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Abstract

Cooperative control involves the development of decision-making systems that can guide the behavior of a group

of networked autonomous agents toward a common goal. This problem is often put in the context of assignment

of agents to tasks, and these tasks are often spatially distributed in an environment through which the agents must

navigate. In this paper we consider the problem of determining a one-to-one assignment of mobile agents to stationary

tasks in order to maximize a performance measure that is sensitive to the time each task will be completed. The

problem is complicated by the fact that the agents must communicate over a network with substantial delays in order

to cooperatively determine their assignment. Thus the problem is similar to the traditional assignment problem, with

the exception that the benefit values can change while the agents attempt to determine a solution. A modification to the

asynchronous distributed auction algorithm is developed to solve this problem and shown to terminate in finite time.

Optimality of the resulting assignment is investigated through a worst case analysis and via Monte Carlo simulations

using agents based on the Dubins car model.

I. I NTRODUCTION

Within the field of cooperative control there is special interest in problems where a group of mobile agents must

act in concert to accomplish a common goal. Generating the individual agent trajectories and associated actions that

accomplish this goal can be viewed as the assignment of each agent to a certain subset of spatially distributed tasks.

Since the agents will generally not have the same initial position or capabilities, it follows that some assignments

will result in better performance than others and thus we would like to determine the optimal one subject to the

problem’s constraints. Given the mobile nature of the agents, the performance measure used is often some function

of the distance each agent travels or the times that various tasks are completed. In this work, we focus on a

distributed method autonomous agents may use in order to solve a particular type of assignment problem despite

issues that arise when inter-agent communications are subject to significant delays.
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To date, research on these types of problems has focused on either optimization algorithms or stability analysis.

In the former case, the application of mixed-integer linear programming (MILP) has proved very useful when

applied to the optimization of agent trajectories [1] or to coordinating the efficient interaction of multiple agents in

scenarios with many sequential tasks and tight timing constraints [2], [3]. Given the potential complexity of these

problems, however, the solution time of these algorithms can become prohibitive. In some cases the optimality of

the solution may degrade gracefully with the time of its computation. In other cases, particularly those involving

the popular nonholonomic model known as the Dubins Car [4], the feasibility of the solution may be destroyed

if it takes too long to compute it. By their nature, such algorithms are also highly centralized; this often means

that a large amount of information must be passed over the agents’ communication network (a potential problem if

that network is subject to imperfections such as delays, noise, or changing topology). Some of these issues can be

overcome by settling for suboptimal solutions either through the use of heuristics (such as those developed in [5])

or by decomposing the larger problem into smaller ones that can each be solved optimally and then recombined to

generate a complete solution (as in [6]). Through the use of Monte Carlo simulations, statistics can be generated

to check if these algorithms are “good enough,” but this may fail to identify pathological situations in which they

perform poorly or even fail, particularly when unrealistic assumptions are made concerning communications.

When we start to consider communication imperfections, it often makes sense to forgo optimality of the assign-

ment in favor of stability. That is, given asynchronous communications with delays and the resulting information

imbalances between agents, it is no longer trivial to assume an algorithm will accomplish its goal. Stability can be

defined in many ways. In the next paragraph we discuss this concept in terms of termination (i.e. guarantees that

an algorithm will eventually produce a feasible solution), but there are equally important definitions more along the

lines of traditional control theory. In [7], a group of agents must continually processes a set of reoccurring tasks,

so in this context it makes sense to show that their control law guarantees an upper bound on the longest time

any particular task will be ignored. In [8], a load balancing approach is used to divide a number of tasks between

agents. Here they prove that an equilibrium set (i.e. all agents balanced within a certain range) is exponentially

stable in the large. In this scenario, if the agents were capable of balancing perfectly, then this approach would also

result in an optimal solution; however, the discrete nature of the load means it can only be balanced to within a

fairly wide margin of error. In our work, we have attempted to find a middle ground between the two approaches

of optimality and stability; the algorithm we present cannot guarantee optimality due to the unavoidable effects of

communication delays, but does seek to minimize the harm done to performance and does so in a way that allows

us to analytically quantify a guaranteed performance level.

The problem we focus on in this paper is a variant of the assignment problem from the field of combinatorial

optimization. This problem formulation has received much attention in cooperative control studies because it models

the need to generate a suitable mapping between two finite sets subject to certain constraints, and many algorithms

of polynomial complexity exist to solve it [9], [10], [11]. In [12], the distributed sequential shortest augmenting path

is modified in a manner that allows the agents to cooperatively compute an optimal solution despite information

delays between agents and the dynamic arrival of additional tasks. The existing algorithms for the assignment
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problem have also been used heuristically to deal with tasks that are highly coupled (i.e., the completion of certain

tasks must be preceded by the completion of another). In [6], multiple assignment problems with evolving subsets

of the agents and tasks are iteratively solved, thus allowing their algorithm to produce a multiple task tour solution

that simulations show to be close to optimal for their scenario. That work uses a centralized redundant approach

in which each agent solves the same problem independently and then implements its own portion of the resulting

assignment. It is therefore highly dependent on the agents starting from the same information in order to ensure

they all arrive at the same solution. This becomes problematic when communication delays are introduced; because

of changes in the problem that may occur during planning (i.e., vehicle movement), the final solution may no

longer be optimal or even feasible. In this work we seek to incorporate these changes in problem data directly

into a modification of the distributed auction algorithm of [9] for determining an optimal solution to the standard

assignment problem. To the best of our knowledge, this is the first time an assignment method has explicitly dealt

with a performance measure of a time-varying nature.

This paper is organized as follows. In Section II we present some background on the assignment problem and the

asynchronous distributed auction algorithm of [9] in order to establish some notation for the paper. In Section III we

define the specific problem to be solved and in Section IV develop a modification of the distributed auction to solve

it. We determine the conditions under which that algorithm is guaranteed to terminate and perform a worst case

analysis of the resulting solution. Section V contains simulation results demonstrating the practical performance of

the modified algorithm. Conclusions appear in Section VI.

II. BACKGROUND

The standardassignment problemis one in which members of one set must be matched to members from another

distinct set on a one-to-one basis. By convention [11], the former set is usually referred to as the set ofpersons

and the latter as the set ofobjects. An assignmentis a collection of pairings such that each person and each object

appears in at most one pair. An assignment is consideredfull if it contains every member from the smaller of the

two sets (persons or objects) andpartial otherwise. For each possible pairing between a person and an object, there

exits some scalar value that represents thebenefitgained if that pair is a member of an assignment. The sum of

the benefits associated with each pair in an assignment is referred to as itscollective benefit.

The goal of an assignment problem is to find a full assignment that is optimal in that it maximizes the collective

benefit of the individual pairings (i.e., their sum). If the sizes of the person and object sets are the same (making it

so that every person and object must participate in any full assignment) we have a special case referred to as the

symmetric assignment problem. In this paper, we consider anasymmetric assignment problemwhere the number of

objects is greater than or equal to the number of persons, thus allowing for the possibility that some objects may

be excluded from a full assignment. We give a brief overview of the assignment problem in this section; for a more

thorough discussion see [11] or [10].
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A. Primal and Dual Problems

Let A be the collection of all pairs(i, j) denoting an allowable assignment between personi and objectj and

let aij be the scalar benefit associated with that pair. If objectj is assigned to personi, then let a decision variable

xij be equal to 1 (and equal to 0 otherwise). Since we wish to consider an asymmetric assignment with more

objects than persons, we introduce another decision variablexsj which is equal to 1 if objectj is not assigned

to any person (in which case we say it is assigned to asupersourceinstead). With this notation, the asymmetric

assignment problem betweenm persons andn objects can be stated as the constrained optimization problem,

maximize
∑

(i,j)∈A
aijxij (1)

subject to
∑

{j|(i,j)∈A}
xij = 1,∀i ∈ {1, . . . , m} (2)

∑

{i|(i,j)∈A}
xij + xsj = 1,∀j ∈ {1, . . . , n} (3)

n∑

j=1

xsj = n−m, (4)

xij , xsj ∈ {0, 1} (5)

Where (1) is the collective benefit and the constraints in (2)-(5) ensure that each person is assigned to one unique

object. This formulation is known as theprimal problem. Due to the linear nature of the problem, it is possible to

form thedual problemgiven by (see [11]),

minimize
m∑

i=1

πi +
n∑

j=1

pj − (n−m)λ

subject to
πi + pj ≥ aij , ∀(i, j) ∈ A
λ ≤ pj , ∀j = {1, . . . , n}

whereπi, pj , andλ, are Lagrange multipliers associated with each personi, each objectj, and the supersource,

respectively. For convenience, letπ = [π1, . . . , πm] andp = [p1, . . . , pn]. The structure of the two problems dictates

that the decision variablesxij are completely dependent uponπ, p, andλ. Therefore, once we have a solution to

the dual problem, we can easily reconstruct the solution to the primal problem as

xij = arg min
wij∈{0,1}

(aij − πi − pj)wij

The above result and indeed the motivation for forming the dual problem comes from existence of thecomplimentary

slackness(CS) criteria [11]. This criteria allows us to determine whether a given assignment is the optimal solution,

and provides a guide for constructing such an assignment. Specifically, we use a relaxed criteria,ε−complementary

slackness(ε−CS), that allows us to generate assignments that are suboptimal but whose collective benefit is within

a proscribed bound of the optimal solution. An assignmentS is said to satisfyε−CS for the asymmetric assignment
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problem if

πi + pj ≥ aij − ε, ∀(i, j) ∈ A (6)

πi + pj = aij , ∀(i, j) ∈ S (7)

pj ≤ min
k assigned underS

pk, ∀j unassigned underS (8)

where (6) and (7) are often combined to yield

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε ∀ (i, j) ∈ S (9)

with A(i) = {j|(i, j) ∈ A}.
Theorem 1:[11] If a feasible full assignmentS along with a specificπ andp satisfiesε−CS, then the collective

benefit ofS is within mε of the optimal solution to the asymmetric assignment problem.

B. Auction Algorithm

The auction algorithm [11], [10] is a method of solving the assignment problem using elements from both the

primal and dual formulations that is motivated by an economic interpretation of theε−CS condition. The variables

p andπ are thought of as thepricesandprofits of the objects and persons, respectively. Theε−CS conditions are

then interpreted as stating that if personi is assigned to objectj, then his profit is equal to the benefit he receives

from that object minus its price (7), and that objectj provides personi more profit (within some toleranceε) than

any other object (9).

The auction algorithm starts with an empty assignmentS (which trivially satisfiesε−CS) and iteratively modifies

it by either adding new assignment pairs or replacing current ones while adjusting prices and profits in a manner

that maintainsε−CS. Thus, the size ofS is strictly non-decreasing as the algorithm progresses, and when a full

assignment is reached it has the optimality guarantees of Theorem 1. The modification of the working assignment

takes place by having unassigned persons bid against each other for objects (or objects for persons), thereby raising

their prices (profits) much in the same way as a real auction. Bidding decisions are based onvalues, which are the

differences between the benefits a bidder associates with objects (persons) and their prices (profits).

Although many variations of the auction algorithm exist, this paper will be concerned exclusively with the forward

auction algorithm in which persons bid for objects and prices are the only variable of concern (π and λ are not

directly altered and can easily be calculated from other information). Under mild restrictions this algorithm can be

used even in a distributed asynchronous manner to solve the asymmetric assignment problem in a finite period of

time [9]. The algorithm consists of two main operations,bidding andassignment, which are described below.

Bidding: Let U be the (nonempty) set of persons unassigned under a partial assignmentS and R ⊆ U be those

persons with a pending bid. Letpi
j represent personi’s most recent knowledge about the true price of objectj, pj .

To submit a bid, personi ∈ U −R takes the following steps:

1) Finds its preferred objectji (the one that returns the best possible valuevi)

ji = arg max
j∈A(i)

{aij − pi
j}
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vi = max
j∈A(i)

{aij − pi
j}

as well as the value of the next best objectwi

wi = max
k∈A(i)

k 6=ji

{aik − pi
k}

(if ji is the only object inA(i), let wi = −∞).

2) Calculates its bid for objectji as

biji
= pi

ji
+ vi − wi + ε = aiji

− wi + ε

and communicates this information to objectji.

Assignment: Let P (j) be the set of persons with bids pending for objectj since the last time it was reassigned

(if ever). If P (j) is not empty, then objectj takes the following steps to resolve the bidding:

1) Selects the personij from P (j) with the highest bidbijj

ij = arg max
i∈P (j)

bij

bijj = max
i∈P (j)

bij

2) If bijj ≥ pj + ε then it setspj := bijj , updates the partial assignmentS by replacing the current person

assigned to it (if any) with person,ij , and communicates this new information to all persons.

3) If bijj < pj + ε then all bids for objectj are cleared, no reassignment or price change is made, and it

communicates this information to all persons inP (j).

From the description above, we can see that prices are strictly increasing and that once an object becomes assigned,

it remains assigned for the duration of the algorithm. Thus, if the initial prices of the objects are identically zero,

the ε−CS condition of (8) will be automatically satisfied because the price of any assigned object must be at least

ε.

It should be noted that “personi bids. . . ” and “objectj assigns. . . ” each refer to calculations done by a specific

processor. Which processor is responsible for performing the calculations for a specific person or object at a given

moment in time will depend on what makes the most sense considering the application. While there is a great deal

of flexibility, the need to ensure the integrity of the algorithm places some limitations on the methods we may use.

It is imperative that the previously mentioned restrictions are met, and, in a distributed processing environment, the

reliability of the communication network and of the processors themselves may be of concern. Therefore, there must

be protocols in place that ensure price information is (eventually) transmitted correctly to every processor. Also,

if one processor fails, then there must be some form of redundancy built into the system to ensure that another

processor will assume its responsibilities. However, adding such redundancy can create problems of its own. If

two processors with different knowledge about the current price of an object simultaneously make two different

assignments for that object, then there will be conflicting information in the system that must be resolved somehow.

Clearly, it is preferable to avoid this hazard by implementing a method ensuring that one and only one processor



7

may take action for a particular person or object at a time. That processor must also be guaranteed to have correct

information concerning that person or object (i.e., a person’s assignment or bidding status and an object’s true

price).

III. PROBLEM STATEMENT

In this work, we will consider a very specific case of the general task assignment problem in the context

of cooperative control. We assume that there arem mobile agents of possibly different type that are initially

distributed in the environment. There aren tasks (n ≥ m) at fixed locations, also of possibly differing type. An

agent is considered to have completed a task when it arrives there, where arrival can consist of more or less restrictive

conditions than mere collocation (e.g., a particular orientation or earliest arrival time are common specifications).

Agents are non-renewable resources in that they can perform one and only one task (e.g., a “kamikaze” attack by

an autonomous munition). Whether or not an agent has the capability to perform a specific task depends on both

its type and the type of that task. Upon completion of a task, each agent receives a benefit that depends on both its

type and the target’s type and is decremented by a linear function of the time of completion. Optimization for this

problem will mean maximizing the collective benefit received by the agents upon completion ofm of the tasks,

with zero benefit received from then−m unfinished tasks.

Given the one-to-one nature of the above problem, if the location of initial positions of the agents and tasks

are known prior to deployment (i.e., the start of the scenario), then it clearly can be modeled as an asymmetric

assignment problem (see Section II) and solved accordingly. Consider, however, the case where the agents must

calculate an assignment “on-the-fly” because they lack complete knowledge of the situation prior to deployment. If

communications between the agents are subject to substantial delays and/or the agents’ available computing power

is limited, it could easily take a nontrivial length of time to arrive at an assignment, during which the benefits each

agent associates with each task have most likely changed.

A. Feasible and Optimal Vehicle Trajectories

Because the benefits for the assignment problem above are based on the time an agent arrives at a task, in order

to understand how those benefits change as the agents move, we must first consider the vehicle dynamics involved.

If we definesi(t) as a state vector containing all the information needed to represent an agenti at a particular point

in time (i.e., physical coordinates plus possibly other pertinent data such as orientation), thensi(t), t ≥ 0 denotes

the state space trajectory an agent follows as a function of time. A trajectorysi(t), t ≥ 0 is feasibleso long as

its components satisfy the vehicle dynamics of the agent, which we will usually state in the form of a system of

differential equations and associated constraints.

We define the constantdj as a vector associated with taskj and representing the pertinent information describing

its location and arrival criteria. If the agents’ only concern is to reach the tasks (i.e. collocation) then there is

no need for this arrival criteria. In general, however, we allow for its inclusion in order to provide flexibility in

modeling more complex situations. For example, an agent might have to arrive at a task along a certain heading.
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Alternatively, the agent may be allowed to perform the task from any of a number of different points defined in

relation to the nominal location of the task. Unless stated otherwise, we will assume that if agenti can ever reach

taskj in a finite length of time, then it can always do so (i.e., the setA of pairs(i, j) denoting agenti is capable

of completing taskj in the network flow model of Section II is time invariant). Under this assumption, for each

agenti that can reach taskj, there exists a time optimal trajectory from any pointsi(t) to that task. Let us denote

that trajectory byσ[si(t), dj ] and its travel time by the metric|σ[si(t), dj ]|. Since the tasks are stationary, by the

definition of optimality the travel time of the optimal trajectory to any task from a pointsi(t + ∆t), can be no less

than the difference between the travel time of the optimal trajectory to the same task and the elapsed time interval

∆t > 0. Using our notation,

|σ[si(t + ∆t), dj ]| ≥ |σ[si(t), dj ]| −∆t ∀ t ≥ 0, ∀ 0 ≤ ∆t ≤ |σ[si(t), dj ]| (10)

with equality if and only ifσ[si(t + ∆t), dj ] is a subpath ofσ[si(t), dj ]. When that is the case, we will say that

agenti is tracking task j from t to t + ∆t.

For this work we will require that for any feasible trajectory agenti might follow, the increase in the travel time

of the optimal trajectory to a given taskj can be upper bounded as

|σ[si(t + ∆t), dj ]| ≤ |σ[si(t), dj ]|+ W + V ∆t ∀ t, ∀∆t ≥ 0 (11)

where the constantsW ≥ 0 andV ≥ −1 are identical for alli andj. An inequality of this form should be satisfied

for many situations with realistic vehicle dynamics (i.e., anywhere the difference|σ[si(t + ∆t), dj ]| − |σ[si(t), dj ]|
has a bounded derivative and only limited discontinuities). Consider the following examples:

Pivoting Robot: An agent in a planar environment that can either move forward along its current heading or

pivot in place has a kinematic model given by

ẋ = vδ[u] cos θ

ẏ = vδ[u] sin θ

θ̇ = ωmaxu

subject to:
0 ≤ v ≤ vmax

−1 ≤ u ≤ 1

wherevmax andωmax are the maximum forward and radial velocities respectively, andδ[u] is the Kronecker delta

function (δ[u] equals 1 ifu = 0 and 0 otherwise). Optimal trajectories for this type of vehicle consist of a pivot (of

up to half a revolution) to face the robot towards its target destination followed by forward travel at its maximum

velocity until it gets there. Therefore, the length of the optimal trajectory satisfies an inequality in the form of (11)

with V = 1 andW = ωmax

π . ¤
Dubins Car: Uninhabited air vehicles (UAVs) are often modeled as agents in a planar environment that are

forced to move at a constant forward velocity and posses limited steering ability. This can be represented by the

kinematic model known as the Dubins Car [4], [13] given by

ẋ = vc cos θ

ẏ = vc sin θ

θ̇ = ωmaxu

subject to: − 1 ≤ u ≤ 1 (12)
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where vc > 0 is the fixed forward velocity andωmax is the maximum radial velocity of which the vehicle is

capable while traveling atvc. Optimal trajectories for this type of vehicle consist of movement along paths made

up of straight line segments or arcs of radiusRmin = vc

ωmax
. If the arrival criteria for the tasks prescribe a specific

orientation, then the length of the optimal trajectory satisfies an inequality in the form of (11) withV = 1 and

W = (2+3π)Rmin

vc
(see Appendix). While somewhat secondary to our main focus, that derivation demonstrates

the applicability of this work to an important class of vehicles and implies that the assumption of (11) is not

unreasonable. ¤
We note that different approaches to determining the pair(V,W ) may, in some cases, produce values that are not

trivially different (i.e., one approach may produce a smallerV than another, but at the expense of a largerW ). In

these instances, we have the freedom to choose the pair that gives the best results for the application. For example,

if we are concerned with large time intervals theV ∆t term will dominate (11), and we should select a pair with a

smallerV if possible. If, on the other hand, we know the time interval is small, we may want to chose a pair with

small W . Of course, we can also combine the inequalities of the different pairs provided the resulting piecewise

linear bound is of some use.

B. Benefit Functions

Now that we have a method to characterize how the movement of agents affects their ability to reach the tasks,

we propose a motion-dependent formulation of the benefit received by agenti from taskj,

aij(t) = Cij −B(t + |σ[si(t), dj ]|) (13)

whereCij is a constant particular to the pairing(i, j) (i.e., a function of the types of both the agent and the task),

B is constant across all such pairs and defines the relative importance of completing tasks quickly, and the quantity

t+ |σ[si(t), dj ]| is the time of arrival of agenti if it tracks taskj from time t onward. (A more general formulation

replaces the constantB with valuesBij for each agent/task pair and is considered in Section IV-C). We assume

that our algorithm starts att = 0, so this benefit function is equivalent to saying that each task has its nominal

benefitCij discounted proportional to the time it takes for an agent to complete it. If the algorithm starts at some

time other thant = 0, each benefit functionaij(t) can be scaled accordingly, but this is unnecessary since only

the relative benefit between tasks matters when finding the optimal assignment. If we want to take into account

that tasks have been waiting to be completed for varying amounts of time beforet = 0 then we can incorporate

relative shifts into the appropriate values ofCij . Note that this seems to be the first time that solving an assignment

problem with time-varying benefits has been addressed.

With the benefit function defined above, using the inequalities in (10) and (11) we can place the following bounds

on aij ,

aij(t + ∆t) ≥ aij(t)−B(W + (V + 1)∆t) ∀ t,∆t ≥ 0 (14)

aij(t + ∆t) ≤ aij(t) ∀ t ≥ 0, ∀ 0 ≤ ∆t ≤ |σ[si(t), dj ]| (15)
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where equality is reached in (15) if and only if agenti is tracking taskj from timet to timet+∆t. The qualification

in (15) stems from the fact that once an agent reaches a task, the benefit will start to decrease again if it does not

complete that task. If the agent continues to track the task and is able to remain at the task location,aij(t) will

decrease at a rate ofB∆t. If it cannot stop and wait, the agent must follow a loop back to the task, and soaij(t)

will drop by the length of that loop and then remains steady until the next time the agent reaches the task.

At this point let us denoteta as the time a full assignment is reached andtif as the time agenti completes its

task. Since each agent will track its assigned task fromta until tif , it is clear from (15) that the collective benefit of

the assignment atta is the same as what the agents will receive when they complete their tasks. Equally obvious

from these two inequalities is that during the time the agents take to calculate and communicate in order to reach

their eventual assignment, the collective benefit of that assignment is degrading (except for the unlikely case where

every agent somehow happens to always track the task to which they will eventually be assigned). Given that fact,

we are motivated to develop an algorithm that controls the motion of the agents during the time interval[0, ta] in

a manner that seeks to reduce the degradation of the collective benefit. The modification of the traditional auction

algorithm proposed in the next section attempts to do just this.

IV. A SSIGNMENTALGORITHM AND RESULTS

A. Assumptions

In this section we will consider two sources of delay: one which arises from limited computing power and another

which comes from the communication network. For computational delays we assume that there exists a maximum

boundDcalc on the time it takes to complete all the calculations associated with an iteration of the algorithm (i.e.,

the time from when an agent receives new information until the time it is ready to transmit the results based on that

information). If desired, this delay could be described in terms that were proportional to the size of the problem (i.e.,

the number of tasks). When considering communication delays, the specific network topology and protocols used

are unimportant so long as information transmitted by an agent is guaranteed to reach every other agent without

error and within a known maximum delayDcomm. This delay could also be broken down into the sum of a value

representing the maximum transmission delay and a term proportional to the amount of data being sent. Given the

low computational complexity of the individual operations used in the auction algorithm and a desire to focus on

situations involving significant communication delays, we assume from this point on thatDcalc ¿ Dcomm and just

useD = Dcalc + Dcomm as the maximum length of time it takes one agent to receive updated information from

another.

We will also assume that every agent knowsdj or an acceptable approximation thereof for all the tasks prior to

the start of the algorithm. In addition, it is important that the numbering scheme used to identify the targets has

been agreed upon as well, or that there exists a “natural” way of distinguishing targets (e.g., by their coordinates

if they lie far enough apart to avoid confusion). While this last assumption is not trivial, it is not the emphasis

of this work. Under these assumptions, we need only concern ourselves with information directly related to the

operation of the auction algorithm (i.e., bids, prices, and assignment updates). For prices in particular, the maximum
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information delayD and the fact that prices never decrease in a forward auction allows us to put the following

bounds on agenti’s knowledge of the price of taskj,

pi
j(t) ≤ pj(t) (16)

pi
j(t) ≥ pj(t−D) (17)

with the implication that ifpj(t) = pj(t−D), then each agent is guaranteed to have perfect knowledge of taskj’s

price.

B. Motion Control for a Distributed Auction

In this section we propose a partially asynchronous algorithm that can be used to solve an assignment problem

with motion dependent benefits. This algorithm is a modification of the distributed asynchronous auction presented

in [9] that we summarized in Section II:

• Starting with an empty partial assignmentS we add or replace agent/task pairs(i, j) based on competing bids

from the individual agents that are communicated across the network. This process terminates when every

agent has a task assignment.

• Each unassigned agent calculates its own preferred task and transmits its associated bid using a procedure

identical to that of Section II but with the exception that they will have to recalculate the benefitsaij(t) each

time. We require that each agent perform this process immediately upon learning that it is eligible to bid (i.e.,

after becoming unassigned, having its last bid rejected, or learning about an assignment update that makes its

pending bid obsolete).

• Some agents will be designated to perform the assignment calculations for the tasks, with one and only one

agent responsible for each task at a time. We require that each agent performs this task immediately upon

receiving a bid, and that it immediately transmits the results (i.e., new price and assignment and/or bid rejection

messages).

• The motion of the agents is controlled by two simple rules throughout the duration of the algorithm. If an

agent/task pair(i, j) belongs to the partial assignmentS, then agenti tracks taskj. If an unassigned agenti

has a bid pending for taskj, then agenti also tracks taskj.

• In order to guarantee termination of the algorithm, we will require that the bidding increment used exceed a

certain threshold specified in terms of the problem’s parameters.

C. Assignment Algorithm Termination

Given this description of the algorithm, we will first show that it maintains an arbitraryε−CS condition for the

partial assignmentS, and then prove that the algorithm terminates in finite time when the bidding increment meets

the stated criteria. All the proofs presented in this section are based on those found in [9] and [11] but have been

augmented to handle the time-varying benefit function in (13).
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Lemma 1:For an assignmentS that satisfiesε−CS at timet, if every agent inS follows the time optimal

trajectory to its assigned target thenS will satisfy ε−CS at timet + ∆t ≥ t whenS is constant fromt to t + ∆t,

benefits are defined as in (13), and no agent reaches its assignment beforet + ∆t.

Proof: If a partial assignmentS satisfiesε−CS (see Section II) at timet, then for each assignment pair we have

aij(t)− pj(t) ≥ max
k∈A(i)

{aik(t)− pk(t)} − ε ∀ (i, j) ∈ S

Consider the quantitymax
k∈A(i)

{aik(t + ∆t)− pk(t + ∆t)} − ε,

max
k∈A(i)

{aik(t + ∆t)− pk(t + ∆t)} − ε ≤ max
k∈A(i)

{aik(t)− pk(t + ∆t)} − ε

≤ max
k∈A(i)

{aik(t)− pk(t)} − ε

≤ aij(t)− pj(t)

= aij(t + ∆t)− pj(t + ∆t)

where the first line makes use of the the fact thataij(t + ∆t) is upper bounded byaij(t), the second uses the fact

that prices are strictly increasing (i.e.,pk(t) ≤ pk(t+∆t)), the third uses the definition of theε−CS condition, and

the last line follows from the stipulation that every agent inS tracks its assigned task from timet to time t + ∆t

and the fact that the price of a task cannot change unless the assignment does. The resulting inequality shows that

ε−CS still holds at timet + ∆t for every agent-task pair continuously in the assignment fromt to t + ∆t. ¤
Lemma 2:Providing that an agent tracks the minimum-time path to the task it is currently bidding on, the

proposed algorithm maintainsε−CS for a partial assignmentS for all t ≥ 0 when benefits are defined as in (13).

Proof: Consider agenti which has just submitted a bidbiji for his preferred taskj at time t. Since agenti is

working with possibly outdated price information, its preferred target satisfies

aij(t)− pi
j(t) ≥ max

k∈A(i)
{aik(t)− pi

k(t))} − ε ∀ (i, j) ∈ A(i)

wherebiji is calculated to satisfy the above equation ifpi
j(t) = biji . Since agenti tracks taskj while its bid is

pending, then by logic analogous to that used in Lemma 1 and the fact that the auctioneer for taskj knows its true

price, theε−CS condition is guaranteed for pairs entering the partial assignment and thus the overallε−CS of S

is maintained. ¤
Theorem 2:For a feasible asymmetric assignment problem where there exists at least one full assignmentS such

that every pair(i, j) in S agenti is capable of completing taskj, if the benefitsaij(t) are defined as in (13) and

information transmission delays are bounded byD, the proposed algorithm terminates in finite timeta provided

that ε > 2DB(m− 1)(V + 1) and no agent reaches its preferred task beforeta. Furthermore, the final assignment

has a corresponding benefit that is withinmε of the optimal assignment given the configuration of the agents at

time ta.

Proof: We first assume that the algorithm does not terminate in a finite amount of timeta and then prove the

theorem by contradiction. We do this in a manner similar to the termination proofs for the standard auction algorithm

that appear in [10] and [9]. To ensure that enough tasks receive bids to create a full assignment, it was sufficient
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in [10] and [9] to show that the value of each agent’s preferred task eventually fell below the benefit of some

unassigned task. We must, however, show that the value of the agent’s preferred task falls fast enough in order to

overcome the effects of potentially decreasing benefits.

If the algorithm does not terminate, it must be the case that at least one (but not necessarily the same) agent

is unassigned at all times. Therefore, it is also the case that some agents submit (and thus some tasks receive) an

infinite number of bids. This is ensured by the stipulation that unassigned agents must bid immediately if eligible

to do so and are guaranteed to receive confirmation or rejection within at most2D time units, after which time they

must bid again unless they were accepted into the assignment. If accepted into the assignment, they either displace

another agent (who must then bid) or add another agent/task pair to the assignment (which can only happen a finite

number of times if the algorithm does not terminate since the size of assignment is strictly non-decreasing).

Let us denote the subset of agents that bid indefinitely asI∞ and the subset of tasks that receive an infinite

number of bids asJ∞. There must then be a sufficiently large time indext∞ such that for all timet > t∞ bidding

is confined toI∞ andJ∞.

Consider an agenti ∈ I∞ and the set of tasksA(i) to which it may be assigned. Lett0 be the time a task

from A(i) gets reassigned. If no other tasks fromA(i) get reassigned beforet0 + D, then agenti will have perfect

knowledge of the prices for those tasks. With such knowledge, agenti can make a bid for some task inA(i) that

will be accepted no latert0 + 2D. Therefore, at least one task fromA(i) must receive a successful bid every2D

time units.

Given that information, examine the maximum value agenti associates with tasks that are in bothA(i) andJ∞,

vi(t) = max
j∈A(i)

T
J∞

{aij(t)− pj(t)} (18)

and note that aftert∞, the price of the task that achieves this value decreases by no less than the bidding increment

ε every2D time units. Since the upper bound on the benefits in (15) tells us thataij(t) cannot increase, and the

algorithm dictates that prices do not decrease, this means thatvi either decreases by at leastε every2D time units

or by some lesser amount if the value of the second best task is withinε of the value of the best task. The latter

can happen at mostN ≤ m − 1 times (the number of tasks inA(i)
⋂

J∞) before the quantityaij(t) − pj(t) for

each taskj must be at leastε less than the original value of ofvi(t), so we can over boundvi(t) with

vi(t) ≤ max
j∈A(i)

T
J∞

{aij(t∞)− pj(t∞)} − ε

⌊
t− t∞
2DN

⌋

whereb·c is the floor operator (which takes the value of the largest integer less than its operand). Since−xb t
y c is

a descending staircase function bounded from above byx− x
y t, we have

vi(t) ≤ max
j∈A(i)

T
J∞

{aij(t∞)− pj(t∞)}+ ε− ε

2DN
(t− t∞)

Substitutingε = 2DB(m− 1)(V + 1)δ whereδ > 1 (so thatε satisfies the assumed bound) and noting thatN can

be no greater thanm − 1 or else at least as many tasks as there are agents would receive an infinite number of
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bids (in which case the algorithm would have terminated),

vi(t) ≤ max
j∈A(i)

T
J∞

{aij(t∞)− pj(t∞)}+ 2DB(m− 1)(V + 1)δ

−2DB(m− 1)(V + 1)δ
2D(m− 1)

(t− t∞)

Cancelling like terms and collecting the constants on the right gives us

vi(t) ≤ −δB(V + 1)(t− t∞) + max
j∈A(i)

T
J∞

{aij(t∞)− pj(t∞)}

+2DB(m− 1)(V + 1)δ (19)

which tells us that the value of the best object from the setA(i)
⋂

J∞ can be bounded by a decreasing affine

function of time aftert∞.

Now, since the prices of tasksj 6∈ J∞ stop changing after timet∞, using the lower bound for the change in a

benefit from (14), the valuevi agenti associates with the best of those tasks is lower bounded by

vi(t) = max
j 6∈J∞

{aij(t)− pi
j(t)}

≥ max
j
{aij(t∞)−B(W + (V + 1)(t− t∞))− pj(t∞)}

= −B(V + 1)(t− t∞) +
[
max

j
{aij(t∞)− pj(t∞)} −BW

]
(20)

which is also a decreasing affine function of time aftert0. Since the slope of the line described in (19) is less

than the slope of the one described in (20), some taskj 6∈ J∞ must eventually become the best value for each

agenti ∈ I∞ at some timet > t∞. Since these tasks never receive a bid aftert∞ it must be the case that none

of these tasks are inA(i) for any agent inI∞, implying thatA(i) ⊂ J∞ ∀ i ∈ I∞ and
⋃

i∈I∞ A(i) = J∞. In a

forward auction, once tasks are assigned they remain assigned, so after a finite length of time, every task inJ∞

will be assigned to some agent fromI∞. Since there will still be some agent fromI∞ bidding, there must be more

agents inI∞ than tasks inJ∞, contradicting the assumption that a feasible solution exists. Since the algorithm

terminates, the final assignment has a collective benefit withinmε of the maximum possible (with respect to the

configuration of the agents at the time of termination) given the results of Lemmas 1 and 2 and Theorem 1.¤

Here we note a few important things concerning the previous theorem. First, it should be clear that in the more

general formulation with valuesBij for each agent-task pair instead of a single common valueB, the validity of the

proof is maintained by simply replacingB with maxi,j Bij . Secondly, the assumption that no agent reaches a task

it is tracking prior to the termination of the algorithm is virtually impossible to guarantee for cases in which the

communication delay between agents is large in relation to their speed. Thirdly, the value required for the bidding

incrementε tends to be extremely large, and in practice (see Section V) forces the auction to conclude quickly and

with poor results (particularly for a large number of agents since the sub-optimality boundmε increases quadratically

with m). The reasonε must be so large is that Theorem 2 requires an analysis of the worst case scenario. In this

scenario, the agents are all bidding (and moving towards) a group ofm− 1 tasks that lie directly in front of them

while moving directly away from the remaining tasks. The benefits of the first group only decrease when their
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prices rise, while the benefits of the latter continually decrease as the agents move away from them at the fastest

possible rate.

For these reasons we would like to guarantee the termination of algorithm under less restrictive conditions. The

inequalities of (14) and (15) were based on the assumption that an agent’s trajectory could lead anywhere so long as

it was feasible. Considering instead a case where the agent’s movement is restricted to a subset of the environment

that includes all the tasks. Then for most situations the length of the optimal trajectory from an agent to a task

should satisfy

0 ≤ |σ[si(t), dj ]| ≤ X ∀ t > 0, ∀ i, j (21)

for some positive scalarX. Thus the associated benefit of that pair satisfies

Cij −BX −Bt ≤ aij(t) ≤ Cij −Bt ∀ t > 0, ∀ i, j (22)

Theorem 3:If the motion of the agents is restricted in such a way that the inequality in (22) holds, then the

auction algorithm terminates for anyε > 0.

Proof: Without loss of generality, assume that no tasks are completed before a full assignment is reached. If they

are handled correctly (see the next section), then an early task completion simply changes the assignment problem

to another with one less agent and task.

In Theorem 2 we have already established that the price of every task in a partial assignment decreases by at

leastε every2D(m− 1) time units. Then for some agenti, the value it associates with its preferred task from the

current partial assignmentS(t)

vi(t) = max
j∈S(t)

{aij(t)− pj(t)}

is upper bounded by

vi(t) ≤ max
j∈S(t)

{Cij −Bt− pj(t)} ≤ −Bt− min
j∈S(t)

pj(t) + max
j

Cij

whereas the valuevi(t) that agenti associates with an arbitrary task not inS(t) can be bounded from below by

vi(t) ≥ −Bt + min
j

Cij −BX

Since the price termminj∈S(t) pj(t) →∞ ast →∞ if a full assignment is not reached, it is clear that after some

finite time period,vi(t) will fall below vi(t) and some task will be added to the assignment. This process must

repeat until the assignment is full, therefore causing the algorithm to terminate in finite time. ¤

Note that the condition stated in (21) can be satisfied by a number of simple motion control schemes, including

those laid out in Section IV-B. In this case, however, we loose the optimality bounds guaranteed from maintaining

an ε−CS condition since Lemmas 1 and 2 do not hold when an agent can reach a task prior to termination. As we

will see in Section V, the choice of the bidding incrementε will have a large effect on the practical performance

of the algorithm as it will determine the trade off between the advantage of acting quickly (to prevent too much

degradation in collective benefit) and the advantage of optimizing the assignment with respect to the benefits at the

time of termination.
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D. Optimality Bounds

In this section we derive worst case bounds for the collective benefit received from the assignment reached at

time ta. Since we know that the collective benefit of any assignment will degrade as a function of the time it

takes to achieve a full assignment, we start by considering a worst case bound onta. For the algorithm outlined

in Section IV-B, we can use the intersection of the lines described in (19) and (20) as a guide for determining this

value. Consider themth task to enter the assignment and letta be the time that one of the agents bids for it (since

all agents will be tracking their final assignment from that time forward). The valuev(t) of the final task to any

agent is lower bounded by

v(t) ≥ min
i,j

aij(0)−B(W + (V + 1)t)

and the value any of the agents places on any object already in the assignment must be upper bounded by

v(t) ≤ max
i,j

aij(0)− δB(V + 1)t + ε

with ta given as the intersection of the two lines defined by the right hand sides of the previous two equations

because after that point, some unassigned task must be the preferred task for all agents (one of which must enter

a bid). For the algorithm with motion control, the termination timeta therefore can be bounded from above as

ta ≤ 2D(m− 1)
max aij(0)−min aij(0) + BW + ε

ε− 2DB(V + 1)(m− 1)
(23)

For comparison, we state a similar bound for the termination of a distributed auction with fixed benefits (the benefits

“frozen” at their initial values) adapted from the results of [14] and [15]. In this case the termination time is bounded

from above by

ta ≤ 2D(m− 1)
(

max aij(0)−min aij(0)
ε

+ 1
)

(24)

where it is apparent that the worst case termination time for an auction performed with static benefits is always

better than that of one in which the current values of benefits are used (given the sameε) . That said, a worst

case collective benefit based solely on termination time and the related possible change in benefit given by (14)

will always favor a fixed-benefit distributed auction [9]. We can, however, take another approach to give us an

interesting result for the algorithm with motion control.

Let ji denote the final task assignment of agenti and let i? denote the agent who made the final bid andj?

the task receiving that bid. We are interested in finding a worst case lower bound for the collective benefit of that

assignment, i.e.,
m∑

i=1

aiji(ta) = ai?j?(ta) +
m∑

i=1,i6=i?

aiji(ta) (25)

where we have separated the benefit of the last assignment for the purpose of analysis. The lower bound for the

benefit of this pair is given by the inequalities in (15) and (14) as

ai?j?(ta) ≥ ai?j?(0)−BW −B(V + 1)ta (26)
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Before returning to the other half of (25) we note two facts concerning the task prices at the moment of termination.

First, the price ofj? is still equal to zero (it has received a bid, but that does not become its real price until the

auctioneer responsible forj? makes the assignment). Second, since we are guaranteed to have a price increase of

at leastε every2D time units, the sum of the prices of the other tasks must satisfy
m∑

i=1,i6=i?

pji(ta) ≥ ε

⌈
ta
2D

⌉
≥ ε

ta
2D

(27)

whered·e is the ceiling operator. Now consider the benefit terms under the sum on the right hand side of (25).

Since the algorithm maintains anε-CS condition for all assignments, we know that for eachi 6= i? the benefit of

an agent’s assigned task and the price of that task satisfy the following inequality

aiji
(ta)− pji

(ta) ≥ max
k
{aik(ta)− pk(ta)} − ε

≥ aij?(ta)− ε

≥ aij?(0)−BW −B(V + 1)ta − ε (28)

where we have used the fact that thepj?(ta) = 0 and the lower bound on the possible change in benefit. Returning

to the sum on the right hand side of (25)
m∑

i=1,i6=i?

aiji(ta) =
m∑

i=1,i6=i?

(
aiji(ta)− pji(ta) + pji(ta)

)

=
m∑

i=1,i6=i?

(
aiji(ta)− pji(ta)

)
+

m∑

i=1,i6=i?

pji(ta)

≥
m∑

i=1,i6=i?

(
aiji(0)− [BW + B(V + 1)ta + ε]

)

+
m∑

i=1,i 6=i?

pji(ta) (29)

which allows us to start to determine a bound on the collective benefit obtained through the algorithm
m∑

i=1

aiji(ta) ≥ ai?j?(0)−BW −B(V + 1)ta +
m∑

i=1,i6=i?

pji(ta)

+
m∑

i=1,i 6=i?

(
aiji(0)− [BW + B(V + 1)ta + ε]

)

For convenience we leta = mini,j aij(0) anda = maxi,j aij(0), and letA∗ denote the optimal collective benefit

at time t = 0. Taking the minimum value for the benefit terms, the previous equation becomes
m∑

i=1

aiji(ta) ≥ ma− (m− 1)ε−mBW −B(V + 1)ta

−B(V + 1)(m− 1)ta +
m∑

i=1,i6=i?

pji(ta)
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Using the lower bound for the sum of prices in (27) and the fact thatA∗ ≤ ma

m∑

i=1

aiji
(ta) ≥ A∗ −m(a− a)− (m− 1)ε−mBW

−B(V + 1)ta −B(V + 1)(m− 1)ta + ε ta

2D

and rewritingε in the last term as the productδ2DB(V + 1)(m − 1), whereδ > 1 if the termination criteria of

Theorem 2 is met, and0 < δ ≤ 1 otherwise.
m∑

i=1

aiji
(ta) ≥ A∗ −m(a− a)− (m− 1)ε−mBW −B(V + 1)ta

−B(V + 1)(m− 1)ta + δB(V + 1)(m− 1)ta

= A∗ −m(a− a)− (m− 1)ε−mBW

−[1− (δ − 1)(m− 1)]B(V + 1)ta

(30)

The bound in (30) is linear in terms of the termination timeta which allows us to easily find its minimum on

the interval[0, max{ta}] by substituting the value formax{ta} from (23) if (δ − 1)(m− 1) < 1 or simply taking

the value of the first four terms if otherwise. Since the bound provided in the latter case is extremely poor, we note

that since the final assignment arrived at by the algorithm is guaranteed to be withinmε of the optimal solution

at ta combined with the maximum possible degradation of the optimal solution given the bounds on the change in

benefits, we have a second lower bound given by
m∑

i=1

aiji(ta) ≥ A∗ −m(BW + B(V + 1)ta)−mε (31)

then the worst case benefit in the case where(δ − 1)(m − 1) ≥ 1 is given by the value of (30) and (31) at

their intersection. Note that this value can be optimized by varyingε but, as simulations will show, the practical

performance of the algorithm in most cases is significantly better than its worst case performance, so it will make

little sense to optimize in this fashion.

As an example, we compare the worst case performance of the algorithm and a fixed-benefit distributed auction

for the Dubins car model. For a generic situation involving this model, the best worst case bound for the latter

algorithm is achieved by having the agents circle (loiter) until the auction is complete and is given by
m∑

i=1

aiji(ta) ≥ A∗ −mB

(
2πRmin

vc
+ ta

)
−mε (32)

For a given set of problem parameters (m = 10, a− a = 100, B = 1, Rmin/vc = 0.1) and withδ set to1 + 1
m−1

(see preceding discussion) we plot the worst case bound as a function of termination time for both the algorithm

with motion control and the fixed-benefit distributed auction over the intervalt = 0 to t = 2D(m−1)a−a
ε (the upper

bound of the termination time of the fixed-benefit distributed auction). The left plot in Figure 1, for a maximum

delay of D = 1, clearly shows that the worst case performance of the fixed-benefit distributed auction (given by

the minimum of the dashed line) is better than that of the algorithm with motion control. The right plot shows the
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same case for a maximum delay ofD = 10; the worst case bound of both algorithms has decreased, but that of

the fixed-benefit distributed auction has now fallen below that of the one with motion control.
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Fig. 1. Worst case comparison between algorithms.

E. Early Task Completion

The preceding analysis was all based on the assumption in Theorem 2 that no agent reaches a task prior to

the termination of the algorithm. Since this is difficult (if not impossible) to guarantee in many situations, we are

curious about how much the maximum possible benefit can degrade if we let agents complete a task prior to the

termination of the algorithm. Intuition tells us that for cases where the benefits are highly dependent on the time

of task completion (i.e.,B large relative tomaxi,j Cij −mini,j Cij) there is more to gain from completing a task

early than waiting for the algorithm to arrive at a full assignment. For a potentially large class of vehicle models,

this turns out to be the case.

Theorem 4:Consider the configuration of agents and tasks at a specific instant in time. If

1) The vectors describing the position of the agents (si, i ∈ {1, . . . ,m}) and those describing the position of

the tasks (dj , j = {1, . . . , n}) all belong to the same state spaceM ,

2) The optimal trajectory distance function|σ| : M × M → R≥0 satisfies|σ[si, dj ]| = |σ[si′ , dj′ ]| whenever

si = si′ anddj = dj′ , and

3) There exists an agenti? and a taskj? that are collocated (i.e.,si? = dj? ),

then the minimum possible total travel time of a one-to-one assignment between agents and tasks is achieved by

an assignment containing the pair(i?, j?).
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Proof: Let A be the minimum possible total travel time for a configuration of agents and tasks where there exists

agenti? and taskj? such thatsi? = dj? . Let S be an assignment that achieves that minimum. Likewise, letA? be

the minimum possible total travel time for the same configuration andS? an assignment that achieves it under the

constraint that(i?, j?) ∈ S?. SinceS is a less restricted assignment thanS?, it follows that A ≤ A?.

Assume(i?, j?) 6∈ S (if (i?, j?) ∈ S, the hypothesis is trivial). Leti′ be the agent assigned toj? and j′

the task assigned toi? underS. For convenience, define the subset ofS that contains these assignment pairs as

S′ = {(i?, j′), (i′, j?)}. Now, using the optimal trajectory distance function we can state the valueA as

A =
∑

(i,j)∈S

|σ[si, dj ]|

= |σ[si′ , dj? ]|+ |σ[si? , dj′ ]|+
∑

(i,j)∈S−S′
|σ[si, dj ]|

= |σ[si′ , dj? ]|+ |σ[dj? , dj′ ]|+
∑

(i,j)∈S−S′
|σ[si, dj ]|

≥ |σ[si′ , dj′ ]|+
∑

(i,j)∈S−S′
|σ[si, dj ]|

= |σ[si? , dj? ]|+ |σ[si′ , dj′ ]|+
∑

(i,j)∈S−S′
|σ[si, dj ]|

≥ A?

where we use the assumption thatsi? = dj? and the fact that the optimal trajectory distance function must satisfy

both the triangle inequality and|σ[x, x]| = 0. The final inequality follows from the fact that the prior sum is the

total travel time of an assignment that includes the pair(si? , dj?), which, by definition, is lower bounded byA?.

ThusA ≤ A? ≤ A ⇒ A? = A, proving that the constrained assignment achieves the optimal value. ¤
The above theorem demonstrates that letting an agent complete a task early cannot degrade the maximum

achievable benefit in problems whereCij = 0 ∀ i, j (or when Cij = Ckj ∀ i, j, k in symmetric assignment

problems) provided that agents and tasks are defined as points in the same space and the optimal trajectory distance

function has the stated properties. Note that if the speed and turning radius of each agent is identical, the Dubins

Car model satisfies these criteria. The pivoting robot model, on the other hand, does not meet the first assumption

of Theorem 4 except in the case whereωmax = ∞.

Note that in the more general situation where the fixed portion of the benefit termsCij varies widely among

agents, the early completion of a taskj? by agenti? has the potential to be much more detrimental to the maximum

possible benefit. Also, if agents are allowed to complete tasks early, it is important that no other agents waste their

resources on the same task. Unless the agents have the ability to sense the status of a task before committing

themselves, they must have a mechanism to avoid possible duplication. One manner of accomplishing this is to

have auctioneer responsibility for a task fall on the last agent to which that task was assigned (with responsibility

for an unassigned task remaining with the agent at which it started).
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V. SIMULATIONS

In this section we present results from simulations using the modified auction algorithm from Section IV and

agents with vehicle dynamics described by a Dubins car model. We do not attempt to characterize the algorithm’s

behavior in terms of all the salient parameters since there are a large number of them, many of which are

interdependent (i.e., vehicle dynamics, communication methodology, number of agent/tasks, initial configurations,

benefit range, weighting of benefit terms, etc.). Instead, we have selected a few scenarios that best illustrate the

more important aspects of the problem. All simulations with the exception of the last one used 10 agents, since

simulation time quickly became prohibitive with more, and 10 tasks since assignment problems are generally more

difficult to solve when agents do not have the option of ignoring some tasks. In the cases where we compare the

algorithm of Section IV to the fixed-benefit distributed auction, we sought to use an implementation of the latter

that was proper for the scenario involved.

A. Effects of Delays

As previously discussed, the presence of communication delays will generally lengthen the time it takes the

agents to reach an assignment regardless of the algorithm employed. The associated delay in getting the agents to

the tasks will therefore have a detrimental impact on the collective benefit that is achieved. In order to assess the

effects of communication delays, we simulated a situation in which the tasks are randomly distributed over one area

and the agents over another area some distance away from the first (with agents initially headed towards the general

area of the targets). See Figure 2 for an example of this configuration. For this scenario, the agents were given a

speed of 100 m/s and a turning radius of 1000 m. The static benefit of the task ranged from 0 to 100 and the time

dependent term entered at a rate of 1/sec which put the static and the initial time dependent terms of the benefit

equations on roughly the same scale for this setup. A bidding increment of 25 was chosen as a value that ensured

the algorithms terminated prior to an agent reaching a task most of the time. Early completion of tasks was allowed

under the method of trading auctioneer duty discussed in Section IV-E. Random but bounded communication delays

were simulated using a uniform distribution over a specified range. The maximum communication delay was varied

from 0.5 sec to 10 sec for one case in which the minimum delay was zero and another in which the minimum

delay was 80% of the maximum.

Figures 3 and 4 clearly show how the average benefit decreases with increased delay for both the algorithm with

motion control and a fixed-benefit distributed auction in which the agents move along their initial heading towards

the tasks until a full assignment is reached (labeled “solved while cruising” in the figures). They also demonstrate

that the motion control algorithm tends to achieve a better collective benefit in comparison to the fixed-benefit

distributed auction. This is particularly the case when the average delay is high, as shown in Figure 4. With large

delay, the average benefit achieved with the fixed-benefit auction falls below even that of the average random

assignment. We note here that the error bars on all the figures in this section are based on the standard deviation of

the estimate of the mean (i.e.,σ = S/
√

k whereS2 is the sample variance andk the number of simulation runs).
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Fig. 2. Example of scenario for investigating effects of delays. Rectangles and planes denote tasks and agents respectively.
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Fig. 3. Comparison of algorithms when delay is uniform on[0, D].

B. Effects of Bidding Increment

As discussed in Section IV-C, in most situations it is virtually impossible to guarantee the assumption of Theorem

2 that no agent will reach a task before termination of the algorithm. On the other hand, the bidding increment

specified in that theorem is often so large as to effectively eliminate the optimization process of the auction (i.e.,



23

0 1 2 3 4 5 6 7 8 9 10
 400

 350

 300

 250

 200

 150

 100

 50

0

D

c
o

lle
c
ti
v
e

 b
e

n
e

fi
t 

  
o

p
ti
m

a
l 
c
o

lle
c
ti
v
e

 b
e

n
e

fi
t

solved with motion control
solved while cruising
random assignment

error bars are ±3σ of estimator

average of 0.65 early completions
at maximum delay

1500 simulation runs per point

Fig. 4. Comparison of algorithms when delay is uniform on[0.8D, D].

the first bid a task receives will raise its price so high that it is unlikely to receive another bid). In order to study

the effects of varying the bid increment, a scenario similar to that in Figure 2 was used. The area covered was

approximately twice as large and the agents’ speed was increased to 300 m/s while its turning radius decreased to

500 m. These changes reduced the variance of the simulations, allowing us to highlight the effect of small changes

in the bidding increment without having to run an excessive number of trials.

As Figure 5 shows, the best average performance of the algorithm for a given delay lies at a certain value of the

bidding increment. As the bidding increment decreases from that value, the average benefit falls off steeply since

it takes more time to reach an assignment. As the bidding increment increases from that value, the average benefit

decreases as the algorithm is not attempting to achieve as much optimization. As is apparent from Figure 5, the

optimal bidding increment also tends to decrease as the communication delay decreases. The balance between the

competing goals of acting quickly and optimizing the assignment according to the current benefits is determined

by the size of the bidding increment; a large value emphasizes the former and a small value the latter. When the

communication delay decreases, the algorithm runs faster with respect to the changes in benefits, thereby tilting

that balance in favor of performing a better optimization.

C. Early Task Completions

In Theorem 4 we saw that letting an agent complete a task early cannot decrease the achievable collective benefit

in a total path minimization problem when a few simple properties hold for the length of the optimal trajectory

between two points. To illustrate this we simulated a total path minimization scenario for a configuration of agents

and tasks in which both are randomly distributed on a disc with radius twice the minimum turn radius of the
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Fig. 5. Average performance as a function of the bidding increment (delays uniform on[0.8D, D]).

vehicles (see Figure 6). For this simulation the speed of the agents was 100 m/s and their turning radius 1000 m.

The bidding increment was kept constant at 25 and the maximum communication delay again varied from 0.5 sec

to 10 sec. One simulation was run in which agents where allowed to complete tasks early, and another in which

they were forced to circle back to the task until the algorithm terminated (or their preferred task changed). Both

cases were compared to a fixed-benefit distributed auction based on initial benefits in which the agents moved on

a circle passing through their initial position (they “loiter”) until the auction was complete.

The results appear in Figure 7. As expected, the motion control algorithm in which agents were allowed to

complete tasks early performed much better than both of the other algorithms and is the only algorithm whose

performance stays above that of a random assignment for the given values ofD. The performance of the two motion

control algorithms starts close together, but quickly diverges as communication delays increase. This is expected

since the close proximity of agents and tasks will result in more and more agents having to pass tasks as the time

it takes to reach an assignment increases. In fact, as the delays increase, the performance of the motion control

algorithm without early task completions starts to resemble that of the fixed-benefit distributed auction.

D. Distributed vs. Centralized Computation

Given that the number of agents and tasks involved in many of these problems is relatively small, solving the

associated assignment problem on a single processor can take considerably less time than implementing a distributed

auction that is prone to protracted “price wars” (i.e., agents making small incremental bids for a few tasks and

incurring a communication delay with each bid and assignment). In order for the motion control algorithm to be

practical, it would have to be the case that the benefits of its parallel computation exceeded the communication
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Fig. 6. Example of total path minimization problem.
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Fig. 7. Comparison of algorithms in total path minimization problem (delays uniform on[0.8D, D]).

penalty associated with the bidding process. If we are given a communication network over which all the problem

data could be efficiently sent to every agent and the assignment problem solved redundantly, it would be hard to

justify using a distributed methodology. However, as an example of when the algorithm of Section IV-B may prove

more effective, consider the case where communications are limited by bandwidth. In a scenario where the structure

of the benefits tends to result in the modified auction taking only a few iterations, then that algorithm might tend

to terminate faster (and produce a higher collective benefit) than it takes for the agents to transmit all the problem

data to each other.
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The total path minimization problem is just such a scenario; if the agents and tasks are distributed in the same

manner across a wide area, most agents will wind up assigned to the task to which they are closest initially. For

this simulation, we used a time division multiplex (TDM) scheme for the communication network, with the time

slot allocated to each agent the size of a distributed auction message, denoted asT . To approximate the time it

would take to transmit all the problem data to the agents, we roughly estimate the time required for a single field

to be 1
4T since an auction message has four fields (i.e., task, agent, bid/price, and a time stamp). Then in order to

synchronize their data each agent would have to send a message of2 + n fields (time stamp, agent, and its benefit

for each ofn tasks) if the tasks can be placed in a known order or2 + 2n fields otherwise. Then transmitting the

entire problem data for every agent would require1
4Tm(2 + n) in the first case (scheme 1) and14Tm(2 + 2n) in

the second (scheme 2).

For this simulation we distributed the agents and tasks randomly over a 20 km square, with the speed and turning

radius of the agents again at 100 m/s and 1000 m respectively. In both “synchronized schemes,” the agents move

towards their closest initial task while they wait to collect all the benefit data. Once that is complete, they proceeded

towards their assignment from the optimal solution. The results appear in Figure 8 and clearly show that there are

crossover points at which the average performance of the distributed auction with motion control becomes greater

than that of the two synchronized schemes as the bandwidth of the communication network decreases. Hence,

we can conclude that with a poor quality communication network the distributed auction with motion control can

outperform a centralized algorithm. We note that the performance of the synchronized schemes appears to degrade

linearly with decreasing bandwidth (with slopes roughly proportional to their synchronization time), while the

performance of the motion control algorithm becomes decidedly nonlinear for low bandwidth values in such a way

that cannot be attributed to the variance of the simulation data. While we do not have a proper explanation for this

phenomenon, we assume it is the effect of some interaction between the switching behavior of the motion control

algorithm, the synchronicity imposed by TDM communication, and the geometry of the task scenario. The practical

advantages of the motion control algorithm in this scenario are even more evident (and without when the number

of tasks is large relative to the number of agents (see Figure 9). The additional tasks do not generally make these

small assignment problems more difficult to solve (since we can still assume calculation times are negligible), but

the communication requirements of the synchronized schemes quickly cause their performance to degrade as the

available bandwidth shrinks.

VI. CONCLUSIONS

In this work we have sought to address an assignment problem between mobile agents and stationary tasks

where the benefits (and hence the optimal assignment quality) have the potential to decrease during the time used

to calculate a solution. We presented a modification of the distributed auction algorithm of [9] that controls the

motion of the agents during the algorithm’s progress in an attempt to minimize that loss of benefit. We showed

that this algorithm is guaranteed to terminate in finite time at an assignment that is within a known bound of the

optimal solution under one set of assumptions, and simply guaranteed to terminate under less restrictive conditions.
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Fig. 9. Comparison of algorithms in bandwidth constrained scenario (10 agents/20 tasks).

Simulations demonstrated that the motion controlled algorithm has an average performance superior to that of a

fixed-benefit distributed auction in many cases, and may even outperform a centralized approach in certain situations.

There are two key extensions of the studied problem that deserve further research. One of these is a multi-

assignment version in which agents are capable of completing more than one task. In this case, an agent’s trajectory

to a task (and the benefit it will receive from it) is directly related to the other tasks that agent must visit. Another
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case that presents similar problems is a version in which tasks are coupled to each other (i.e., certain tasks cannot be

completed before others). Here, the benefit an agent will receive from a task may depend on what other agents are

doing and when. In both these cases the non-linear coupling between tasks and benefits rules out algorithms, such

as the auction, that are designed for linear network flow models. Given that these problems often take a longer time

to solve, the concept of directing agents’ motion during that process would seem to be of even more importance.

APPENDIX

Many vehicles are forced to travel at (or within a narrow range of) a constant velocity while possessing only

limited steering ability for one reason or another. Cruising aircraft, for example, commonly achieve the greatest

fuel efficiency at a specific airspeed and can only turn so fast before they start losing altitude. The speed of an

automobile on a busy highway, on the other hand, is largely dictated by the flow of traffic with the driver unable

to execute too sharp a turn without losing control or rolling over. When motion is confined to a plane as it is in

these two cases, we can model the vehicle kinematically as what is known as the Dubins car [4] model consisting

of the system of non-linear differential equations and control input constraints given in (12)

Let us define the state vector of this system ass = [x, y, θ]>. We then denote a trajectory in this state space as

s(t), t ≥ 0 and a particular point on such a trajectory ass(t). We say that a particular trajectorys(t), t ≥ 0 is feasible

if there exists a control inputu(t), t ≥ 0 satisfying the constraint|u(t)| ≤ 1, such thats(t), t ≥ 0 is a solution to

the system in (12). Let us denote the projection ofs(t), t ≥ 0 into thexy-plane as the parameterized curvesxy(t).

For all feasible trajectories, the curvesxy(t) possesses the following properties: 1) the vehicle is always oriented

in the same direction as the tangent tosxy(t), 2) the length of any segment ofsxy(t) is proportional to the time

taken to traverse it, so distance optimal paths are also time optimal, and 3) the magnitude of the trajectory’s radius

of curvature is bounded from below by the valueRmin = vc/ωmax.

In [4], Dubins showed that for this model the shortest feasible trajectory between two points (with initial and

final headings specified) must be constructed solely from straight line segments and arcs with radius of curvature

±Rmin.Moreover, optimal trajectories must belong to one of two classes of curves. The first class, denotedCSC,

consists of curves beginning with an arc of radiusRmin, followed by a straight line segment, followed by another

arc of radiusRmin (where the turn direction of each arc is not restricted). The second class, denotedCCC, consists

of curves comprised of three arcs of radiusRmin (and alternating turn direction) in succession. Figure 10 provides

an example trajectory of each type, illustrating their relationship to the the vehicle’s turn circles (the two circles of

radiusRmin tangent to the vehicle’s path) at the initial and final positions. Obviously, trajectories of the typesCC,

CS, SC, C, andS are simply subpaths of trajectories from the two main classes.

From this point on, we will assume thats(t), t ≥ 0 is a feasible but otherwise arbitrary trajectory. At different

pointss(t), the optimal trajectory to a fixed final destination and headingd = [xd, yd, θd] will vary. As before, we

denote the optimal trajectory between these two points asσ[s(t), d], and define the distance function|σ[s(t), d]| as

the travel time ofσ[s(t), d] (since velocity is constant,|σ[s(t), d]| is just the length ofσ[s(t), d] divided by vc).

For the purposes of this work, we wish to find bounds on|σ[s(t), d]| in the form of the following inequality,
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Fig. 10. Examples of the two classes of optimal trajectories (black and white arrows denote initial and final positions respectively).

|σ[s(t + ∆t), d]| − |σ[s(t), d]| ≤ V ∆t + W ∀ t, ∀∆t > 0 (A.1)

There are multiple methods that could be used to find a bound of this form. One approach might be to find

an upper bound ond
dt |σ[s(t), d]| everywhere|σ[s(t), d]| is continuous. We would then have a suitable value for

V provided we can find a value forW large enough to account for the maximum cumulative effect of possible

discontinuities. Here, we instead take a geometric approach that establishes the maximum range for|σ[s(t), d]| at

an arbitrary point onsxy(t) and then uses this information to deduceV andW .

Theorem A.1:For an arbitrary trajectorys(t), t ≥ 0 satisfying the feasibility conditions of (12),|σ[s(t), d]|
satisfies the inequality of (A.1) withV = 1 andW = (2+3π)Rmin

vc
.

Proof: Since the basic spatial relationship between a vehicle and a target destination is preserved by the operations

of translation and rotation, we can assume that the target destination is located at the origin and has heading pointing

along the positivex-axis (d = [0, 0, 0]>) without any loss of generality. We first note that of the six trajectory types,

a LRL and/orRLR trajectory may not exist when the vehicle is far away from the target position. Similarly,LSR

and/orRSLtrajectories may not exist when the vehicle and target position are close. Trajectories of typeLSL and

RSR, however, always exist for anysxy(t) because of the geometry of their construction. Hence, we will focus on

finding an upper bound for the length of theLSL and RSRtrajectories in terms of the pointsxy(t) (i.e., letting

θ(t) vary), which we can then use as a conservative bound on|σ[s(t), d]|. The diagram in Figure 11 illustrates the

construction of these trajectories and the information we need to find this bound.

Consider the line segmentsDL, QL, andRmin, whereDL is the same length as the straight segment in theLSL

trajectory. Because they form a triangle, we have the inequalityDL ≤ QL + Rmin. But QL, ||sxy(t) − (0, 0)||2,

andRmin also form a triangle, soQL ≤ ||sxy(t)− (0, 0)||2 +Rmin. ThereforeDL ≤ ||sxy(t)− (0, 0)||2 + 2Rmin,

giving us an upper bound on the length of theLSL trajectory’s middle segment (whereDL reaches this bound only
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when the initial point lies on the negativey-axis with initial heading equal toπ radians). By a similar argument,

the same bound exists for the middle segment of theRSRtrajectory.

Now we must account for the possible contribution of the arc segments to each trajectory length. This can easily

be bounded by4πRmin (two arcs of maximum length2πRmin each), but we are motivated to find a tighter bound

in order to improve the final result of this proof. Consider the sum of the length in radians of all the arcs from

both theLSL andRSRtrajectories, which we denoteCT . Using some elementary geometry we have

CT = (π + φL − θ) mod 2π︸ ︷︷ ︸
AL1

+(π − φL) mod 2π︸ ︷︷ ︸
AL2

+(π − φR + θ) mod 2π︸ ︷︷ ︸
AR1

+(π + φR) mod 2π︸ ︷︷ ︸
AR2

which can be rewritten using the definition of the modulus operator (a mod b = a − bba
b c, whereb·c is the floor

operator) to demonstrate thatCT ∈ {0, 2π, 4π, 6π} for all φL, φR, θ ∈ [0, 2π), so that the total length of the arc

segments in both trajectories is upper bounded by6πRmin.

To formulate an upper bound for|σ[s(t), d]|, we can use the length of either theLSL or RSRtrajectory. Since

they both always exist, we will always choose the one with the smaller total arc length. The length of the chosen

trajectory can be no more than the maximum length of the middle segment,||sxy(t)− (0, 0)||2 + 2Rmin, plus half

the total combined arc length of the two trajectories,3πRmin (if the arc length of the chosen trajectory exceeds this

amount, it would not be the minimum as we have established that the total arc length does not exceed6πRmin).

Thus we have

|σ[s(t), d]| ≤ ||sxy(t)− (0, 0)||2 + (2 + 3π)Rmin

vc
(A.2)

To establish a conservative range for|σ[s(t), d]| at the pointsxy(t), we will also need a lower bound. The length

of σ[s(t), d] must obviously be at least equal to the straight line distance between the pointsxy(t) and the origin,
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so we have

|σ[s(t), d]| ≥ ||sxy(t)− (0, 0)||2
vc

(A.3)

We will need one more inequality before we are ready to prove the final result. We can see that by the triangle

inequality,

||sxy(t + ∆t)− (0, 0)||2 ≤ ||sxy(t)− (0, 0)||2 + ||sxy(t + ∆t)− sxy(t)||2 (A.4)

but since the trajectory must be feasible, the path length betweensxy(t) and sxy(t + ∆t) is fixed by the time

interval ∆t. Accordingly, the straight line distance between the two points can be no more thanvc∆t and (A.4)

becomes

||sxy(t + ∆t)− (0, 0)||2 ≤ ||sxy(t)− (0, 0)||2 + vc∆ (A.5)

We can now derive an inequality of the desired form. The increase between|σ[s(t), d]| and |σ[s(t + ∆t), d]| can

be upper bounded by the difference between the largest possible value of|σ[s(t + ∆t), d]| and the smallest possible

value of |σ[s(t), d]|. By first applying the bounds in (A.2) and (A.3), then using the triangle inequality of (A.5),

we can finally show that

|σ[s(t + ∆t), d]| − |σ[s(t), d]| ≤ max
s(t+∆t)

|σ[s(t + ∆t), d]| −min
s(t)

|σ[s(t), d]|

≤ ||sxy(t + ∆t)− (0, 0)||2 + (2 + 3π)Rmin

vc

−||sxy(t)− (0, 0)||2
vc

≤ ||sxy(t)− (0, 0)||2 + vc∆t + (2 + 3π)Rmin

vc

−||sxy(t)− (0, 0)||2
vc

= ∆t +
(2 + 3π)Rmin

vc

⇒ |σ[s(t + ∆t), d]| − |σ[s(t), d]| ≤ ∆t + (2+3π)Rmin

vc
∀t,∀∆t > 0 (A.6)

which fits the desired form of (A.1) withV = 1 andW = (2+3π)Rmin

vc
. ¤

The values forV andW arrived at in above are not unique in the sense that we might be able to derive other,

equally valid pairs(V, W ) for the same vehicle model that are not trivially different. Although not proven, simulation

leads us to believe that we should be able to reduceW to possibly as little as2πRmin

vc
if we are willing to accept

a three-fold increase inV .
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