adaptation. In addition, since the adaptive
control approach does not rely on explicit fault
information, it may tolerate the faults that have not
been anticipated. However, since no fault information is
explicitly used, the fault-tolerance ability of this
adaptive control framework solely depends on the
adaptation of parameters. Although the adaptive
scheme may work fine for some incipient faults, for
the faults that significantly change the system dynamics,
the speed of adaptation may be inadequate. (Note that
even small faults may cause drastic changes in system
dynamics.) This motivates us to incorporate the fault
information into the adaptive controller so as to make
the fault-tolerant controller more active. Specifically,
recall the form of the nonlinear system

yðdÞ ¼ ½akðtÞ þ aðx; tÞ� þ ½bkðtÞ þ bðx; tÞ�u

and the certainty equivalence control law

uce ¼
1

bkðtÞ þ #bðx; tÞ
ð	ðakðtÞ þ #aðx; tÞÞ þ nðtÞÞ;

where the terms akðtÞ and bkðtÞ can be used to represent
the known system dynamics. Thus, if we specify (switch)
the akðtÞ and bkðtÞ to be the models corresponding to
different fault situations, according to the results from
fault diagnosis, then the fault information can be
explicitly used by the adaptive controller, i.e., adopting
the known system (fault) dynamics to reinforce the
certainty equivalence control term and to reduce the
burden of adaptation (by starting from a ‘‘closer’’
point).
Hence, we propose a general fault-tolerant control

system framework, as illustrated in Fig. 3, which is
composed of four main parts: the stable adaptive
controller, the robust fault diagnosis unit, the super-
vision scheme, and the multiple-model bank. This active
method of incorporating fault diagnosis and adaptive
control is expected to be effective when large ‘‘jump’’
faults occur. The stable adaptive neural/fuzzy controller
serves as a robust baseline controller to maintain
stability, while the fault-diagnosis unit uses the multiple
model approach to locate and identify the possible fault.
Once the fault is identified, the supervision scheme will
utilize the fault information and pre-computed models
to reconfigure the adaptive controller. By choosing the
‘‘correct’’ known dynamics akðtÞ and bkðtÞ; the major
changes of system dynamics may be captured faster
(compared to only relying on the adaptation scheme), so
that the adaptive controller will ‘‘jump’’ to a closer
region and compensate for modeling errors afterwards.
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5. Simulation examples: fault-tolerant engine control

5.1. Model development for the XTE46 engine

To study the effectiveness of the proposed fault-
tolerant control method, we apply it to the component
level engine cycle model (CLM) of an aircraft jet engine
(General Electric XTE46), which is a simplified,
unclassified version of the original ‘‘Integrated High
Performance Turbine Engine Technology’’ (IHPTET)
engine (Adibhatla & Lewis, 1997). The CLM of the
XTE46 is a thermodynamic simulation package devel-
oped by General Electric Aircraft Engines (GEAE).
This is a sophisticated highly nonlinear dynamic model
where each engine component is simulated. The reason
that GEAE developed such a ‘‘paper engine’’ was in
order to facilitate the design and analysis of engine
control systems before installing them for actual
flights. Thus, the component level model is quite
complicated and so accurate that it can be used as the
‘‘truth model’’ in the control simulation to represent the
real engine.
In order to apply the proposed adaptive control

strategy to the jet engine, we start from developing a
‘‘design model’’. The CLM for the XTE46 aircraft
engine is a multiple-input–multiple-output nonlinear
system (involving schedules, look-up tables, and partial
differential equations). However, GEAE (the authority
on this engine) indicates that the key single-input–single-
output loop (i.e., fuel flow to fan speed loop) is not
tightly coupled with other loops. Therefore, to focus our
theoretical studies, we could assume that the funda-
mental engine dynamic characteristics of interest are
represented by a single-input–single-output, combustor
fuel flow to fan rotor speed system (while the other two
input variables, the exhaust nozzle area and the variable
area bypass injector area, could be properly scheduled as

functions of the power level and the inlet temperature).
To develop the design model for the XTE46 engine, we
conduct nonlinear system identification to approximate
local engine dynamics. Based on the transient data
generated by the CLM, a number of local nonlinear
models are constructed, each of which is in the structure
of Takagi–Sugeno fuzzy systems and is corresponding to
a specific operating condition and engine health situa-
tion. In order to build a ‘‘global’’ engine model
(actually, it is a ‘‘regional’’ model valid in the ‘‘climb’’
region), we conduct nonlinear interpolation among a
grid of these local models. The global engine model can
be viewed to have a hierarchical learning structure,
where we perform local learning to approximate the
local engine dynamics and interpolate these local models
to generate the global model. Note that the nonlinearity
of the engine is different at different operating condi-
tions and for different engine health situations. More-
over, the operating condition of the engine is defined by
four variables: the altitude (ALT), the Mach number
(XM), the difference of temperature (DTAMB), and the
throttle setting represented by power code (PC). The
health of the engine is described by ten quality
parameters including the flows and efficiencies of the
fan (ZSW2 and SEDM2), the compressor tip and hub
(ZSW7D, SEDM7D, ZSW27, and SEDM27), and the
high/low pressure turbines (ZSW41, ZSE41, ZSW49,
and ZSE49). Therefore, although it is theoretically
possible to approximate the engine dynamics by
building one fuzzy system, it is not feasible in practice
because of the huge amounts of data; hence, a
hierarchical model structure is favorable.
The general form of the model can be described as

’x ¼ f ðx; c; pÞ þ gðx; c; pÞu; ð9Þ

y ¼ x1 ð10Þ

y

Certainty Equivalence Control

On-line Approximation

Adaptation Scheme

Sliding Mode Control

Neural/Fuzzy Controller
Stable Adaptive

Generator
Residual Decision

Maker

Robust Fault Diagnosis Unit

System

Model-Base

Supervisory Scheme

r  u

Fig. 3. Integrated fault-tolerant control.

Y. Diao, K.M. Passino / Control Engineering Practice 10 (2002) 801–817808



and

f ðx; c; pÞ ¼

PN
i¼1

%
f ðx; ci; piÞmiðc; pÞPN

i¼1 miðc; pÞ
;

gðx; c; pÞ ¼

PN
i¼1

%
gðx; ci; piÞmiðc; pÞPN

i¼1 miðc; pÞ
;

%
f ðx; ci; piÞ

¼

PR
j¼1½aj;0ðci; piÞ þ aj;1ðci; piÞx1 þ aj;2ðci; piÞx2�

%
mjðx1ÞPR

j¼1
%
mjðx1Þ

;

%
gðx; ci; piÞ ¼

PR
j¼1 aj;3ðci; piÞ

%
mjðx1ÞPR

j¼1
%
mjðx1Þ

;

where u ¼WF36 is the system input (the combustor fuel
flow), and x ¼ ½x1;x2�T ¼ ½XNL;XNH�T represents the
system states (the fan rotor speed and core rotor speed),
which are positive since the speed cannot be negative
and xASx (a valid speed region). The vector c ¼
½ALT;XM;DTAMB;PC�T represents the known oper-
ating condition of the engine, and p ¼ ½ZSW2; SEDM2;
ZSW7D; SEDM7D; ZSW27; SEDM27; ZSW41;
ZSE41; ZSW49; ZSE49�T represents the unknown
quality parameter vector. The values of ci and pi specify
the nodes where we establish the local models. The
functions f ¼ ½f1; f2�T and g ¼ ½g1; g2�T are 2� 1 func-
tion vectors obtained through fuzzy interpolation, and
miðc; pÞ are interpolating membership functions. The
functions

%
f ¼ ½

%
f 1;

%
f 2�T and

%
g ¼ ½

%
g1;

%
g2�T are 2� 1 func-

tion vectors obtained through nonlinear system identi-
fication and are in the form of Takagi–Sugeno fuzzy
systems, where aj;0; aj;1; aj;2; and aj;3 are 2� 1 para-
meter vectors of the (linear) consequent functions, and

%
mjðx1Þ are membership functions describing local non-
linearity with respect to x1: (Refer to Diao and Passino
(2001b, 2001a) for more details on how we have
developed the nonlinear engine model using Takagi–
Sugeno fuzzy systems.)
By inspecting the parameters that result from the

identification process we found that a1j;3ðci; piÞ >
a2j;3ðci; piÞ > 0 and a2j;2ðci; piÞoa1j;2ðci; piÞo0 for any i ¼
1; 2;y;N; j ¼ 1; 2;y;R: Basically, these sign condi-
tions explain some physical dynamics of the engine. In
particular, the relationships among the state variables
and the input variable are relevant for stability analysis
of the system. For instance, we have both a1j;3ðci; piÞ > 0
and a2j;3ðci; piÞ > 0; which indicate that if the fuel flow is
increased, both the fan rotor speed and the core rotor
speed will be increased. These constraints on the model
parameters are important to design and analyze the
stable adaptive control system. For example, by know-
ing a1j;3ðci; piÞ > 0 for any operating conditions and
quality parameters (and

%
mjðx1Þ > 0 and

PR
j¼1

%
mjðx1Þa0

by the definition of Takagi–Sugeno fuzzy systems), we
obtain

%
g1ðx; ci; piÞ > 0 and thus g1ðx; c; pÞ > 0 for all

x; c; p: This implies the ‘‘relative degree’’ of the engine is

one. In addition, more details on how to use these
relationships to determine the exponentially attractive
zero dynamics of the engine can be found in the stability
analysis part of the paper (Diao & Passino, 2001b).
Finally, note that via similar nonlinear identification
studies, we showed that an interpolation of strict
feedback form models could not adequately represent
the engine dynamics.

5.2. Adaptive controller design

We develop an adaptive controller for the fault-
tolerant engine control problem using the indirect
method. We choose to design the indirect controller
because we could facilitate the indirect adaptive
controller by using our developed models to represent
the system dynamics in different fault situations.
Consider the engine in the form of

’y ¼ f1ðx; c; pÞ þ g1ðx; c; pÞu

¼ ½akðc; p0; tÞ þ aðx; c; pÞ� þ ½bkðc; p0; tÞ þ bðx; c; pÞ�u;

where xðtÞ and yðtÞ are measurable according to the
properties of the component level engine model. By
studying dynamics of the developed nonlinear model, we
know that g1ðx; c; pÞ > 0:32 so that we can set b0 ¼ 0:32:
We use our developed engine model to represent the
nominal model dynamics akðc; p0; tÞ and bkðc; p0; tÞ by
setting the quality parameters to be the nominal value
p0; and they are bounded if x is bounded since the model
is in the form of a Takagi–Sugeno fuzzy system. The
unknown dynamics aðx; c; pÞ and bðx; c; pÞ describe both
the model uncertainty caused by nominal model
inaccuracy and system changes (time-varying character-
istics) due to the fault effects. They will be approximated
by two radial basis function networks #a and #b with 11
receptive field units for each. The inputs to the neural
networks include two state variables (XNL and XNH),
and the parameters are updated on-line to capture the
unknown time-varying dynamics affected by model
inaccuracy and faults so that fault-tolerance can be
achieved. Note that the stable adaptive controller will
ensure the stability of x1; and the uniform exponential
attractivity of the engine zero dynamics will ensure the
stability of the uncontrollable state x2: Since the relative
degree of the system is 1, the error dynamics are simple
ðesðtÞ ¼ eðtÞ and %esðtÞ ¼ 0Þ: The reference trajectory is
defined by passing a reference signal through a linear
reference model YmðsÞ=RðsÞ ¼ 3=ðs þ 3Þ so that ymðtÞ
and ’ymðtÞ are measurable and bounded.
Taking into account the engine dynamics, the model

uncertainty is described by Wa ¼ 0:01 and Wb ¼ 0:01:
Note that we cannot explicitly know the model
uncertainty so that the parameters Wa and Wb are
treated as design parameters and tuned by trial and
error to achieve good control performance. As for the
parameter Wg in (6), since its effect on the sliding mode
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control term is the same as that of Wa; we just treat it as
part of Wa and do not tune it explicitly. In addition, the
adaptation gains are tuned to be Q	1

a ¼ 5e 	 8 and
Q	1

b ¼ 1e 	 17; and the design parameter Z ¼ 1: Since
the time-varying dynamics caused by both incipient
faults and jump-like faults satisfy the assumption on
parameter rate of change, we could apply the stable
adaptive control method developed above to solve the
fault-tolerant engine control problem.
Generally, we start the tuning process based on the

nonlinear engine model (the design model) that we have
developed using nonlinear system identification techni-
ques. We first remove the adaptation mechanism (by
setting the adaptation gains to zero) and tune the
approximation error bounds Wa and Wb in order to
stabilize the system. At this initial step, the approxima-
tion error bounds are usually large because they
quantify the unknown system dynamics at this moment.
Next, we increase the adaption gains to add the on-line
learning ability to the adaptive controller, and reduce
the approximation error bounds subsequently. The
above procedure is iterated until certain good control
performance has been achieved and further increasing
the adaptation gains may cause oscillation. Afterwards,
we apply the controller to the component level model
simulation of the XTE46 engine and do some further
tuning. This XTE46 simulator has been developed by
GEAE to be very complicated and accurate so that the
simulation conducted on this simulator is very close to
that on the real engine for actual flights.
Note that the sliding mode control term can introduce

a high-frequency signal to the plant which may excite
unmodeled dynamics. To avoid this, we use a
‘‘smoothed’’ sliding mode control term

usi ¼
ðWaðxÞ þ WbðxÞjucejÞ

b0
satðes=eÞ þ

Wg

b0
satðes=eÞ;

where e > 0 and

satðxÞ ¼

1; if xX1;

x; if 	 1oxo1;
	1; if xp	 1:

8><
>:

By using this smoothed control action, the tracking
error will converge asymptotically to an e-neighborhood
of e ¼ 0 (Spooner & Passino, 1996). Here, we choose
e ¼ 10:

5.3. Fault-diagnosis unit design

Note that the faults affect the engine dynamics through
engine quality parameters, and the engine quality
parameters are also affected by initial engine variation
(due to manufacturing differences) and engine deteriora-
tion. Hence, the quality parameter vector p in Eq. (9)
can be represented by p ¼ p0 þ piev þ pd þ pf ; which is

composed of four parts: the nominal value ðp0 ¼ 1Þ; the
initial engine variation due to manufacturing differences
ðpievÞ; the quality parameter adjustment resulted from
engine deterioration ðpdÞ; and the quality parameter
change due to the faults ðpf Þ: Note that the engine
quality parameters are actually unknown (and unmea-
surable as well). Hence, we represent the engine
dynamics of different fault situations as f ðx; c; p0i Þ and
gðx; c; p0i Þ with p0i indicating the expected quality
parameters with respect to the corresponding fault
situation i: By this, we consider the effects of initial
engine variation and engine deterioration as model
uncertainty. Since the effects of engine faults are larger
than the initial engine variation and engine deteriora-
tion, it is valid and the assumptions to guarantee the
robustness of fault sensitivity of fault diagnosis can be
satisfied. (For simplicity, by assuming that the engine
deterioration affects ten quality parameters in the same
way, we use a deterioration index Id to represent the
degree of deterioration. Id ¼ 0 indicates that there is no
deterioration. Id ¼ 1 implies the maximum deterioration
usually encountered.)
We build a series of models corresponding to different

fault situations. For simplicity, we only consider two
fault types: fan fault and compressor hub fault. The fan
fault will affect two engine quality parameters: the fan
flow (ZSW2) and the fan efficiency (SEDM2). The
compressor hub fault will also affect two engine quality
parameters: the compressor hub flow (ZSW27) and the
compressor hub efficiency (SEDM27). Moreover, each
fault may have three different levels: small fault (the
corresponding variable in pf is 	1%), medium fault (the
corresponding variable in pf is 	2%), and large fault
(the corresponding variable in pf is 	3%). For example,
a small fan fault is characterized by pf ;ZSW2 ¼ 	1% and
pf ;SEDM2 ¼ 	1%: (If there is no fault, the corresponding
variable in pf is 0.) Note that here we only consider the
‘‘local’’ fault, that is, only the physical characteristics
(and thus the flow and efficiency parameters) of the
corresponding engine component are affected. For
instance, if a large compressor hub fault occurs, it will
affect the flow ðpf ;ZSW27 ¼ 	3%Þ and efficiency
ðpf ;SEDM27 ¼ 	3%Þ of the compressor hub accordingly,
but have no effects on the flow ðpf ;ZSW2 ¼ 0%Þ and
efficiency ðpf ;SEDM2 ¼ 0%Þ of the fan.
Using Takagi–Sugeno fuzzy systems we generated 16

models including one nominal model (no fault), six
single-fault models (three models corresponding to
small, medium, and large fan fault, respectively, and
three models of small, medium, and large compressor
hub fault), and nine double-fault models (small fan fault
with small compressor hub fault, small fan fault with
medium compressor hub fault, etc.). Not all these
models need to be run on-line. They are picked by the
model-bank determinator according to the current fault
scenario.
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5.4. Component level model simulation

We let the component level engine model run at the
operating condition of ALT ¼ 15000; XM ¼ 0:7;
DTAMB ¼ 0; and PC ¼ 46: For quality parameters of
the engine, we set the initial engine variation to
be piev ¼ ½0:1%; 0:1%; 0:2%; 0:1%; 	 0:1%; 0; 	 0:3%;
0:2%; 	 0:1%; 0:1%�; and the engine deterioration index
to be 0.1 (slight deterioration). We first consider a fault-
free engine. Without any knowledge of the system, that
is, akðc; p0; tÞ ¼ bkðc; p0; tÞ ¼ 0; the adaptive controller is
capable of improving control performance by learning
and adaptation, as shown in Fig. 4, even if it may take a
relatively long time. (Note that we use a sinusoidal
reference input signal to simulate a smooth change of
the desired fan speed. The validation of applying this
signal to the XTE46 engine has received approval from
GE Aircraft Engines in the sense of studying the effects
of fault accommodation.) Indeed, it is desirable to
incorporate a nominal model (developed above using
nonlinear system identification techniques) into the
controller so as to start adaptation at a closer point
and learn faster. As shown in Fig. 5, the incorporation
of the knowledge on engine dynamics has effectively
reduced the burden of adaptation and increased the
control performance.
In the case where a small fault or an incipient fault

occurs, the system dynamics may not change much or
fast. Thus, we still expect the adaptive controller with

the same nominal model (i.e., no model switching is
involved according to the fault information from the
fault-diagnosis unit) to perform well. For instance,
Fig. 6 shows the control result for an engine with a small
fan fault ðpf ;ZSW2 ¼ 	1% and pf ;SEDM2 ¼ 	1%Þ; which is
introduced at Tf ¼ 6 s as an abrupt-type fault. The
indirect adaptive controller is capable of quickly
accommodating the fault. This is because its adaptation
scheme can let the on-line approximators learn the
profile of the fault so that the control law can be
modified accordingly.
However, if the system changes drastically according

to some large faults, the nominal model may not be
suitable and the adaptation may not be fast enough.
Thus, a fault-diagnosis unit is desired to determine the
fault type and then reconfigure the adaptive controller
by switching the nominal model into a corresponding
fault model. Fig. 7 shows the performance of such an
integrated fault-tolerant controller for a fault scenario,
where an abrupt large compressor hub fault ðpf ;ZSW27 ¼
	3% and pf ;SEDM27 ¼ 	3%Þ occurs at Tf ¼ 6 s: The
occurrence of abrupt large compressor hub fault affects
the system performance significantly. However, the
fault-tolerant controller accommodates for the faults
quite well by identifying the fault type with the fault-
diagnosis unit and then reinforce the adaptive controller
by adopting the corresponding fault model.
The operation of the fault-diagnosis unit is illustrated

in Fig. 8. Since the engine is started from the fault-free
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Fig. 4. Performance of the adaptive controller (without the nominal model) for a fault-free engine.
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situation, only seven models need to be applied on-line:
three fan fault models corresponding to different fault
sizes (small: Index 1, medium: Index 2, and large: Index

3), three compressor hub fault models corresponding to
different fault sizes (small: Index 4, medium: Index 5,
and large: Index 6), and one fault-free nominal model
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Fig. 5. Performance of the adaptive controller (with the nominal model) for a fault-free engine.
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Fig. 6. Performance of the adaptive controller for a small fan fault.

Y. Diao, K.M. Passino / Control Engineering Practice 10 (2002) 801–817812



(Index 0). For clarity, in Fig. 8, we only show the
residuals of three models: the fault-free model (indicated
by the solid line), the large fan fault model (indicated by
the dotted line), and the large compressor hub fault

model (indicated by the dashed line). The fault is
detected shortly after it occurs (indicated by the
minimum residual index) and isolated at 6:5 s (indicated
by the fault index, where we set the time delay term
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Fig. 7. Performance of the integrated fault-tolerant controller for a large compressor hub fault.
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Fig. 8. Operation of the fault-diagnosis unit.
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T0 ¼ 0:5 s). Once the fault is identified, the known
dynamics akðtÞ and bkðtÞ in the adaptive control law
(the certainty equivalence control term, Eq. (5))
are ‘‘switched’’ from the nominal (fault-free) model
to the large compressor hub fault model. After that,
the control performance is improved by using
the adaptation scheme to compensate for model
uncertainties.
Note that in order to obtain a sensitive fault-detection

scheme, any changes in the minimum residual index (i.e.,
the change of the most suitable model) will be
considered as indicating the occurrence of new faults;
hence, the minimum residual index is used to detect the
fault promptly. Furthermore, considering the presence
of modeling uncertainties, the time delay term T0 is
included to achieve the robustness of the fault isolation
scheme. In general, there is a trade-off between
robustness and sensitivity of fault isolation. Improving
the robustness to modeling uncertainties may cause the
fault-isolation scheme to be insensitive.
Also note that above we applied seven models on-line.

Alternatively, the on-line model bank can only be
composed of models corresponding to large faults but
not small or medium faults. This would help to reduce
the number of on-line models and is valid because for
those small or medium faults, the adaptive controller
itself can learn the fault effects quickly so that there is no
need for model switching guided by the fault-diagnosis
unit.

The effectiveness of integrating the fault-diagnosis
unit with the adaptive controller can be further
demonstrated by comparing its performance with that
of a fault-tolerant controller which uses an adaptive
control scheme but is not enhanced by the fault-
diagnosis unit. As shown in Fig. 9, although it does
achieve fault accommodation, a much longer time is
needed.
Indeed, the adaptive controller plays the major role in

achieving system stability and robustness in the presence
of uncertainties such as engine-to-engine manufacturing
differences, engine deterioration during normal
operation, and the occurrence of faults. Here, we
examine an engine with larger initial engine varia-
tion ðpiev ¼ ½0:3%; 0:5%; 0:2%; 0:5%; 0:4%; 0:3%; 	0:3%;
0:5%; 	 0:5%; 0:5%�Þ and severe engine deterioration
(the engine deterioration index is 0.7). The component
level engine model is run at the same operating
condition (ALT ¼ 15000; XM ¼ 0:7; DTAMB ¼ 0;
and PC ¼ 46) with same fault scenario (where an abrupt
large compressor hub fault occurs at Tf ¼ 6 s). As
shown in Fig. 10, the fault-tolerant controller is still well
capable of accommodating the fault.
Actually, we have also tested the fault-tolerant

controller on many other cases, i.e., different operating
conditions, different initial engine variation and engine
deterioration, different fault sizes, and different fault
types (jump faults or incipient faults). The effectiveness
of the proposed intelligent fault-tolerant controller has
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Fig. 9. Performance of the adaptive controller not enhanced by the fault-diagnosis unit.

Y. Diao, K.M. Passino / Control Engineering Practice 10 (2002) 801–817814



been demonstrated for all the tested cases, but in the
interest of brevity we do not show those results here. It is
also worth mentioning that this integrated fault-
tolerance scheme is mostly favorable for large jump
faults, whereas for incipient faults or small jump faults,
the adaptive controller may be capable of learning the
fault effects relatively quickly and maintain good
performance so that the fault-diagnosis unit may not
be needed.

6. Conclusion

Fault-tolerant system design for nonlinear time-
varying systems can be quite challenging. Most existing
studies on fault-diagnosis and fault-tolerant control
have relied on a linear nominal model of the plant. In
practical situations, however, plants are nonlinear and
the faults often force plants away from local linear
behaviors into a nonlinear operating region. Further-
more, the existing work in the literature mainly
considers fault-tolerant control in the context of time-
invariant systems as if a fault has already occurred,
while the reality is that both incipient and abrupt faults
are naturally time-varying phenomena. In this paper, we
have achieved fault-tolerant control via on-line approx-
imation-based stable adaptive neural/fuzzy control
methods which is designed for a general class of
nonlinear time-varying systems (in the input–output
feedback linearizable from). This class of systems is

large enough so that it is not only of theoretical interest
but also of practical applicability (e.g., to the fault-
tolerant control problem of the General Electric XTE46
engine that we encountered in a project funded by
NASA). Uniform boundedness of all internal signals and
uniform asymptotic tracking of a reference signal have
been obtained under the assumption of bounded
parameter rate of change. This adaptive controller has
also been incorporated with a robust fault-diagnosis unit
to achieve active fault-tolerant control. Since the issue of
incorporating (switching) known system dynamics (cor-
responding to the fault information) has already been
considered in the model form and adaptive control laws,
the stability of the integrated system is guaranteed.
Note that this paper is not only motivated by the

status of the literature but also with the application to
fault-tolerant control for the General Electric XTE46
engine. Due to the complexity of modeling jet engines,
only local linear models are reported to be used, which
are relatively easy to build but generally not accurate.
The fault-tolerant system design presented in this paper
is based on a hierarchical learning structure of nonlinear
system modeling. This modeling strategy is quite general
so that not only has it been used to construct the model
of the jet engine but also it can be applied to many other
applications. Moreover, the resulting model is an input–
output feedback linearizable form so that we can apply
nonlinear adaptive control to it.
The effectiveness of the fault-tolerant system design

methodologies proposed in this paper has been
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Fig. 10. Performance of the integrated fault-tolerant controller for a ‘‘poor’’ engine.
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demonstrated via the component level model simulation
of the XTE46 engine. Unlike the typical engine models
that are used in some of the literature, this XTE46
simulator has been developed by GEAE to be very
complicated and accurate so that the simulation
conducted on this simulator is very close to that on
the real engine for actual flights. According to the
generality of the methodology, the proposed fault-
tolerant controller may be applied to many other
applications such as fault-tolerant aircraft control or
longitudinal control of a vehicle within an automated
highway system. However, similar to the jet engine
control problem, since the controller properties are
derived based on the mathematical model of the actual
physical system, if the system model is reasonably
accurate, as for the nonlinear model developed for the
XTE46 engine, then the performance metrics (i.e.,
stability, robustness, fault sensitivity) will take on real
physical meanings. Otherwise, the value of mathema-
tical analysis may be limited.
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