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Abstract— Although antiskid braking systems (ABS) are de-
signed to optimize braking effectiveness while maintaining steer-
ability, their performance often degrades for harsh road condi-
tions (e.g., icy/snowy roads). In this brief paper we introduce
the idea of using the fuzzy model reference learning control
(FMRLC) technique [1] for maintaining adequate performance
even under such adverse road conditions. This controller utilizes
a learning mechanism which observes the plant outputs and
adjusts the rules in a direct fuzzy controller so that the overall
system behaves like a “reference model” which characterizes the
desired behavior. The performance of the FMRLC-based ABS
is demonstrated by simulation for various road conditions (wet
asphalt, icy) and transitions between such conditions (e.g., when
emergency braking occurs and the road switches from wet to icy
or vice versa).

I. INTRODUCTION

NTISKID braking systems (ABS) present a challeng-

ing control problem since there can be significant
brake/automotive system parameter variations (e.g., due
to brake pad coefficient of friction changes or road
slope variations) and environmental influences (e.g., due
to adverse road conditions). While conventional control
approaches [2]-[4] and even direct fuzzy/knowledge based
approaches [5]-[8] have been successfully implemented, their
performance may still degrade when adverse road conditions
are encountered. The basic reason for this performance
degradation is that the control algorithms have limited ability
to learn how to compensate for the wide variety of road
conditions that exist. In this paper we will investigate the
role that learning controllers can take in enabling ABS to
compensate for adverse road conditions.

A “learning system” possesses the capability to improve its
performance over time by interaction with its environment.
A learning control system is designed so that its “learning
controller” has the ability to improve the performance of
the closed-loop system by generating command inputs to the
plant and utilizing feedback information from the plant. The
learning mechanism in the fuzzy model reference learning
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control (FMRLC) system that we design for the ABS will
monitor the performance of a fuzzy controller and tune it
to adapt to adverse road conditions as they are encountered.
This FMRLC was first introduced in [1], [9], [10] and it grew
from ideas in linguistic self-organizing control (SOC) [11] and
conventional model reference adaptive control (MRAC) [12].
In fact, it has provided significant improvements over the SOC
approach for enhanced performance feedback and knowledge
base modification [1], [9] and has compared favorably to the
MRAC for a ship steering application [13].

In this paper we illustrate that the FMRLC provides an
effective solution to the problem of compensating for certain
adverse road conditions. We begin by describing the ABS un-
der consideration. Next, we illustrate the FMRLC performance
for a vehicle during braking on dry asphait, wet asphalt, and
an icy surface. Finally, we study FMRLC performance for
transitions between such road conditions. In particular, we
study braking effectiveness when there are transitions between
icy and wet road surfaces. This paper is an expanded version
of the work reported in [14].

In Section II we will overview the FMRLC technique. In
Section IIT we describe the ABS problem while in Section IV
we provide simulation results that give an initial assessment of
the performance of the FMRLC for ABS. Section V provides
some concluding remarks.

II. Fuzzy MODEL REFERENCE LEARNING CONTROL

The FMRLC, which is shown in Fig. 1, utilizes a learning
mechanism that: 1) observes data from a fuzzy control system
[i.e., y,.(kT) and y(kT)]; 2) characterizes its current perfor-
mance; and 3) automatically synthesizes and/or adjusts the
fuzzy controller so that some prespecified performance objec-
tives are met. These performance objectives are characterized
via the reference model shown in Fig. 1. In an analogous
manner to conventional MRAC where conventional controllers
are adjusted, the learning mechanism seeks to adjust the fuzzy
controller so that the closed-loop system [the map from y,.(kT’)
to y(kT)] acts like a prespecified reference model {the map
from y,.(kT") to y,,,(kT)]. Next we describe each component
of the FMRLC in more detail.

A. The Fuzzy Controller

The process in Fig. 1 is assumed to have  inputs denoted by
the r-dimensional vector u(kT) = [u1(kT) - - - u.(kT)]* (T is
the sample period) and s outputs denoted by the s-dimensional
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Fig. 1.

Architecture for the FMRLC.

vector y(kT) = [y1(kT) - - - ys(kT)]*. Most often the inputs
to the fuzzy controller are generated via some function of
the plant output y(kT) and reference input y,.(kT). Fig. 1
shows a special case of such a map that was found useful
in many applications. The inputs to the fuzzy controller are
the error e(kT) = [e1(kT)---es(kT)]* and change in error
c(kT) = [c1(kT) -+ cs(KT)]? defined as

e(kT) = y,(kT) — y(kT), ¢))
«(T) = e(kT) — eT(kT - T)’ @

respectively, where y,.(ET) = [y, (kT) - - - y.,(kT)]* denotes
the desired process output.

In fuzzy control theory, the range of values for a given
controller input or output is often called the “universe of
discourse” [15]. Often, for greater flexibility in fuzzy controller
implementation, the universes of discourse for each process
input are “normalized” to the interval [—1, +1] by means of
constant scaling factors. For our fuzzy controller design, the
gains g, 9., and g, were employed to normalize the universe
of discourse for the error e(kT'), change in error ¢(kT), and
controller output u(kT'), respectively (e.g., g, = [ge,, " - - ge. ]!
so that g, e;(kT') is an input to the fuzzy controller). The gains
g, are chosen so that the range of values of g, e;(kT) lie on
[-1,1] and g, is chosen by using the allowed range of inputs
to the plant in a similar way. The gains g, are determined by
experimenting with various inputs to the system to determine
the normal range of values that c(kT") will take on; then g, is
chosen so that this range of values is scaled to [~1, 1].

We utilize 7 multiple-input single-output (MISO) fuzzy
controllers, one for each process input u,, (equivalent to using
one MIMO controller). The knowledge base for the fuzzy
controller associated with the nth process input is generated
from IF-THEN control rules of the form:

Ifé isEjand - -- andé, is E* and
&isCland --- and &, is C™
S TTd ke,
Then i, is U} ™

where €, and ¢, denote the linguistic variables associated
with controller inputs e, and c,, respectively, i, denotes the

linguistic variable associated with the controller output wu,,, E‘Z
and C® denote the bth linguistic value associated with &,
and ¢,, respectively, and Uj %™ denotes the consequent
linguistic value associated with 4,. The above control rule
may be quantified by utilizing fuzzy set theory to obtain a
fuzzy implication of the form:

IfE{and - and E¥andCland - -- and CT"
Then U} % boom

where Ef,Cg, and Uj~*!™ denote the fuzzy sets that
quantify the linguistic statements “¢, is Ef;,” “, is C®,” and
“liy, is U >%b ™ > respectively. This fuzzy implication can
be represented by a fuzzy relation

RZL'”'" = (E{ X oo X Ef) X (C{ X e x CT)
x Uprokbem, 3)

A set of such rules forms the “rule-base” which characterizes
how to control a dynamical system. We use triangular member-
ship functions for the input and output (normalized) universes
of discourse, Zadeh’s compositional rule of inference, and
the standard center-of-gravity (COG) defuzzification technique
[15].

B. The Reference Model

The reference model provides a capability for quantifying
the desired performance. In general, the reference model may
be any type of dynamical system (linear or nonlinear, time-
invariant or time-varying, discrete or continuous time, etc.).
The performance of the overall system is computed with
respect to the reference model by generating an error signal
Yo(KT) = [ye, - -ye,]* where

Y(kT) = y,,(kT) — y(kT). )

Given that the reference model characterizes design criteria
such as rise time and overshoot and the input to the reference
model is the reference input y,.(kT"), the desired performance
of the controlled process is achieved if the learning mechanism
forces y.(kT') to remain very small for all time; hence, the
error y,(kT) provides a characterization of the extent to
which the desired performance is achieved at time k7. If the
performance is met (y,.(kT") ~ 0) then the learning mechanism
will not make significant modifications to the fuzzy controller.
On the other hand if y,(kT) is big, the desired performance
is not achieved and the learning mechanism must adjust the
fuzzy controller. Next we describe the operation of the learning
mechanism.

C. The Learning Mechanism

As previously mentioned, the learning mechanism performs
the function of modifying the knowledge base of a direct
fuzzy controller so that the closed-loop system behaves like
the reference model. These knowledge base modifications
are made by observing data from the controlled process,
the reference model, and the fuzzy controller. The learning
mechanism consists of two parts: a fuzzy inverse model and a
knowledge base modifier. The fuzzy inverse model performs
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the function of mapping y.(kT") (representing the deviation
from the desired behavior), to changes in the process inputs
p = [p1---p.|* that are necessary to force y,(kT) to zero. The
knowledge base modifier performs the function of modifying
the fuzzy controller’s knowledge base to affect the needed
changes in the process inputs. More details of this process are
discussed next.

The fuzzy inverse model was developed in [1], [9] by
investigating methods to alleviate the problems with using
the inverse process model in the linguistic SOC framework
of Procyk and Mamdani [11]. Procyk and Mamdani’s use
of the inverse process model depended on the use of an
explicit mathematical model of the process (and its inverse)
and ultimately on restrictive assumptions about the underly-
ing physical process (which cause significant difficulties in
applying their approach). Using the fact that most often a
control engineer will know how to roughly characterize the
inverse model of the plant, the authors in [1], [9] introduce
the idea of using a fuzzy system to map y,(k7") and possibly
functions of y,(kT) (or process operating conditions), to the
necessary changes in the process inputs p(kT). This map is
called the “fuzzy inverse model” since information about the
plant inverse dynamics is used in its specification. Note that
similar to the fuzzy controller, the fuzzy inverse model shown
in Fig. 1 contains normalizing scaling factors, namely g, _, g, _,
and g, for each universe of discourse.

Given that gy, Y., and gy, Y., are inputs to the fuzzy
inverse model, the knowledge base for the fuzzy inverse model
associated with the nth process input is generated from fuzzy
implications of the form

IfY; and--- and YF andY/} and --- and Y7
Then Pj- kb

where Y2 and Y denote the bth fuzzy set for the error ye,
and change in error y.,, respectively, associated with the ath
process output and PJ %™ denotes the consequent fuzzy
set for this rule describing the necessary change in the nth
process input. As with the fuzzy controller we utilize triangular
membership functions for both the input and output universes
of discourse, Zadeh’s compositional rule of inference, and
COG defuzzification.

The knowledge base modifier for the FMRLC also grew
from research performed on the linguistic SOC [11], [1], [9].
In the linguistic SOC framework, knowledge base modifi-
cation was performed on the overall fuzzy relation (R, =
Ujooo kg m B 807 used to implement the fuzzy con-
troller. However, this method of knowledge base modification
can be computationally complex due to the fact that R, is
generally a very large array. In [1], [9] the authors presented a
new knowledge base modification algorithm which increases
computational efficiency by modifying the membership func-
tions of consequent fuzzy sets U %D ™ rather than the
fuzzy relation array R,.

Given the information about the necessary changes in the
input as expressed by the vector p(kT), the knowledge base
modifier changes the knowledge base of the fuzzy controller
so that the previously applied control action will be modified

by the amount p(kT). Therefore, consider the previously
computed control action u(k7 — T'), which contributed to the
present good/bad system performance. Note that e(kT — T)
and ¢(kT — T') would have been the process error and change
in error, respectively, at that time. By modifying the fuzzy
controller’s knowledge base we may force the fuzzy controller
to produce a desired output w(kT — T) + p(kT).

Assume that only symmetric membership functions are
defined for the fuzzy controller’s output so that creokoyem
denotes the center value of the membership function associated
with the fuzzy set UJ» %™ Knowledge base modification
is performed by shifting centers of the membership functions
of the fuzzy sets UJ*% ™ which are associated with the
fuzzy implications that contributed to the previous control
action u(k7T — T). This modification involves shifting these
membership functions by an amount specified by p(kT) =
[p1(kT) -+ - pr(kT)]t so that

g (T = kb

n n

(kT - T)+ pu(kT). (5)

The degree of contribution for a particular fuzzy implication
whose fuzzy relation is denoted R, %5 ™ is determined by
its “activation level,” defined by

&b () = minfugs (ea (), - s (es(#)),
pei(ea(t), -+ mep (cs(8)} ©)

where 4 denotes the membership function of the fuzzy set
A. Only those fuzzy implications R *4™ (kT —T') whose
activation level &% %L ™(kT — T) > 0 are modified;
all others remain unchanged. It is important to note that
our rule-base modification procedure implements a form of
local learning and hence utilizes memory. In other words,
different parts of the rule-base are “filled in” based on different
operating conditions for the system, and when one area of the
rule-base is updated, other rules are not affected. Hence, the
controller adapts to new situations and also remembers how
it has adapted to past situations. This justifies the use of the
term “learning” rather than “adaptive” (for more details on
this point see {16], [1], [9]).

D. Design Procedure

Note that although it is often not highlighted, most learn-
ing/adaptive control approaches assume that an initial con-
troller structure and parameters are given (e.g., initial gains
must be known a priori in adaptive control approaches). As
such initial parameters can impact the overall performance,
in what follows we provide a procedure to pick such initial
parameters (i.e., the normalizing gains) for the FMRLC.

1) Select the controller gains g, associated with the de-
sired output change y.(kT) such that each universe of
discourse is mapped to the interval [—1,1].

2) Choose the controller gain g,,, to be the same as for the
fuzzy controller output gain g,,. This will allow p;(kT')
to take on values as large as the largest possible inputs
u; (KT).

3) Assign the numerical value O to the scaling factors as-
sociated with the changes in the desired output changes
(i.e., all elements of g, are set equal to 0).
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4) Apply a step input to the process which is of a magnitude
that may be typical for the process during normal op-
eration. Observe the process response and the reference
model response.

5) Three cases:

a) If there exist unacceptable oscillations in a given
process output response about the reference model
response, then increase the associated element of
g,.. Go to step 4).

b) If a given process output response is unable to
“keep up” with the reference model response, then
decrease the associated element of 9,.- Go to step
4).

c) If the process response is acceptable with re-
spect to the reference model response, then the
controller design is completed.

For the application presented in this paper, the above gain
selection procedure has proven very successful. However,
given that the procedure is a result of simulation experience
with the FMRLC rather than strict mathematical analysis, it
is possible that it will not work for all processes. For some
applications (although none of the ones studied in [1], [9],
[13], [10]), the procedure may result in an unstable process. In
such situations, it may be necessary to modify other controller
parameters such as the controller sampling period T or the
number of fuzzy controller rules. Clearly, the stability analysis
of the FMRLC is an important research direction. Additional
research directions, a discussion of the limitations of the
FMRLC, and a comparative analysis of FMRLC and MRAC
are provided in [1], [9], and [13].

III. ANTISKID BRAKING SYSTEMS

The objective of the FMRLC-based ABS system is to
regulate wheel slip to maximize the coefficient of friction
between the tire and road for any given road surface. In
general, the coefficient of friction 1 during a braking operation
can be described as a function of slip A, which for a braking
operation is defined as

Vu(t)
Ry
A0) »

R,

— Wy(t)
Alt) =

where wy, (t) is the angular velocity of the wheel, V,(t) is the
velocity of the vehicle, and R,, is the radius of the tire. Since
the term (V,,(t)/R,,) is the angular velocity of the vehicle with
respect to the tire angular velocity, we will sometimes denote
this quantity by w,(t). The braking coefficient of friction as a
function of slip u(A) was measured in [17], [18]. The results
of these experiments were approximated for dry asphalt, wet
asphalt, and ice as shown in Fig. 2 (we use these data in all our
simulations in Section IV). As one would expect, the braking
coefficient of friction is largest for dry asphalt, slightly reduced
for wet asphalt, and significantly reduced for ice. From @)

8
£
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: i
o ‘Wet Asphalt
:
2
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0.1
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Brake Slip (%)

Fig. 2. Road-tire friction coefficients (x())) versus slip ratio A for various
road surfaces.

and Fig. 2 observe that 0 % slip represents the free rolling
wheel condition (w,, = w, and () = 0) while 100 % slip
corresponds to a wheel that is locked (w,, = 0).

From Fig. 2 we see that for the three road conditions
shown, 4()) is maximized for A ~ 20 %. Although an ideal
situation would be to maximize the road/tire friction regardless
of A, for this study we seek to regulate slip to 20 % to
maximize the coefficient of friction between the tire and the
road. While the “target slip” value is a subject of debate (many
ABS engineers use a more conservative 15 to ensure stable
operation), our algorithm will perform similarly if designed for
another target value. Regardless of the design target chosen,
the important point is that during normal vehicle operation, the
road conditions are constantly changing. Since the road surface
directly affects the braking characteristic, a controller design
which compensates for all possible types of road conditions is
difficult (especially for transitions between road conditions).

A greatly simplified model for a vehicle, a single wheel,
and its braking system was employed for this research (we
ignore actuator dynamics for this initial study). The process
model contains linearized vehicle dynamics and one-wheel
rotational dynamics, where wind resistance effects and all the
vertical dynamics associated with the suspension system are
assumed negligible. The differential equation which describes
the motion of the wheels can be determined by summing the
rotational torques which are applied to the wheel; hence

G(t) = i[‘m) —wu®Bu+TAt)]  ®

where J,, is the rotational inertia of the wheel, B,, is the
viscous friction of the wheel, T}(¢) is the braking torque (in
N-m), and Ti(t) is the torque generated due to slip between
the wheel and the road surfdce. In general, T;(t) is a function
of the force Fy(t) exerted between the wheel and the road
surface, or Ti(t) = R, Fy(t), where R,, is the radius of the
wheel. The vehicle dynamics are determined by summing the
total forces applied to the vehicle during a normal braking
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operation to obtain

() = SO+ BY.O+RO] O

where M, is the mass of the vehicle, B, is the vehicle viscous
friction, g is the gravitational acceleration constant, Fy(#) is
the force applied to the car which results from a vertical
gradient in the road so that Fp(f) = M,gsin(8(t)) where
6 is the angle of inclination of the road. The force Fy(t) is
generally expressed as a function of the coefficient of friction
and the normal force on the wheel, or Fi(t) = p(A)N,(0)
where N, (6) is the normal force applied to the tire. For this
model we assume that the vehicle has four wheels and the
weight of the vehicle is evenly distributed among these wheels.
As a result, the normal force N,(f) may be expressed by
N,y(6) = (Myg/4) cos(8(2)).

The braking system parameters used in this study are vehicle
mass M, = 4 x 342 kg, viscous friction associated with the
linear motion of the vehicle B, = 6 N -s, rotational inertia
of the wheel J,, = 1.13 N - m - 52, rolling radius of the wheel
R,, = 0.33 m, viscous friction associated with the motion of
the wheel B, =4 N-s, and ¢ = 9.8 m - s% [4].

Since slip is the controlled parameter of the braking system,
we desire to measure this quantity. However, currently it is
difficult to accurately measure slip directly, so an estimation
scheme is necessary. We will assume that sensors for mea-
suring vehicle acceleration and wheel speed are available for
estimating slip as is done in [5], [71.! Equation (7) may be
rewritten to obtain

wu(t) = (1= A(B)ws(2).
Taking the time derivative of (10) yields
@u(t) = (1= X)) = Mtwu(t) (1n

where w,,(t) is related to the vehicle linear acceleration a,(t)
by

(10)

o V) _au®)
hult) = = = (12)
Using (12) and the fact that w, = (V,,/R,,), we obtain
V(T AL
R Lo 1 LI )

Thus, by rearranging (11) we can solve for the wheel slip
derivative A(¢) which yields

0= (oo (s 0o

as a general approach for estimating slip (we used simple Euler
integration for the implementation of this technique in our
simulations). Above we have illustrated one possible method
for approximating slip; other investigations have indicated that
the FMRLC also works well for other slip estimation methods
similar to those described in [2], [3], and [19].

!"The use of an accelerometer for ABS systems raises issues of noise, road

gradient effects, and integration error which need to be more fully investigated
in future work.

IV. Fuzzy MODEL REFERENCE
LEARNING CONTROL FOR ABS

A. FMRLC Design

For the FMRLC-based ABS we use e(kT) = A.(kT) —
MKT) where A\.(kT) = 20 % (T’ = 1 ms) and ¢(kT) is
defined in (2). We utilize a direct fuzzy controller that has 11
fuzzy sets with membership functions uniformly distributed on
each (normalized) input universe of discourse. All membership
functions used in our FMRLC are triangular shaped with
a base-width of 0.4 (except when it is appropriate to use
trapezoidal shapes for the outermost regions of the universes
of discourse). The triangular membership functions for the
fuzzy controller output (normalized) universe of discourse are
initially set to be centered at zero indicating that the fuzzy
controller initially does not know how to specify the control
input (this is what the FMRLC will learn how to do). The
normalizing controller gains for the error, change in error, and
the controller output are chosen to be g = 1,9, = 1/1000,
and g, = 2200.

The reference model for this process was chosen to be

d’\:;t(t) = —10.00 () + 10.0A,(2).

The inputs to the fuzzy inverse model include the error and
change in error between the reference model and the wheel
slip expressed as

(15)

Ae(kT) = A (kT) = MKT),
Ae(kT) = Ae(kT — T)
T :

respectively. For these inputs, 11 fuzzy sets are defined with
triangular shaped membership functions which are evenly
distributed on the appropriate universes of discourse. The
normalizing controller gains associated with Ao (KT, A.(KT),
and p;(kT) are chosen to be gx, = 1,¢x, = 1/1000, and
9p; = 2200 using the gain selection procedure described
above. In a typical braking system, an increase in the braking
torque Ty (kT'), will generally result in an increase in the wheel
slip. This implies that the incremental relationship between
the process inputs and outputs is monotonically increasing.
Consequently, the knowledge base array shown in Table I
was employed for the fuzzy inverse model. In Table I, AJ
is the jth fuzzy set associated with the error signal A\, and
AF is the kth fuzzy set associated with the change in error
signal A.. For convenience, rather than listing the indexes i
for P} ** in the body of the table, we list the center values of
triangular membership functions corresponding to the fuzzy
inverse model output fuzzy sets P7'*.

(16)

A(kT) = an

B. Performance for Various Road Conditions

The FMRLC described above was simulated for the automo-
tive ABS system. The results of this simulation for wet asphalt
and for an icy surface are shown in Figs. 3 and 4, respectively.
For these simulation results, only one brake was applied. The
braking action was initiated when the vehicle was moving 25
m/s (appoximately 56 mph) on a level surface (§ = 0) and we
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TABLE [
INVERSE MODEL KNOWLEDGE BASE ARRAY:
OUTPUT MEMBERSHIP FUNCTION CENTER VALUES

pik Ak
' =5 4 3 2 -1 40 4+ £ 8 H4 45
S|l -1 - -1 -1 -1 -08-06 —04 02 0
4|l -1 -1 -1 -1 -1 -08 —06-04 02 0 0.2
S3[|-1 -1 -1 -1 -08 06 0402 0 02 04
2| -1 - -1 08 06 04 02 0 02 04 06
-1| -1 -1 08-06-04-02 0 02 04 06 08
Al 0 -1 08 —06-04 02 0 02 04 06 08 1
+l | 08 06 0402 0 02 04 06 08 1 1
+2 | 06 04 02 0 02 04 06 08 1 1 1
4310402 0 02 04 06 08 1 1 1 1
+“ | 02 0 02 04 06 08 1 1 1 1 1
+5 0 02 04 06 08 1 1 1 1 1 1
04s Anti-Skid Braking System Performance on Wet Asphalt - FMRLC
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Fig. 3. Simulation results for FMRLC of a vehicle braking system on a
level wet asphalt surface.

desire to regulate slip to 20 % (we initialize the slip at 50 %,
a typical point where the ABS may be engaged). Due to the
fact that the wheel and vehicle velocity are nearly zero at low
speeds, the magnitude of slip tends to infinity as the vehicle
speed approaches zero. This often causes determination of the
slip to become very sensitive at slow speeds and as a result
slip is very difficult to control at slow speeds. Therefore, as is
standard in the literature, simulations are conducted up to the

1
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Anti-Skid Braking System Response on Ice - FMRLC
0.5 T v
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Fig. 4. Simulation results for FMRLC of a vehicle braking system on a

level icy surface.

point where the vehicle is slowed to approximately 5 m/s.

Note that for the wet asphalt case, the braking system slip
value tracked the reference model output almost perfectly. As
a result, the system does not exhibit the limit cycle effect
for which many ABS systems are designed (of course, when
implemented the algorithm would exhibit some type of cycling
to achieve regulation). It is an important future direction to
fully investigate the implications of using an ABS system
that is not specifically designed to “cycle” in the conventional
manner (for example, the effects on steerability). Also note
that the braking torque for this case was very smooth. The
controller seems to have found the appropriate level of braking
torque which needs to be applied to the wheels to maintain a
slip of 20 %.

Although the simulation results for the icy surface shown in
Fig. 4 are likely to be considered acceptable by most control
engineers, they are not as good as the results obtained for
wet asphalt road conditions. In general, it is very difficult to
control slip on an icy surface due to the fact that a very small
braking torque is likely to cause lock-up. In fact, to avoid lock-
up the controller sets T(t) = O initially, then once the slip
goes below the setpoint, the controller applies an appropriate
input to regulate the slip to 20 %. Notice that the control input
increases linearly in Fig. 4 for ¢ > 3 sec. due to the increasing
viscous friction term in (8).
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TABLE II
STOPPING DISTANCE FOR A SINGLE WHEEL ABS SYSTEM IMPLEMENTED
UsSING FMRLC VERSUS A SINGLE WHEEL Lock-UP BRAKING SYSTEM

Stopping Distance (meters)

Road Surface FMRLC Lock-Up
Dry Asphalt 32.721 38.421
Wet Asphalt 35.300 39.863
Ice 151.070 247.257
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Fig. 5. Simulation results for FMRLC of a vehicle braking system for a wet

asphalt/icy transition.

Table II illustrates the potential of the ABS system described
above by comparing the stopping distance which resulted for
the FMRLC algorithm with the case where the wheel is locked.
Note that a substantial decrease in the stopping distance is
obtained on all road surfaces which were considered in Fig. 2
(the plots for dry asphalt were omitted in the interest of space
as they were similar in shape to the wet asphalt case).

C. Transitions Between Road Conditions

The next set of simulations illustrates the effectiveness of
the FMRLC algorithm for transitions between various road
conditions. Here we consider two very likely real world
scenarios. The first involves the situation where the brakes
are applied on wet asphalt and during the braking action the
vehicle moves onto an icy surface. Notice that during the initial
braking action, the wet asphalt would allow for a relatively

ABS Response for an Icy/Wet Asphalt Transition
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Fig. 6. Simulation results for FMRLC of a vehicle braking system for an
icy/wet asphalt transition.

large braking torque without lock-up occurring. However,
when the vehicle reaches the icy road condition braking torque
must be reduced quickly to prevent lockup. This large system
variation requires a very demanding controller modification on
the FMRLC algorithm. However, the simulation results for this
scenario shown in Fig. 5 illustrate that the FMRLC algorithm
is capable of dealing with such drastic process variations.
The second case involves the reverse of the situation de-
scribed above. In this case, the brakes are applied on an
icy surface and during the braking action the vehicle moves
onto wet asphalt. This situation would require the FMRLC
to reconfigure itself to increase the torque when the vehicle
reaches the wet asphalt. Fig. 6 illustrates the simulation result
for this scenario. Once again the FMRLC was successful in
learning to compensate for the adverse road conditions.

V. CONCLUSIONS

The principal objective of this paper was to illustrate the
design methodology and application of the new FMRLC
algorithm for an automotive antiskid braking system which
is subjected to harsh road conditions. While the behavior of a
conventional braking system varies significantly for different
road and operating conditions, the results obtained in this
paper (although somewhat preliminary) indicate that the FM-
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RLC provides a promising approach to maintaining effective
braking even under adverse road conditions. Directions for
future research include: 1) testing the FMRLC design for
other harsh road conditions (e.g., snowy roads, transitions
in road conditions involving snow); 2) fully comparing the
approach to conventional control algorithms for ABS (such
as a gain-scheduled PD controller); 3) testing the approach
with a full nonlinear dynamical vehicle simulation; and 4)
studying implementation characteristics of the FMRLC-based
ABS system.
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