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Abstract — This letter presents a class of network optimization processes that account for the
emergence of scale-free network structures. We introduce a mathematical framework that captures
the connectivity and growth dynamics of a network with an arbitrary initial topology. We show
how selection via differential node fitness affects the proportion of connections a node makes
to other nodes, and how a heavy-tailed connectivity behavior manifests itself from consecutive
achievements of ideal free distributions (IFDs). Finally, we present simulation results that show
how this class of networks may emerge even when consecutive IFDs are not perfectly reached.
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Introduction. — There is growing interest in under-
standing the emergence of a class of real-world networks
called “scale-free networks” (e.g., computer networks such
as the World Wide Web, some protein-protein interaction
networks, and networks created by the formation of
sexual partnerships). In this context, the number of edges
(connections) that is most commonly found in a network
(graph) indicates the scale of its connectivity distribution
(e.g., the peak in a Poisson or bell-shaped distribution).
Broadly speaking, the most notable feature of a scale-free
network is its heavy-tailed (power law), rather than
a Poisson or bell-shaped, connectivity distribution. In
particular, power law distributions indicate that the
probability P(k) that a node connects to k other nodes is
proportional to k~? for some positive constant 3, imply-
ing that the number of edges (the degree) of the nodes of
the network comprises different orders of magnitude (i.e.,
with a few nodes having a high degree, many having only
a low one, and without a peak in the distribution).

Although this topological trait may emerge in networks
without growth, most real-world networks describe inter-
connected systems that grow by the continuous addi-
tion of new nodes. For growing networks, “preferential
attachment” is perhaps the best known mechanism that
accounts for the emergence of scale-free networks. Pref-
erential attachment assumes that the probability that a
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new node will connect to another node is proportional to
the degree of that node. While preferential attachment has
been proven to produce scale-free networks, many differ-
ent mechanisms that lead to these types of networks have
also been discovered (e.g., initial attractiveness [1], accel-
erating growth [2], and gradual aging [3]).

In this letter, we do not focus on a particular mechanism
that leads to scale-free networks. Instead, we introduce a
generic set of dynamical equations that captures the broad
tendencies of the connectivity of the nodes of a network.
We concentrate on a particular state of the network
characterized by a concept from theoretical ecology called
the “ideal free distribution” (IFD) [4], and show how scale-
free networks may emerge from consecutive achievements
of this desired state. For many years, the IFD concept has
been used to analyze how animals distribute themselves
across different habitats. These habitats have different
characteristics (e.g., one habitat might have a higher
nutrient input rate than another), but animals tend to
reach an equilibrium point where each has the same
correlate of fitness (e.g., consumption rate). In the context
of this letter, the IFD concept allows us to study the
allocation of links across different nodes. Each node is
associated with a unique “suitability function” which
characterizes the benefit of creating a certain amount
of links to other nodes. When the IFD is achieved, the
network reaches a stable equilibrium point where each
node has the same suitability level.

The IFD model we introduce here captures the dynamic
coupling that results between the different nodes (i.e., it
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allows us to characterize how an edge connecting any two
nodes affects another node in the network). Here, the word
“ideal” refers to the assumption that the connectivity
dynamics of the network are equally affected by every node
(i.e., the impact of a node on the connectivity dynamics
of the network depends on the state of that node, but not
on its location within the network). “Free” indicates that
the nodes of the network can connect instantaneously and
at no cost to any other node. Although our framework
assumes that both assumptions will hold, there is an
extensive literature that shows how an IFD may still be
achived even when one or both assumptions are relaxed
(e.g., see [5]). It is, however, the general idea behind the
IFD concept and the emergence of scale-free networks that
is the most important and novel contribution of this letter.

It is important to understand how scale-free networks
may emerge from IFD distributions for several reasons.
First, from a game theoretic perspective, the IFD is a
Nash equilibrium. Therefore, when a network reaches the
IFD none of its nodes has anything to gain by unilaterally
re-establishing edges to other nodes. Moreover, the IFD
has been shown to be an evolutionarily stable strategy
(ESS) [5], which broadly speaking means that whenever
the IFD is achieved, there does not exist any other network
topology (with the same edge capacity) that could “take
over” the existing IFD distribution. In other words, the
evolution of scale-free networks from IFDs shows that
these networks may emerge from nodes adopting an ESS
strategy, which is in fact a pattern regularly found in
a large class of adaptive dynamics. Second, the IFD
is a concept that characterizes the outcome of a large
class of attachment rules without explicitly describing the
particular mechanism that leads to the emerging networks.
Our approach borrows concepts from evolutionary ecology
and control theory, and uses existing methods from both
fields to relate these concepts to the scale-free literature.
Finally, the emergence of scale-free networks from IFDs
seems to be a robust process in the sense that even when
perfect IFDs may not be achieved (e.g., under suboptimal
conditions where the nodes cannot connect to any other
node) scale-free networks will still emerge.

The remainder of this letter is organized as follows:
First we introduce a model that captures the connectivity
and growth dynamics of a continuously growing network
and present conditions that guarantee that the IFD
is an asymptotically stable state of the network. We
then prove that consecutive achievements of IFDs lead
to connectivity distributions that are scale-free. Finally,
we consider information-constrained cases of our model
and present simulation results that show that scale-free
networks may still emerge even when consecutive IFDs
are not perfectly reached.

A model of network evolution. — Let the graph G
represent a network at generation n =0 with Ny nodes,
each with My € N edges, which are randomly connected
to other nodes. For every generation n € N a new node

is added to the network. While previously existing nodes
may establish any finite number of new edges with other
nodes in G,, during generation n, the new node establishes
a total of M edges during its first generation as part of
the network (oo > M > Mj). Moreover, we assume that
any node may establish several edges to the same node
in G,. After n generations the graph G, has a total
of N, =n+ Ny nodes. Let H(n)=1{1,...,N,} represent
all the nodes of the network at generation n, so that
this set includes the node that has been added at that
generation. Furthermore, assume that the rate at which
the newly added node and the existing nodes establish
new edges is considerably faster than the rate at which G,
grows. We will justify this assumption below. In the two
following subsections we develop a two-time-scale model
which captures the particular connectivity and growth
dynamics of such a network.

Connectivity dynamics via network competition.  For
a fixed generation n, each node i € H(n) is associated with
a “suitability function” that characterizes the benefit for
that node from creating new edges to other nodes. We
assume an inverse relationship between the suitability level
of a node and the number of new edges it establishes
(e.g., in the internet since the server performance can
degrade if more users are added, or in biology since it
becomes more difficult to establish metabolic links if there
are already too many present). Moreover, we assume an
inverse relationship between the suitability level of a node
and the generation step when it is added to the network,
thereby giving a competitive advantage to nodes that have
been part of network for more generations (e.g., in the
internet since well-established documents may acquire a
large number of links through their good reputation, or
in social systems since older individuals may be better
in establishing long-lasting social link). In particular, let
the suitability function of node ¢ during generation n be
defined by

n P

J— 3
Sz(xi(t))_ ki(n)—l—mi(t)’ (1)
where n; € N is the generation step at which node i € H(n)
was added to the network (let n; =1 for all nodes in Gy so
that s; is well defined), 8 € (0,1) is a predefined constant
(e.g., B=1/2 for networks with linear growth and linear
preferential attachment [6]), k;(n) € N is the number of
edges of node i between the end of generation n —1 and
start of generation n (i.e., k;(n) does not take into account
new edges that are created during generation n and
k;(0) = M for all nodes in Gy), and z;(t) € N is the number
of edges that are established with node i during that
generation at some time ¢, ¢t € R, Ry = (0, 00). We assume
that edges that were connecting any two nodes during
previous generations (those characterized by k;(n)) cannot
be removed thereafter. However, a new edge connecting
two nodes may be established and removed, ¢.e., we allow
for rewiring of edges that have been established within the
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same generation. If we let node ¢* denote the node that has
been added to the network during generation n, then note
that since a constant number of edges are added by node
i* it always satisfies n;« =n, ki« (n;=) =0, and () = M
for all ¢ > 0.

Let ¢ =0 be the time instant at which the new node is
added to the graph G, (i.e., the start of generation n),
and assume that only when t— oo will G, evolve into
the next generation n+1 (i.e., when another node will
be added to the network). Let z(t) = [z1(¢),..., 2N, ()] T
represent the state of network at generation n and time ¢
(i.e., the degree of every one of its nodes). We now focus on
the dynamics of z(t) = [z1(t),...,zn, (t)]T for t >0, and
assume from here on that for any generation n at any time
t, ki(n),z;(t) € Ry. In particular, let us assume that for a
fixed generation n, the number of edges of node i € H(n)
evolves with respect to ¢ according to

o n’ n) " ,

ki(n) + zi(t) Crn kj(n)+z;(t)

JjEH(n)
(2)

where C,, is a constant that we define below, and a,, >0
is a constant that characterizes the rate at which new
connections are established in the network. Note that the
left-hand side of eq. (2) is the normalized rate of change
of the newly added edges of node ¢, and the right-hand
side indicates that if the benefit of linking a new edge to
node i is greater (less) than the (weighted) average, then
the rate of change of added edges of node i will increase
(decrease). In other words, eq. (2) characterizes tendencies
of the connectivity of the nodes of a network that may be
driven by different attachment mechanisms.

Next, let C,, e Ry, C), >2M, be the total number of
new connections that are established during generation
n and let A, ={zcR}": > jer(n) Ti = Cn} represent
the simplex over which these C,, new connections may
be distributed. Note that, since a given edge connects
two particular nodes, C,, new connections represent the
endpoints of C,,/2 new edges. Furthermore, let

n—>5
Xi(n) = {x eRY™: si(2;) = 57a for all 4 € ’H(n)} (3)

define an invariant set that characterizes the distribution
of interest of new connections across the entire network
(recall that M > M, is the number of edges established
with the new node that is added at each generation). Note
that for any generation n, € X7(n) represents an IFD in
the sense that edges are distributed in such a way that all
nodes in #(n) have the same suitability levels [5].

Theorem 1: For any fized network generation n, there
exists a positive constant Cy,, such that if C,, new connec-
tions are established in the network, and the degree of every
node of G, satisfies the dynamics described by eq. (2),
then Xi(n) (i.e., the IFD defined by eq. (3)) is asymp-
totically stable with region of attraction A,.

Proof: Fix a generation n > 0. We begin by characterizing
any edge distribution #=[%1,...,Zy,] such that 7€
Xr(n). In particular, note that if € X;(n), then dsl(m ) =
0, and according to eq. (1), 4 =0 for all i€ ’H( ).
Moreover, since Z >0, if the degree of every node of

G, satisfies the dynamics described by eq. (2) then 7 €

n. s
C%szeﬂ(n) ey for all

i € H(n). Furthermore, since Zje’}-[(n) z; = Cy, we know
that T; equals

n; "’ 2 jenim Fi(n) + n; *Cr — ki(n) 2 jenH(n) ”J'_B
Zje?—t(n) n;

-5
Xr(n) satisfies k(ﬁlﬁ =

(4)

By substituting eq. (4) into eq. (1), we get

-8
_ 2 jeH(n >”‘

2 jenm) K ®)

Note that for all ¢ € H(n) such that Z € X7(n) each node i

satisfies s;(Z;) = %ﬁ Furthermore, using eq. (5) we know
that there exists a single constant

Cn MZ(

JEH(n

- > kiln

JEH(n)

(6)

and a unique distribution £ on A, that belongs to the
invariant set X7(n). Next, we show that T € X;(n) is
asymptotically stable with region of convergence A,,.

Let V,, be defined as Vn:*Zz‘eH(n) g—nln(%>,
which is known as the Kullback-Leibler distance or
the relative entropy function. It has been shown in [7]
that this is a valid Lyapunov function candidate (i.e.,
it is positive definite and radially unbounded). Let
S :Zie’H(n) 5751 denote the weighted average of the
suitability levels of all nodes, and note that by taking

the derivative along trajectories we obtain V, = %—‘;%f =

~ Ty Lien(m Tizti = & Dienn) 5i(@i — ).

In order to prove that V,, <0, we will show that the
maximum of V,, is zero, and that this maximum is only
reached when z € X7(n). We use Lagrange multiplier
theory, and define the following optimization problem:

maxJ = —— Z i — T;)
zGH(n k +x7'
subject to  x € A,.

First, we need to define the Jacobian of the cost function
J which using eq. (4) is given by

07 _ anni’(ki(n) + ;)
dz;  Cn (ki(n) +z)?
_ 'l 6(”2 Zjemn) ki(n) +n; " Cp)
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Using Lagrange multipliers for any i € H(n), we obtain

an (077 (3 jenany ki () + Cn)

Cn (ki(n) +a})? 2 n) ”;ﬁ

FAT =0,

where z* is the regular point for the optimization problem,
and A* is the Lagrange multiplier. For any 4, j € H(n) this
is equivalent to

o (ni_ﬂ)2(2je7-[(n) kj(n)+Cn)

Cn (ki(n) + 7)Y senim ;"

[e7% (n;ﬂ)2(2je7{(n) k; (n) + Cn)

Chr (kj(n)+x;f)2 ZjE’H(n) nj_fj ’

(7)

Moreover, since all the terms are positive, eq. (7) implies
n;’g(k](n) +af) = n;’g(kz (n)+2F). Summing over all
terms in #H(n), we obtain that z] is the same as the one
defined in eq. (4).

Now, in order to prove that z; is indeed a global opti-

mum point, we need to show that the Hessian is negative
20, ";ﬁ(iﬁ-ki)

definite. In this case, note that gig == mTenE <0
2
and 83 SJw - =0. Hence, V2J is negative definite and z*

is a global maximum for the constrained optimization
problem. Moreover, the maximum value of J is given

s .
by max J = & > cqn) ’C&Tﬂﬁ,(m: — ;) =0. Since V,, =
max J, V,, <0 for all x; #Z; and V, =0 if z;=7%; the
equilibrium point in eq. (4) is asymptotically stable. In
other words, V,, is negative, except when it is equal to

the equilibrium point. Therefore, the region of asymptotic
stability is defined by the set A,,. ]

Remarks: First, the proposed connectivity dynamics imply
that, given the same number of connecting edges, nodes
that have been added to the network at earlier generation
steps will have higher suitability levels than those added
at later generations (i.e., by the way suitability functions
are defined in eq. (1)). They relate broadly to the basic
idea behind preferential attachment [6] where older nodes
establish more edges because they have been part of the
network for more generations, and had higher chances of
establishing them. Note, however, that unlike preferential
attachment our model assumes that several edges may be
established between any two nodes.

Second, there are different models that lead to the IFD
(or an approximate version of it) even when the ideal
and free assumptions are relaxed to some extent. Such
models may allow for suboptimal conditions that are far
from the ones assumed in this section. In particular, nodes
may establish random connections between them or create
new edges with nodes of lower suitabilities, the nodes’ rate
of change of new edges may not be proportional to the
difference in suitabilities, but to the highest suitability
level of the entire network, etc. (for a brief overview of
several mechanisms leading to IFDs see [5]).

Finally, for a given network generation n, note that
according to eq. (6) C, increases as M increases. This
implies that for the IFD to be achieved, as more connec-
tions are made by a new node, the total number of new
connections across the entire network must also increase.
Moreover, as (3 increases, the difference in suitability of two
consecutively added nodes (with the same number edges)
also increases, and the total number of new connections
must again increase for the IFD to be reached.

Next, we show how consecutive achievements of IFDs
may impact the connectivity distribution of the network
as it grows.

Network evolution.  Given G,, let the degree of node i
at generation n+ 1 be given by

ki(n+1) =ki(n) + 1z, (8)

where Z € Xr(n) holds the number of edges ultimately

established by all nodes during generation n. Theorem 2
characterizes the evolution of k;(n) as n — oo.

Theorem 2: Given any initial graph Gy with Ny nodes,
each with My randomly distributed edges, if a new node
with M > My edges is added to the network and the
degree of each mode evolves according to eq. (8), then
as n— oo the graph G, attains a scale-free connectivity
distribution. Moreover, the total number of edges created
during each generation C, — % as n— o0.

Proof: Note that for any generation n and for all nodes
to achieve the same suitability the IFD must be reached
at the suitability level of the node that has been added
during that generation, i.e., node i*, since it establishes a
constant number of new connections. In particular, since
ng =n, ki=(n) =0, and z; = M we know that
-8B
n

Sy (.’I}l*) = ﬁ (9)
Moreover, if € Xr(n) for each n (i.e., if the IFD is
achieved at every generation step n), then according to

_ -8
egs. (1), (3), and (9), %:k(zﬁ for all i€ H(n).

Moreover, according to eq. (8) we know that k;(n+1) =
8
M (ﬂ> , which indicates that the degree of any node 4

follows a power law. Following the same ideas as in [8],
one can then write the probability that a node has
degree k;(n+1) smaller than k as, P[ki(n+1)<k]=

P [M (ﬂ_)ﬁ <k] 1 Mn

F/B(ntNg)’ since nodes are added

n;
at equal time intervals to the network. Therefore, the
distribution of edges is given by P(k) = W ~
2MYPE=7 as n— oo with 72%—1—1, which leads to a
scale-free connectivity distribution.

Finally, we show that C,, converges as n tends to infinity.
In particular, note that the total number of established
connections at a generation m can be rewritten as
D ien(n) ki(n) = Z?;ll C; + MyNy, so that according to
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eq. (6) we can write the total number of connections that
have been added up to (and including) generation n as

icj 'Y (%)_ﬁ—MONO.

JEH(n)

(10)

Applying eq. (10) to generations n — 1 and n, we obtain
the total number of edges added during generation n

expressed as
nj -k
n—1

| 3 (%)

JEH(n)

D

JjEH(n—1)

-5 B_(n—1)8
n n n—1)
=M|(—— M _—
<n - 1) * ) Z nP
JEH(n) J
-8B
Finally, note that since lim, .. (%) =1 and
lim,,—s 00 Zjeﬂ(n) ”57;# = %, we conclude that
. M
limy 00 C = M (14 125 ) = 145. ]

Remarks: First, note that our model assumes that the edge
connectivity process which is represented by a fast time
scale does not interfere with the network’s growing process
which is represented by a slow one (i.e., the two time
scales are isolated). Although our results in Theorem 2
require that the time indices of both scales tend to infinity,
this is a valid approximation that is commonly used in
evolutionary ecology when two processes are known to
evolve at disparate rates.

Second, note that in a network driven by preferential
attachment, scale-free behavior emerges from the fact that
nodes that have been part of the network for longer have
a higher expected number of links, which they can only
have established with new nodes when they were being
added to the network. Here, we assume that a newly
added node establishes its M new edges randomly, which
implies that it does need to sense the entire network
(as preferential attachment inherently assumes). Scale-free
behavior emerges from the reaction of the entire network
to subsequent additions of new nodes, a response we take
into account by allowing existing nodes to rewire.

Finally, our work reinforces the general notion that
scale-free networks may emerge without the need of
design principles which explicitly introduce preferential
attachment or scaling (e.g., see [8] and references therein).

Simulations. — To gain insight into the connectivity
dynamics of the network let us first illustrate some
concepts introduced in the previous sections. Let = %,
M =2, My=1, and Ny =1, and let us study the evolution
of the network for up to 250 generations. Using these
parameters we simulate the dynamics described in eq. (2)
for each node at every generation step. Figure 1 shows
the suitability for generations n =110 and n = 230. As we
proved above, an equilibrium point is reached and it is

0.0479

A\

0.0477

0.0475

Suitability

Generation n=110

0.0473

0.0471

0.0331

0.033

Suitability

0.0329 "
Generation n=230

0.0328

0 20 40 60 80 100 120 140 160 180 200
Time

Fig. 1: The suitability functions defined by eq. (1) are plotted
for different generations; when n =110 (left), n =230 (right).
In both cases 8 = %7 M =2, Mo=1, and No=1.

indeed the IFD described by eq. (3). For instance, if we
take the 50th network generation, the suitability function

for each of node i € H(n) converges to v/2/20, which is
equal to %, when n =110 and the values for 8 and M

are the ones selected before (of course, the same holds
for each generation step n). Note that the equilibrium
point decreases as n increases as we expected from eq. (3).
Moreover, as the number of generation steps increases, the
time it takes to converge increases also, but an IFD is still
reached.

Next, to study the network’s emerging connectivity we
run simulations using 10000 generations. The top plot in
fig. 2a shows the results when G = %, M =50, My=50,
and Ng=1. The dotted line represents the theoretical
probability distribution, while the dots represent the
results for our network model. As expected, the probability
that a node has many connections is small and decreases
as the number of connections increases. The exponent for
the power law in this case is v = 3. An important feature of
our model is the fact that the number of edges added per
generation does not grow unbounded. The bottom plot in
fig. 2a illustrates the convergence of the total number of
new connections C,, for the first 500 generation steps and
the same parameters as before.

Finally, in order to study robustness properties of our
model, we study the effect of not reaching the IFD at
its desired level (i.e., at % for generation n). Figure 2b
shows the connectivity distribution and the total number
of edges created during each generation when we perturb
the desired IFD state by adding random noise to C,, (i.e.,
when too many or too few edges are established). We
modify the C,, value computed in eq. (6) by adding to it
a zero mean random variable with finite variance. While
the top plot in fig. 2b shows that a scale-free distribution
will still emerge, the bottom plot shows that C,, no longer
converges to %, yet remains bounded.

Next, we allow for some random edges to be created
between any two nodes, so that equal suitability levels at
the IFD cannot be achieved (i.e., only an approximate
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Connectivity distribution when M = 50, N, = 1, M = 50
o' T
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(a) IFDs are perfectly reached.

Connectivity distribution when M = 50, NO =1, M0 =50
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0000
o

log(P(k))
=

7 o

log(k)
Total number of edges added per generation with noise (+30%)
T T T T . T T

"
Yy

002

L I L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Generation

(b) Approximate IFDs are reached.

Fig. 2: Simulation results for 10000 generations. The parame-
ters selected for these simulations are 8 = %, M =50, My =50,
and No =1. The top plots illustrates the connectivity distri-
butions from the theory (dashed) [6] and from simulations (o).
The bottom plots illustrate the total number of new connec-
tions that are added per generation. The small inset plots show
the suitability at which the IFD is achieved for the first 100
generations.

IFD can be reached, but z(t) € A, for all t). Even with
this type of perturbation (on the state of the network), a
scale-free distribution again emerges, and the simulation
results are similar to those presented in fig. 2a.

Note that fig. 2 represents information constrained cases
of our model. For the first case (fig. 2b) we would have
some type of irregularity in the system when determining
the number of edges that need to be added per generation.
Consequently, instead of having a perfect value for C,, we
obtain just a noisy estimated value. In the second case,
the information is altered when we distribute the number

of edges that are ultimately established. In either case,
this implies that the IFD is only reached approximately
(i.e., not as defined by eq. (3)), but a scale-free network
may still emerge.

Discussion. — The model we introduce in this letter
focuses on a basic property of many real-world networks,
in which nodes that have been part the network for longer
pay a lower penalty for maintaining the same amount
of connections than nodes recently added (e.g., in the
internet since well established documents may establish
a large number of links through their good reputation).

In the context of game theory, the emergence of a
scale-free network from consecutive achievements of IFDs
suggests that scale-free behavior evolves from a particu-
lar node strategy, which if adopted by every node in the
network cannot be invaded by any competing alternative
strategy. If we view the newly added node as a mutant
strategy, then such a strategy will never invade an incum-
bent IFD strategy. If natural selection is believed to be
the main process that brings about evolution, our results
suggest that natural selection may be the driving force
that selects against using strategies with lower payoffs,
ensuring that all nodes adopt an IFD strategy which would
then lead to the scale-free connectivity distribution of
these growing networks. Developing a mathematical model
that takes into account how information flow constraints
(e.g., delays in sensing or establishing new links) affect the
the emerging connectivity distributions remains a future
research direction.
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