
J Intell Robot Syst
DOI 10.1007/s10846-009-9333-y

Distributed Coordination Strategies
for Wide-Area Patrol

Brandon J. Moore · Kevin M. Passino

Received: 14 April 2008 / Accepted: 20 April 2009
© Springer Science + Business Media B.V. 2009

Abstract This paper addresses the problem of enabling a group of autonomous
vehicles to effectively patrol an environment significantly larger than their commu-
nication and sensing radii. The environment is divided into smaller areas and special
coordinator vehicles are designated to control the transfer of the other vehicles
from one area to another. Our past work showed that by organizing the areas and
coordinators into a ring topology, we could design a control algorithm that globally
balanced the number of vehicles in all areas within a bounded length of time. This
paper extends those results to a much broader class of area-coordinator topologies
and this added flexibility can be used in implementation to reduce the time it takes
to attain the globally balanced state.

Keywords Cooperative control · Autonomous systems · Optimization ·
Resource allocation

1 Introduction

This work is motivated by a mission scenario first proposed in [11] in which a group
of autonomous vehicles with range-limited communications and sensing is tasked
to cooperatively patrol a relatively large environment (i.e., an environment whose
dimensions dramatically exceed the vehicles’ maximum communication and sensing
radii). The limited communication and sensing radii mean that the vehicles must

This work was supported by the AFRL/VA and AFOSR Collaborative Center of Control
Science (Grant F33615-01-2-3154).

B. J. Moore (B) · K. M. Passino
Department Electrical and Computer Engineering, The Ohio State University,
Columbus, OH 43210, USA
e-mail: brandon.moore@gipsa-lab.inpg.fr, brandon.joseph.moore@gmail.com

K. M. Passino
e-mail: passino@ece.osu.edu

J Intell Robot Syst

reach a compromise between distributing themselves throughout the environment
(to reduce gaps in patrol coverage) and maintaining some cohesion as a group
(because they will need to communicate at least periodically in order to cooperate
with each other).

The approach to this problem we took in [11] is as follows. The environment
was first broken down into a number of smaller areas to which individual vehicles
could be assigned (see Fig. 1). The idea behind this spatial decomposition was that
by restricting a vehicle to a small section of the environment, it should be easier to
determine how that vehicle should behave in order to efficiently patrol that area.
More specifically, if there are one or more locations in an area to which a vehicle
can go to in order to communicate with another vehicle, then the small size of that
area means that a vehicle can patrol a significant portion of that area in between
visits to those locations and still communicate on a fairly regular schedule. That is
to say that a vehicle can spend most of its time actually patrolling the area and still
remain connected to the group through periodic communication. Of course, in order
for a vehicle to communicate by going to one of these special locations, there must
be another vehicle there. This brings us to the second part of our approach which
was the establishment of a number of coordinators. Coordinators are simply a small
number of the group’s vehicles that remain along the border between two or more
areas and provide the previously mentioned locations where the other vehicles can
come to communicate. Exactly how the coordinators and the patrol vehicles can meet
up to communicate is highly dependent on the nature of the vehicles and the specifics
of the scenario and we direct the reader to [11] for more discussion on this topic.

The preceding formulation of the problem into areas and coordinators breaks
the group of vehicles into a two-level hierarchy. At the bottom level we have the
majority of the vehicles, and from this point on we will simply use “vehicle” and

Fig. 1 A 16-area example
patrol environment

patrol area

nominal coordinator

locations

vehicle

communication

zones

J Intell Robot Syst

“vehicles” to refer to the members of this group. Being confined to one area at a
time, the vehicles’ main job is simply to gather information from that limited region
and report it back to the coordinators. Forming the upper level, the coordinators are
responsible for collecting the information from the vehicles and passing it on (e.g.,
via the vehicles) to other coordinators and potentially a human operator, directing
the vehicles’ efforts within the area (i.e., telling them where to go look if a certain
part of the area has something interesting in it or has not been observed for a while),
and shifting vehicles between the areas they oversee (i.e., the ones they “connect”
by virtue of their nominal location) in order to achieve the proper distribution of
vehicles across all the areas. For now we will consider the proper distribution of
vehicles to be one in which the number of vehicles in each area is globally balanced.
By this we mean that the number of vehicles in any area differs from that of any other
area by no more than one. The reasoning behind our desire for a globally balanced
distribution is that unless we have specific information that leads us to believe it is
better to concentrate more vehicles in certain regions, we want to spread them out as
uniformly as possible across the environment to reduce the gaps in coverage. When
the areas are all the same size (as would be the case with a regular gridding of the
environment), then this corresponds to wanting the number of vehicles in each area
to be as equal as possible (and unless the number of vehicles is evenly divisible by
the number of areas, then the best we can do is to have any two areas differ by no
more than one vehicle). Of course, in some cases it will be desirable to be able to
specify a weighted balancing of the vehicles (i.e., when we want each area to have a
proportion of group’s vehicles that is equal to its relative priority).

Other work in cooperative control that shares some similarities with our scenario
include those that deal with “pop-up” targets [8, 10] and those that deal with the
spatial allocation of resources [5]. However, the most closely related work to ours
is that concerning load balancing in distributed computing [1, 2, 7]. Our problem
differs from the regular load balancing problem in that multiple coordinators will
have control over any given area (as opposed to a single processor having control
over its task load) and since we demand a globally balanced distribution (as opposed
to a locally balanced distribution in which only neighboring processors are balanced
to within one load block). The issue of achieving a globally balanced distribution
has received only limited attention in the literature prior to [11]. Improvements on
local balancing have been achieved both with message passing [4] (which guarantees
balanced neighborhoods, but not global balancing) and non-deterministic algorithms
[6] (which have an expected value for the global imbalance which does not generally
go to zero as time goes to infinity). The algorithm presented in [9], which shares
some commonalities with [11], does achieve a globally balanced distribution but is
specific to applications involving a grid of parallel processors and does not address
the information delays or asynchronism present in our scenario.

2 Global Balancing on a General Topology

2.1 Overview of Dynamics and Results

In order to better explain our work, we provide a high level overview of how we
are able to achieve our results in this section before getting into the more technical

J Intell Robot Syst

description in the sections that follow. As stated, this work is an extension of [11]
which used a ring interconnection in which vehicles could only be transferred in one
direction. While it does achieve global balancing, this unidirectional ring setup has
the disadvantage of taking a considerable amount of time to converge to the globally
balanced state in some circumstances. For example, if all the vehicles in the system
initially start out in one area, then in order to put a vehicle in the area just preceding
that area in the ring a vehicle has to be sent all the way around the ring (even though
that area lies right next to that area physically). The purpose of this paper, then, is
to extend the results of [11] to a less restrictive class of topologies. This new class of
topologies includes all area-coordinator interconnections which have an underlying
unidirectional ring, but in addition to being able to transfer resources along this ring,
the coordinators will also be able to transfer vehicles across “shortcuts” to this ring.
The effect of these shortcuts is to dramatically reduce the number of areas that a
vehicle will have to traverse in order to get to where it is needed. More explanation
of these topologies and how these shortcuts are established is given in Section 2.2
below.

The essential dynamics of the system presented in this paper are the same as those
for the area ring set up of [11], although the presence of the shortcuts can result
in much more complicated behavior and as a consequence, the control algorithm
discussed in Section 2.4 is more complex than that of [11] in order to ensure that
we can still achieve the globally balanced state. In order to help the reader better
understand these dynamics we introduce the visualization aid shown in Fig. 2. In this
figure, each area in the ring is drawn as a stack of identically sized blocks, with the
number of blocks in this stack equal to the number of vehicles in that area. These
area stacks are arranged according to the order specified by the area ring with the
stack for an area drawn to the left of the stack for the next area in the ring and to the
right of the stack for the preceding area. (The area ring eventually wraps back upon
itself, but only a section of the ring is drawn in Fig. 2). The low spots in this picture
correspond to the areas with the smallest number of vehicles and we call these areas
holes. The relatively high spots (areas that have at least two more vehicles than the
hole areas) we call hills. We may also have a plateau which is a group of areas, each
with exactly one more vehicle than a hole, which is located between a hole on the
right and a hill on the left (and we will sometimes refer to the area in a plateau
that is most advanced along the ring as its leading edge). The directions forward and

Fig. 2 Illustration of terms
used in convergence proofs

... ...

hill

plateau

hole{

right (direction of load passing)left

area

i

area

i-1

area

i+1

......

J Intell Robot Syst

backward refer respectively to the direction that vehicles may be passed around the
ring and its opposite.

If we had a single centralized coordinator that always had accurate information
about the number of vehicles in each area, then our goal of global balancing would
not be a very hard one, and, in fact, with a little bit of calculation this coordinator
could achieve it in an optimal manner (i.e., with the fewest number of vehicle trans-
fers). What makes our problem interesting is that we must achieve global balancing
via decentralized decision making based on local and inaccurate information. As a
consequence it is unavoidable that the coordinators will make “mistakes” causing
the number of vehicles is the areas to fluctuate. Our task then is to formulate a
system structure in which the coordinators can make steady progress towards the
globally balanced state in spite of these mistakes. Now, the way we organize the
interconnection of the areas in Section 2.2 and the control algorithm of Section 2.4
enforce certain dynamics in the system. First, the minimum number of vehicles in any
area cannot decrease at any time (i.e. it can only increase or stay the same). Second,
the number of holes in the system can only increase at times when this minimum
increases (i.e. no new holes can be created otherwise, although the location of the
existing holes may change). Third, a main result of our analysis shows that whenever
the areas are not globally balanced, then within a bounded amount of time at least
one hill and hole will get closer together on the ring (i.e. the plateau between them
will shrink by a least one area). In general the holes will move backwards on the area
ring and/or the hills will move forward until they meet and the hill “fills in” the hole
(although the holes may also be filled in by transfers of vehicles along the shortcuts to
the ring). Thus holes are regularly eliminated from the system, and when the last hole
at a given minimum number of vehicles per area is eliminated, then that minimum
must increase. This process repeats until the minimum number of vehicles per area
is raised as high as it can go and there are no more hills left to fill in the holes, and
once there are no more hills then the areas must be globally balanced. Although this
explanation of the system dynamics seems fairly simple, we remind the reader that
we are only describing a subset of the system’s dynamics and that many other vehicles
transfers are being made in addition to ones involved in the above process. In fact,
ensuring that these other transfers do not interfere with the filling in of holes is not
at all trivial and will require a carefully designed distributed control algorithm.

2.2 Interconnection Design Requirements

In this section we describe the class of area-coordinator interconnections that will
still allow us to achieve global balancing with an (extensive) modification of the setup
seen in [11]. Although much more general than the unidirectional ring used before,
there will still be a number of restrictions on the type of interconnections that may
belong to this class. We will see in Section 4, however, that these restrictions do not
pose much of a problem for typical scenarios.

To describe the area-coordinator interconnection, we start by letting A =
{1, . . . , NA} denote the set of NA areas and letting C = {1, . . . , NC} denote the set of
NC coordinators. To lessen confusion we will endeavor to use variants of a to denote
specific areas and variants of c to denote specific coordinators. The area-coordinator
interconnection is best described by a bipartite graph (A ∪ C,I) with vertices from
A and C and a set of edges I ⊆ A × C which contains the edge (a, c) if and only

J Intell Robot Syst

1 2 3 4

16 15 14 5

11 12 13 6

10 9 8 7

a b c

Fig. 3 The equivalent bipartite graph for the example interconnection of Fig. 1 shown in a with area
vertices colored gray and coordinator vertices colored black. The final interconnection is shown in
b with each area having exactly one coordinator that may remove vehicles (shown with an arrow
from area to coordinator) and exactly one coordinator that may remove vehicles (shown with an
arrow from coordinator to area). The number of the area vertices and the dashed line shows the
underlying ring cycle established for this interconnection. Finally, in the graph in c shows the resulting
unidirectional area network, with the ring connections and the shortcuts shown as solid and dashed
arrows respectively. In this example, the diameter of the final network is only 5 (as compared to 15
for the ring alone)

if coordinator c connects to area a. For example, Fig. 3a shows the bipartite graph
constructed from the physical layout in Fig. 1.

With notation for the interconnection in hand we can now state the main require-
ment that the design of our interconnection must satisfy, namely that it must be
possible for a vehicle starting in any area to travel through the interconnection (via
transfer from one area to another by a connecting coordinator) in such a manner
that it visits each area once and only once before returning to its original location.
To define this technically, let us first define the addition and subtraction operations
on the area indices such that their output “wraps” into the set A so, for example,
a + 1 = 1 when a = NA and a − 1 = NA when a = 1. We can technically define this
operation as a + i = mod(a + i − 1, NA) + 1, where mod(p, q) = p − q� p

q � and �·� is
the floor function (i.e., the largest integer no greater than its argument). Now our
restriction on the interconnection (A ∪ C,I) can be stated as follows: there must
exist some numbering of the areas such that for every a ∈ A there exists a “ring”
coordinator C(a) that connects area a to area a + 1.

The reader familiar with [11] will note that this condition we have placed on
our area-coordinator interconnection is simply the ability to extract a ring (which
may reuse coordinators but not areas), and if we were to limit coordinator C(a)

to transferring vehicles from area a to area a + 1 then we could simply apply the
algorithm in that paper in order to achieve global balancing of the vehicles. However,
our intention here is to utilize the shortcuts to this ring.

For simplicity, assume from now on that the area indices have been assigned to
satisfy the above requirement and that a specific coordinator C(a) has been defined
for each area a. (In actual implementation, the indexing of the areas is not so
important. What is important is that for each area there is a unique “next” area and
also that a special coordinator connects the two. Although somewhat confusing now,
this concept should become clear when the control algorithm is discussed later.) In
[11] each coordinator was restricted to transferring vehicles from one specific area

J Intell Robot Syst

to another specific area, but in order to make the best use of the shortcuts, in our
interconnection we will have to be more flexible than this. We cannot, however,
simply let every coordinator for an area remove any vehicle it wants because this may
result in unstable system behavior that prevents the system from balancing (i.e., the
delays caused by our method of communication can result in undamped oscillations
in the distribution of vehicles).

The approach we use for distributed coordination is to restrict the manner in
which vehicles may be transferred from one area to another. For each area a we
will only allow vehicles to be removed by its ring coordinator C(a). This means
that each coordinator c will have a set of source areas S(c) ⊂ A from which it may
remove vehicles (i.e., S(c) = {a ∈ A : C(a) = c}). For each coordinator c let us now
define a set of destination areas D(c) to which it may add vehicles. Specifically, if
a ∈ S(c) then a + 1 ∈ D(c) (or, equivalently, D(c) = {a ∈ A : C(a − 1) = c}) which
means that if coordinator c is allowed to remove vehicles from area a then it
is allowed to add vehicles to a + 1. For example, Fig. 3b shows a possible area-
coordinator interconnection derived from the bipartite graph is Fig. 3a. In this figure,
the coordinator that may remove resources from an area is denoted by an arrow from
that area to that coordinator, and the coordinator that may add resources to an area
is denoted by an arrow to that area from that coordinator (i.e. the arrows represent
how vehicles may circulate through the interconnection. As shown by the indexing
of the areas and the dashed line, Fig. 3b and c demonstrate how we can preserve an
underlying ring while also creating many shortcuts to that ring.

The reason we have chosen to limit vehicle transfers in the way just described
is that very useful system properties are preserved when each area has exactly one
coordinator that may remove vehicles and exactly one that may add vehicles. In [11]
these properties allowed the system to achieve global balancing on a ring structure,
and in this paper they will allow the coordinators to transfer vehicles along shortcuts
to this ring in order to get faster balancing.

2.3 Estimation Methods and Properties

The fundamental feature of our distributed coordination problem that makes it
interesting is that there is significant delay between the action of one coordinator
(i.e., the transfer of a vehicle from one area to another) and another coordinator’s
recognition of that action. Specifically, a coordinator will not realize that a vehicle
has been added to an area until that vehicle checks in with it and it will not realize
that a vehicle has been removed from an area until the vehicle fails to check in for
such a long time that the coordinator can assume it has been removed. Because
of this, it is generally impossible for a coordinator to have accurate information
about the number of vehicles in any particular area. The purpose of this section is
to demonstrate how the coordinators can estimate these numbers and explore some
important properties of these estimates that will allow the coordinators to make
decisions about local vehicle transfers that will ultimately result in a globally balanced
state.

Assume that we are given some length of time d which denotes the longest period
of time a vehicle can go without checking in with any specific coordinator for the
area to which it is assigned (and assume this value is known to all the coordina-
tors). The value of d is determined by the physical layout of the area-coordinator

J Intell Robot Syst

interconnection and the dynamics of the vehicles (e.g., their maximum speed) and
must be chosen large enough so that a vehicle can check in with all the other
coordinators for its assigned area and still have enough time left over to do some
useful patrol work. Assume also that each vehicle is given an identification number
that is unique. In order to avoid confusion, we will actually require that this
identification number be reassigned every time a vehicle is transferred from one area
to another and that the new identification number be unique from any identification
number used in the past. This is easily implemented by having the coordinator that
transferred the vehicle into a new area give that vehicle a new number consisting of
that coordinator’s index value and the date and time (according to the coordinator’s
local clock) that that vehicle was transferred. If simultaneous transfers of vehicles
are allowed, then the coordinator can either add one more field to the identification
number in order to distinguish between the vehicles or it can simply adjust the time
field slightly to make each identification number unique (e.g., by adding a small
number of seconds to each time field). Now, in order to generate an estimate for the
number of vehicles in an area, a coordinator will simply keep a list of the vehicles
it thinks are still assigned to that area. A vehicle gets added to this list the first
time it checks in with that coordinator and removed whenever it has not visited that
coordinator for a length of time greater than d. Obviously whenever a coordinator
transfers a vehicle it can update its list for both the source and destination areas
immediately. The coordinator’s estimate of the number of vehicles in an area is then
simply the length of this list, and in our system this estimate has a number of useful
properties.

Now, each coordinator c will have to maintain an estimate for each area in the
sets S(c) and D(c). One of our fundamental assumptions in this paper will be that
no vehicles enter or leave the system for time t ≥ tinit − d, where tinit is the initial
time. This gives us two useful properties for coordinator c’s estimates of the areas
in S(c) and D(c). Specifically, for any area a ∈ S(c) and any time t ≥ tint, it must
be the case that coordinator c’s list of vehicles it thinks are in area a differs from
the true number only by those vehicles that were added by coordinator C(a − 1) in
between time t − d and t (because coordinator c = C(a) is the only coordinator that
can remove vehicles from area a). Thus we have that coordinator c’s estimate for an
area a ∈ S(c) can never be greater than the true number of vehicles in a. In addition,
if coordinator C(a − 1) has not added any vehicles to area a from time t − d to time
t, than coordinator c’s estimate of the number of vehicles in area a must be correct
because every vehicle added prior to t − d will have checked in with coordinator c by
time t. By a similar argument we also have that coordinator c’s estimate for an area
a ∈ D(c) can never be less than the true number of vehicles in a and if coordinator
C(a) has not removed any vehicles from area a from time t − d to time t, then this
estimate must be correct.

2.4 Basic Model of Distributed Dynamics

To model our system, we will use a discrete event system (DES) model of the type
described in [3]. This is a partially asynchronous model [1] in which the state of the
system is updated according to the occurrence of certain events, with the current state
of the system and certain assumptions about the system’s behavior governing which
events may occur at any given time. We start by defining our state variables, all of

J Intell Robot Syst

which take values in the set of non-negative integers N = {0, 1, 2, . . .}. The number of
vehicles in area a will be denoted by xa and a coordinator c’s estimate of that number
will be denoted by x̃c

a (and for a particular area a this variable is only defined for a
coordinator c if c ∈ C(a) ∪ C(a − 1)). Let x be the complete state of the system (i.e.,
the collection of the above xa and x̃c

a values defined for each a ∈ A and applicable
values of c) and let X = N

|x| be the state space. Let x(k) denote the state of the
system at time step k ∈ N, where k maps to a real time value t(k) and this mapping
satisfies both k′ > k ⇒ t(k′) > t(k) and limk→∞ t(k) = ∞.

As mentioned, the state of the system is altered by the occurrence of particular
events. Let us denote the set of all events that occur at time step k as e(k). The set e(k)

contains one or more “partial” events that describe changes to the system such as the
transfer of vehicles from one area to another and a coordinator updating its various
estimate values. Let eα

a→a� denote the transfer of α vehicles from area a to area a�. Let
e+β

c,a denote an increase of β to coordinator c’s estimate for area a occurring when c
adds a new vehicle to its list for a and let e−γ

c,a denote a decrease of γ to that estimate
occurring when a vehicle on that list misses its check-in deadline and is removed.
With these definitions we can also denote the set to which an event e(k) must belong
as the event space E . Simply speaking, an element of E is any collection of partial
events that are each properly defined (i.e., α, β, and γ must always be non-negative
integers, a� must be in D(C(a)) for transfer events, and c and a must correspond to a
state variable x̃c

a for estimate change events).
With the above description of our event space, we can easily define the update to

the state that occurs at each time step as follows. First, the state xa(k + 1) is equal to
xa(k) plus the net transfer of vehicles in and out of area a at time step k. Second, the
estimate x̃c

a(k + 1) is equal to x̃c
a(k) plus all the increases and minus all the decreases

that occur at time step k.
Now, while the event space E lists all the possible events that could theoretically

occur, the physical behavior of our system will greatly curtail both the number of
events that may occur at a particular time step and the series of events that may
occur over time. The event at time step k, e(k), is constrained to be one of the events
from a set valued enable function g which depends on the state of the system at time
k (and it is this enable function that determines our control law). The purpose of
this control law is to make the system act in the same general way as the ring of
areas did [11] despite the shortcuts that are now permitted. That is to say that we
want to the area holes and hills (i.e., those areas with xa = mina′∈A xa′ and xa ≥ 2 +
mina′∈A xa′ respectively) to move towards each other in order to guarantee that the
holes are eventually eliminated. Specifically, every event e(k) ∈ g(x(k)) must satisfy
the following conditions:

1. For each coordinator c ∈ C there exists at most one partial event event
eα

a→a� ∈ e(k) with C(a) = c. This is equivalent to saying that a coordinator may
only execute one transfer of vehicles at a time (i.e., from one specific area to
another specific area). The purpose of this rule is to keep coordinator c from
trying to fill in a hole with vehicles from two different areas simultaneously. Not
having this rule could result in a situation in which a hole could avoid being
eliminated indefinitely.

2. Let c = C(a) for a partial event eα
a→a� ∈ e(k). Pursuant to our discussion in

Section 2.2 concerning the restrictions on the way vehicles may be transferred,
the destination area of the transfer, a�, must belong to the following set

J Intell Robot Syst

D(c) = {a′ ∈ A : C(a′ − 1) = c}. We also require that a� be one of the areas in
D(c) perceived to have the least number of vehicles, so

x̃c
a� (k) = min

a′∈D(c)
x̃c

a′(k) (1)

Lastly, coordinator c is required to transfer vehicles to area a + 1 if it has the
smallest estimated number of vehicles of any area in D(c), i.e.,

a� = a + 1 if x̃c
a+1(k) ≤ x̃c

a′(k) for all a′ ∈ D(c) (2)

Rule (1) is necessary in order to prevent coordinators from ignoring the need to
fill in holes. Rule (2) serves the same purpose and is necessary because of the
way parts 3(a) and 3(b) of the control algorithm is defined below.

3. Let a and c = C(a) be the area and coordinator for a partial event eα
a→a� ∈ e(k).

Possible values for α, the number of vehicles transferred in the event eα
a→a� , are

determined according to the following rules:

(a) If a� �= a + 1 then

α = 0 if x̃c
a(k) ≤ x̃c

a� (k) + 1, (3)

1 ≤ α ≤
⌊

x̃c
a(k) − x̃c

a� (k)

2

⌋
if x̃c

a(k) ≥ x̃c
a� (k) + 2, (4)

This portion of the control algorithm says that coordinator c can only
transfer a number of vehicles from area a to area a� that keeps x̃c

a(k + 1)

greater than or equal x̃c
a� (k + 1) (and it must transfer a vehicle if it can do

so while meeting this condition). This is equivalent to the standard load
balancing rule (e.g., [1, 2]) which prevents a processor from taking any
action that would make itself the least loaded processor in the system. As
we will see shortly, this part of the control algorithm moderates vehicle
transfers across short-cuts to the area ring in a way that is less “aggressive”
than what is allowed in next case.

(b) If a� = a + 1 then

α = 0 if x̃c
a(k) ≤ x̃c

a� (k), (5)

1 ≤ α ≤
⌈

x̃c
a(k) − x̃c

a� (k)

2

⌉
if x̃c

a(k) ≥ x̃c
a� (k) + 1, (6)

where �·� is the ceiling function (i.e., the smallest integer no less than its
argument). This part of the control algorithm is more aggressive than part
3(a) in that it allows coordinator c to transfer enough vehicles from a to
a� to make x̃c

a(k + 1) one less than x̃c
a� (k). Under certain circumstances this

means that coordinator c may cause area a to become one of the areas with
the least number of vehicles. Rules (5) and (6) are equivalent to those seen
in [11] for the unidirectional ring.

As mentioned, the series of events that can occur over time is also limited by
our system. Let EN be the set of all event trajectories and let the set of valid event
trajectories EV ⊂ EN contains all event trajectories E = [e(0), e(1), . . .] such that
there exists a state trajectory X = [x(0), x(1), . . .] ∈ XN satisfying e(k) ∈ g(x(k)) for
all k ∈ N. Whereas the enable function captures the dynamics of this system from

J Intell Robot Syst

one time step to the next, we will need to define a set of allowed trajectories in order
to fully describe its behavior over time. This subset of EV , denoted EA, consists of
all event trajectories that meet the following conditions for some positive number B:

1. For every a ∈ A, there exists no more than B time steps between two partial
events of type eα

a→a� . In other words, the coordinator for area a can go no longer
than B time steps without attempting to balance the number of vehicles in that
area with the number of vehicles in some other area a� ∈ D(c) according to the
rules of the control algorithm described by the enable function g.

2. The following inequalities hold for all k ∈ N as discussed in Section 2.3.

x̃C(a)
a (k) ≤ xa(k) for all a ∈ A (7)

x̃C(a)
a+1 (k) ≥ xa+1(k) for all a ∈ A (8)

3. As discussed in Section 2.3, for all a ∈ A, whenever coordinator C(a) does not
transfer any vehicles out of area a for B time steps the following holds for
coordinator C(a − 1)

x̃C(a−1)
a (k) = xa(k) (9)

and whenever coordinator C(a − 1) does not transfer any vehicles into area a for
B time steps then we have coordinator C(a)

x̃C(a)
a (k) = xa(k) (10)

That such a constant B is guaranteed to exist for our system may not be intuitively
obvious, and so we explain how one could find such a number. Specifically, B should
be the largest number of events that may occur in a time interval of length d so
that the properties listed in EA correspond to the ones we discussed in Section 2.3.
First of all, each event must be triggered by a vehicle checking in with a coordinator
(coordinators can only transfer vehicles at these times and have no reason to update
their estimates at other times). Second, the time between events triggered by the
same vehicle can be bounded from below by a positive constant, say ε. At the very
worst, there must be some minimum computation delay involved with a coordinator
dealing with the checking in of a vehicle before it is ready to process another check
in, but usually this delay will be much longer as the vehicle will be traveling through
the area (to either patrol or visit another coordinator) and not repeatedly checking
in with the same coordinator as often as the coordinator will let it. Therefore, the
number of events that can be triggered in a time period d by a single vehicle is equal
to d

ε
, and since we are assuming that there are a fixed number of vehicles, L, (and

also assuming that there are no vehicle arrivals or departures) we can use for B any
number greater than or equal to dL

ε
.

3 Convergence Results

In this section we provide the statements of our main theorems showing that the
system modeled in Section 2.4 will converge to a balanced state within a finite number
of events of known bound. Proofs are included in the Appendix.

J Intell Robot Syst

Lemma 1 Define a constant m
�= ⌊ L

NA

⌋
where L is the total number of vehicles in the

system and NA is the number of areas. The subset of the state space in which the number
of vehicles in each area is as balanced as possible,

XI = {
x ∈ X : xa ∈ {m, m + 1} ∀ a ∈ A

}
(11)

is invariant (i.e., x(k) ∈ XI ⇒ x(k + T) ∈ XI for all k, T ∈ N).

Lemma 2 The functions

m(k)
�= min

a∈A
xa(k) (12)

m(k)
�= max

a∈A
xa(k) (13)

which denote the minimum and maximum number of vehicles in any area at time step
k are non-decreasing and non-increasing respectively.

Lemma 3 For all k ∈ N such that m(k) and m(k + 1) are equal to some constant m the
following relationship holds for all a ∈ A,

xa(k) ≥ m + 1 and xa(k + 1) = m ⇒ xa+1(k) = m and xa+1(k + 1) ≥ m + 1 (14)

In other words, so long as m(k) does not increase from time step k to time step k + 1,
then in order for area a to become a hole it must be the case that a hole at area a + 1
is eliminated (i.e., no new holes are created and those that already exist may only stay
where they are, move backwards along the area ring, or be eliminated).

Lemma 4 For all k ∈ N such that m(k) and m(k + 1) are equal to some constant m and
such that there exists an area a ∈ A with xa(k) ≥ m + 2, at least one of the following
statements must be true,

xa(k + 1) ≥ m + 2 (15)

xa(k + 1) = m + 1 and xa+1(k + 1) ≥ m + 2 (16)

xa(k+1) = m+1 and
∣∣{a′ ∈ A : xa′(k+1) = m

}∣∣< ∣∣{a′ ∈ A : xa′(k) = m
}∣∣ (17)

In other words, so long as m(k) does not increase from time step k to time step k + 1
then whenever area a is a hill at time step k but does not remain a hill at the next time
step, then it must be the case that area a becomes (part of) a plateau and either area
a + 1 goes from being a plateau to being a hill or the number of holes decreases.

Theorem 1 For all k ∈ N such that x(k) ∈ X − XI , there exists a finite number T ∈ N

such that at least one of the following statements is true,

m(k + T) ≥ m(k) + 1 (18)∣∣{a′ ∈ A : xa′(k + T) = m(k + T)
}∣∣ <

∣∣{a′ ∈ A : xa′(k) = m(k)
}∣∣ (19)

In other words, eventually either the function m(k) must increase or the number of
holes must decrease. The value of T is also bounded from above by 2B(NA − 1).

J Intell Robot Syst

Corollary 1 For any initial condition x(0) ∈ X , there exists a finite number T ∈ N such
that x(T) ∈ XI . The value of T is also bounded from above by 2B(NA − 1)2

⌊ L
NA

⌋
.

4 Simulation Studies

The rationale for using the more complex algorithm of this paper over the one for the
ring interconnection of [11] has been that the shortcuts should in most cases decrease
the amount of time that it takes the system to converge to the globally balanced state.
In this section we support that argument through two simulation studies. These sim-
ulations were run assuming the delay associated with the vehicle’s inter-coordinator
travel comes from a designated distribution, and because the system trajectories
scale linearly with the value of the maximum delay, that maximum delay is always
assumed to be equal to one and time is then expressed in dimensionless units. The
distribution of delays was taken to be uniform on the interval [0.9, 1] so that we
would get close to worst case performance while maintaining some randomness.
When initially adding vehicles to the system, we put them all in the same (randomly
chosen) area in order to start off with the maximum imbalance possible, and they first
check-in with one of that area’s coordinators at some time in the interval [0, 1]. The
time it takes the system to balance is averaged over multiple individual simulation
runs for each interconnection tested.

For our first simulation study we generated a number of random1 interconnections
of 20 areas each, selected 60 of these to get a good distribution of graph connectivity
as measured by the mean distance (number of graph edges) between areas, and then
added the interconnections at either extreme (i.e., the unidirectional ring and the
interconnection with just one coordinator). As clearly shown in the scatter plot of
Fig. 4a, there is a direct relationship between the mean inter-area distance and the
mean convergence time of the system when the number of vehicles is fixed. It is
also apparent that the ring interconnection (the right most data point) has a worse
average convergence time than any of the interconnections with shortcuts. Although
the spread of data points in the middle of Fig. 4a makes it hard to determine if those
points fit a line or a curve, it appears that the increase in convergence time with
respect to the increase in mean distance is greater for small mean distances than for
large ones.

To explore this further we generated seven different 64 area interconnections
by repeatedly giving a single coordinator ring responsibility for more areas (where
the specific areas added at each stage where selected to reduce the diameter and
mean distance of the interconnection by as much as possible). Figure 4b clearly
shows a logarithmic-like curve connecting the mean convergence times of these inter-
connections. Again, the ring interconnection (the right most data point) has a worse
average convergence time than the interconnections with shortcuts. (Also shown for
comparison is the optimal convergence time for each interconnection assuming the
worst case initial location for the vehicles. This optimal time is thus equal to the
diameter of the interconnection.) This sort of relationship can be roughly explained

1These interconnections were generated by process that started with a unidirectional ring and then
transferred ownership of areas from one coordinator to another. We cannot claim that this process
produced a uniform sampling of all possible 20 area interconnections.

J Intell Robot Syst

Fig. 4 Plot a gives mean
distance between areas versus
mean convergence time
for 62 different 20 area
interconnections using 80
vehicles (120 simulations per
interconnection). Plot b shows
the same relationship
for seven specific 64 area
interconnections (128
simulations per inter-
connection) plus box plots
to illustrate the distribution
of convergence times

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

mean distance between areas in interconnection

m
ea

n
co

nv
er

ge
nc

e
tim

e
fo

r
in

te
rc

on
ne

ct
io

n

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

mean distance between areas in interconnection

co
nv

er
ge

nc
e

tim
e

median
mean

optimal
(maximum delay)

a

b

with reference to the results of [11]. For interconnections that have fairly regular
structure (i.e., where many coordinators occupy similar looking positions in the
interconnection) then vehicles will usually get to the highly connected “central” areas
quickly and then spread out from there. The more highly connected these central
areas, the more paths the vehicles will have on which to spread out and the shorter
those paths will be.

Now, even despite the restrictions our results place on the area-coordinator
interconnections, we would like to note that there exist some straight forward ways
of designing interconnections on typical spatial layouts (i.e., those based on some
regular griding of the environment) that achieve good connectivity with a relatively
small number of coordinators. As examples we present the layouts in Fig. 5.

J Intell Robot Syst

(a) (b) (c)

Fig. 5 A fairly efficient method for interconnecting a grid of areas (similar conventions to those in
Fig. 3b). Layout a shows the basic form connected by (black) coordinators, while b shows how the
basic form is “folded” into a four by four grid and connected at the ends by an additional (white)
coordinator. Layout c shows one possibility for a six by six grid

5 Conclusion

In this paper we have extended the results of [11] to area-coordinator interconnection
topologies other than a unidirectional ring. Permitting the use of highly connected
topologies and still achieving a globally balanced state makes our algorithm superior
to implementations of the traditional load balancing algorithm for our scenario with
respect to both one-time and persistent disturbances. Although presented in terms
of a cooperative patrol mission, our distributed control algorithm has application
to a wide range of balancing problems involving uniformly sized resource units.
Possible future directions include extending our results to the prioritized balancing
case (where each area should have a certain fraction of the total number of vehicles)
and performing an analysis of the system’s behavior under a persistent disturbance.

Appendix

A.1 Basic Properties

We start by stating a number of simple properties that hold for all k ∈ N and that will
be of general use. Proofs are omitted due to simplicity.

Property 1 A coordinator c ∈ C’s estimate of the imbalance between the number of
vehicles in an area a ∈ S(c) and the number in an area a� ∈ D(c) is always less than
the real imbalance, i.e.,

x̃c
a(k) − x̃c

a� (k) ≤ xa(k) − xa� (k)

J Intell Robot Syst

Property 2 A coordinator c ∈ C will never transfer vehicles from an area a ∈ S(c) to
an area a� ∈ D(c) if xa(k) ≤ xa� (k).

Property 3 A coordinator c ∈ C will not transfer vehicles out of an area a ∈ S(c) so
long as xa(k) = m(k), nor will it transfer any vehicles to an area a� ∈ D(c) so long as
xa� (k) = m(k)

Property 4 For coordinator c ∈ C and any a ∈ D(c) we have

m(k) ≤ xa(k) ≤ x̃c
a(k)

Property 5 When xa(k) = m(k) + 1, then coordinator C(a) can only transfer vehicles
from area a “forward” along the ring of areas (i.e., to area a + 1). In addition, it is
limited to transferring no more than one vehicle from area a to area a + 1 per time
step (and only if xa+1(k) = m(k)).

A.2 Proof of Lemma 1

We take any k ∈ N such that x(k) ∈ XI and show that this implies x(k + 1) ∈ XI as
well. By the definition of XI we know that xa(k) ∈ {m, m + 1} for all a ∈ A, which
tells us many things. First, there is at least one area with m vehicles. (If not, then we
would have L = (m + 1)NA which would give us the contradiction m = ⌊

(m+1)NA
NA

⌋ =
m + 1.) This in turn tells us that m(k) = m (and m(k) ≤ m + 1) and so Property 5
implies that all vehicle transfers occur only along the forward direction of the area
ring while x(k) ∈ XI .

Take any a ∈ A with controlling coordinator c = C(a). If xa(k) = m, then
Property 3 tells us that no vehicles will be removed from area a while Property 5
tells us that at most one will be added, so it must be that xa(k + 1) ∈ {m, m + 1}.
Likewise, if xa(k) = m + 1, then xa(k) = m(k) and those same properties tell us that
no vehicles will be added to area a and at most one will be removed, so it must be
that xa(k + 1) ∈ {m, m + 1} again. Since xa(k + 1) ∈ {m, m + 1} holds for all a ∈ A,
we have that x(k + 1) ∈ XI and by extension x(k + T) ∈ XI for all T ∈ N. ��

A.3 Proof of Lemma 2

Let us focus first on m(k) and show that m(k + 1) ≥ m(k) for all k ∈ N. Take any
k ∈ N and any a ∈ A and consider the number of vehicles in area a at time k + 1.
According to the statement of our update function, xa(k + 1) is equal to xa(k)

minus the number of its vehicles transferred by coordinator c = C(a) (to some
area a� ∈ D(c)) and plus the number of vehicles transferred to a by coordinator
c′ = C(a − 1) (from some area a′ ∈ S(c′)). Letting the number of vehicles removed
and added to area a at time step k be denoted by α−

a (k) and α+
a (k) respectively, the

previous statement is equivalent to

xa(k + 1) = xa(k) + α+
a (k) − α−

a (k) (20)

J Intell Robot Syst

Since α+
a (k) and α−

a (k) are non-negative, we can bound xa(k + 1) from below as

xa(k + 1) ≥ xa(k) − α−
s (k) (21)

We proceed by noting that in all cases of the control algorithm the value of α in an

event eα
a→a� can be bounded from above by

⌈
x̃c

a(k)−x̃c
a� (k)

2

⌉
. Then,

xa(k + 1) ≥ xa(k) −
⌈

x̃c
a(k) − x̃c

a� (k)

2

⌉
(22)

Using the inequality �q� < q + 1, Eq. 22 becomes

xa(k + 1) > xa(k) −
(

x̃c
a(k) − x̃c

a� (k)

2
+ 1

)
(23)

By employing Property 1 and the fact that both xa(k) and xa� (k) can be no less than
m(k) we can proceed as follows

xa(k + 1) > xa(k) −
(

x̃c
a(k) − x̃c

a� (k)

2
+ 1

)

≥ xa(k) −
(

xa(k) − xa� (k)

2
+ 1

)
(24)

= 1

2
(xa(k) + xa� (k)) − 1 (25)

≥ 1

2

(
m(k) + m(k)

) − 1 = m(k) − 1 (26)

But since xa(k + 1) takes on only integer values, xa(k + 1) > m(k) − 1 implies that
xa(k + 1) ≥ m(k). Since this holds for all a ∈ A and all k ∈ N, m(k) must be non-
decreasing. A parallel argument shows that m(k) is non-increasing and is omitted for
brevity. ��

A.4 Proof of Lemma 3

Take any k ∈ N such that m(k) = m(k + 1) = m. In order to prove this lemma, we
start by showing that an area a ∈ A with xa(k) ≥ m + 1 cannot become a hole due
to its coordinator c = C(a) transferring vehicles to an area a� ∈ D(c) − {a + 1} (i.e.,
by a transfer of vehicles across one of the shortcuts to the area ring). We can start
with Eq. 21 from the proof of Lemma 2 and use rule (4) from part 3(a) of the control

J Intell Robot Syst

algorithm (since a� �= a + 1) in conjunction with the inequality �q� ≤ q to proceed in
a familiar fashion,

xa(k + 1) ≥ xa(k) − α−
s (k)

≥ xa(k) −
⌊

x̃c
a(k) − x̃c

a� (k)

2

⌋
(27)

≥ xa(k) − x̃c
a(k) − x̃c

a� (k)

2
(28)

≥ xa(k) − xa(k) − xa� (k)

2
(29)

= 1

2
(xa(k) + xa� (k)) (30)

≥ 1

2

(
(m + 1) + m

) = m + 1

2
(31)

But xa(k + 1) ≥ m + 1
2 implies that xa(k + 1) ≥ m + 1, and thus area a cannot

become a hole in this manner.
It is the case, however, that area a can become a hole when coordinator c transfers

vehicles from a to a + 1. In this case we are interested in the relationship between
the values of xa(k), xa(k + 1), xa+1(k), and xa+1(k + 1). We start by recalling the
inequality (25) from the proof of Lemma 2 which gave us a lower bound on xa(k + 1)

based on the most aggressive type of transfer (i.e., one from a to a + 1). Substituting
a� = a + 1,

xa(k + 1) >
1

2
(xa(k) + xa+1(k)) − 1 (32)

and rearranging to see what values of xa+1(k) can result in xa(k + 1) = m given that
xa(k) ≥ m + 1

xa+1(k) < 2xa(k + 1) − xa(k) + 2 (33)

≤ 2m − (m + 1) + 2 (34)

= m + 1 (35)

and of course xa+1(k) < m + 1 implies that xa+1(k) = m. Thus area a can only become
a hole at time k + 1 if area a + 1 is a hole at time k, but since this only happens when
coordinator c transfers vehicles into area a + 1 and no vehicles will be transferred
out of a + 1 (Property 3), then it must be the case that xa+1(k + 1) ≥ m + 1. Thus the
creation of a new hole at area a must be accompanied by the elimination of a hole at
area a + 1. ��

A.5 Proof of Lemma 4

Take any k ∈ N such that m(k) = m(k + 1) = m and any area a such that xa(k) ≥
m + 2. If coordinator c = C(a) does not transfer any vehicles out of a at time k, then
clearly Eq. 15 holds. Let us examine what happens when coordinator c does transfer
vehicles from a to some destination a� by considering the cases a� = a + 1 and a� �=
a + 1 separately.

J Intell Robot Syst

Case 1 a� ∈ D(c) − {a + 1}. The inequality (30) in Lemma 3 is a lower bound on
xa(k + 1) for a vehicle transfer of this type, so we can simply proceed from there
using xa(k) ≥ m + 2,

xa(k + 1) ≥ 1

2
(xa(k) + xa� (k))

≥ 1

2
xa� (k) + 1

2
m + 1 (36)

Let us evaluate Eq. 36 in two cases that depend on the value of xa� (k).

Case 1a xa� (k) ≥ m + 1. In this case a� is not a hole, and Eq. 36 gives us xa(k + 1) ≥
m + 3

2 which implies that xa(k + 1) ≥ m + 2 and so area a would remain a hill, thus
satisfying condition (15).

Case 1b xa� (k) = m. Here Eq. 36 tells us that xa(k + 1) ≥ m + 1 and thus the hill
at area a may disappear but the hole at area a� gets eliminated, thus satisfying
condition (17). (One might worry about the hole at a� moving to a� − 1 at the
same time step and thereby avoiding elimination, but recall that since a� ∈ D(c), we
have a� − 1 ∈ S(c). Thus for this to happen, coordinator c would have to make two
simultaneous transfers of vehicles and this is explicitly prohibited by part 1 of the
control algorithm.)

Case 2 a� = a + 1. For this case we can use Eq. 32 from Lemma 3 to get a lower
bound on xa(k + 1) after a transfer of vehicles from a to a + 1 when we have xa(k) ≥
m + 2,

xa(k + 1) >
1

2
(xa(k) + xa+1(k)) − 1

≥ 1

2
xa+1(k) + 1

2
m (37)

And we can evaluate Eq. 37 depending on the value of xa+1(k) using three cases.

Case 2a xa+1(k) ≥ m + 2. Here Eq. 37 gives us xa(k + 1) > m + 1 (implying
xa(k + 1) ≥ m + 2) and thus area a would remain a hill and condition (15) is satisfied.

Case 2b xa+1(k) = m. In this case Eq. 37 tells us that xa(k + 1) > m (implying
xa(k + 1) ≥ m + 1) so as in Case 1b it may be that the hill at a disappears but only
because a hole at a + 1 gets eliminated (so either condition (15) or condition (17) is
satisfied).

Case 2c xa+1(k) = m + 1. This case is somewhat more complicated as it depends
on the actions of coordinator C(a + 1). Inequality (37) gives us that xa(k + 1) >

m + 1
2 (implying xa(k + 1) ≥ m + 1) so the hill at area a may disappear. Now,

since xa+1(k) = m + 1, Property 5 tells us that coordinator C(a + 1) is limited to
transferring at most one vehicle from a + 1 to a + 2. If it does not transfer a vehicle
at time k, then xa(k + 1) ≥ m + 2 due to coordinator c’s transfer of vehicles from a to
a + 1, and so a hill is created at area a + 1, thus satisfying condition (16). On the other
hand, if coordinator C(a + 1) does transfer a vehicle from a + 1 to a + 2 at time k it

J Intell Robot Syst

must be because a + 2 is a hole (Property 2), but since coordinator c is transferring at
least one vehicle from a to a + 1, area a + 1 will experience no net loss and we have
xa+1(k+1) ≥ xa+1(k)=m + 1. Thus if the hill at a does disappear without creating a
hill at a+1, it is because a hole at a+2 was eliminated, thus satisfying condition (17).

The case analysis above has covered all possibilities and has shown that at least
one of the three conditions of Lemma 4 always holds. ��

A.6 Proof of Theorem 1

The essence of Lemmas 3 and 4 was to define the possible behavior of the holes
and hills, i.e., to establish that holes may move backwards on the area ring (or be
eliminated) while the hills may move forward on the area ring (and can only be
eliminated when a hole is eliminated at the same time). In what follows, we will show
that holes and hills must move in this manner and that this movement ensures the
elimination of at least one hole within a bounded length of time.

Take any k ∈ N such that x(k) ∈ X − XI , and assume that m(k′) is equal to some
constant m for all k′ ≥ k (otherwise Eq. 18 holds trivially). It is always the case that
there exists at least one area which is a hole, and since x(k) �∈ XI it must also be the
case that there is at least one area that is a hill (if not then xa(k) ∈ {m(k), m(k) + 1}
which implies x(k) ∈ XI). Furthermore, whenever there are both holes and hills
there must exist either at least one hole a and one hill a such that the block of
areas a + 1, a + 2, . . . , a − 2, a − 1 is a plateau, or at least one hole and hill such
that a + 1 = a. For now, let us assume that there is no hill/hole pair (a, a) such that
a + 1 = a at time step k and let us show that the system must evolve to the point
where there is at least one such pair. Let a and a be the hill and hole guaranteed
to exist with a connecting plateau a + 1, a + 2, . . . , a − 2, a − 1 at time step k. Since
a + 1 �= a this plateau must contain at least one area. We will show next that the
length of this plateau must decrease within a finite period of time (i.e. that one of the
areas of the plateau will become either a hole or a hill within a finite number of time
steps) or else a hole will be eliminated.

Now, if at any time step k′ ≥ k one or more vehicles are added to an area a′ in
the plateau besides a − 1, then a′ automatically becomes a hill at k′ + 1 (because
Property 5 ensures that no vehicles will be moved out of any of these areas at time
k′). If one or more vehicles is transferred to area a − 1 at time k′ ≥ k then either
a − 1 becomes a hill and/or the hole at area a moves to area a − 1 at the same time
and is eliminated. Since both these situations result in one of our desired outcomes,
we need only proceed with our argument for the case in which no vehicles are added
to any of the plateau areas from time step k on.

Now according to Lemma 3, only one of three things may happen to the hole at a at
each time step, 1) it remains a hole, 2) it moves to area a − 1, or 3) it gets eliminated
(without the generation of a new hole at a − 1). Disregarding the third possibility
(because it automatically gives us a desired result), it is our task to show that the
second possibility eventually happens (i.e., that coordinator C(a − 1) will eventually
transfer a vehicle from a − 1 to a). Now, if coordinator C(a − 1) has not made such
a transfer by time step k + B, then according to Eq. 10 from the description of the
allowed trajectories EA we will have

x̃C(a−1)
a (k′) = xa(k′) = m for all k′ ≥ k + B (38)

J Intell Robot Syst

And (under our assumption about no vehicles being added to the plateau areas) we
also have that xa−1(k′) = m + 1 for all k′ ≥ k and so by Eq. 9 we will have

x̃C(a−1)

a−1 (k′) = xa−1(k′) = m + 1 for all k′ ≥ k + B (39)

Therefore, for all k′ ≥ k + B coordinator C(a − 1)’s estimate of the imbalance
between a − 1 and a, x̃C(a−1)

a−1 (k′) − x̃C(a−1)
a (k′), is accurate and equal to one. Thus

when C(a − 1) attempts to balance area a − 1 (which it must do within the next B
time steps according to the definition of EA), Property 5 reminds us that it can only
transfer one vehicle to a and part 3(b) of the control algorithm tells us that it will
indeed do this. Thus by time step k + 2B, the hole at a moves to a − 1 (or one of our
previous assumptions was violated at some time step k′ between k and k + 2B and
either an area in the plateau became a hill or a hole was eliminated somewhere in the
system).

With this information we can see that at time step k + 2B there must be a hill and
hole separated by a plateau that is at least one area shorter than the one we were
considering at time step k. Since this process is guaranteed to keep repeating, we will
eventually get to the point where we have a hill a and hole a such that a + 1 = a.
Specifically, since a plateau can originally consist of no more than NA − 2 areas (i.e.,
the total number of areas minus the areas a and a) we will have this condition no
later than k + 2B(NA − 2).

We now show that in the case were a + 1 = a, coordinator C(a) will eventually
transfer a vehicle from a to a thereby eliminating the hole at a. According to
Lemma 4, either 1) area a remains a hill, 2) the hill at a moves to area a + 1 = a,
or 3) a hole is eliminated somewhere in the system. Again disregarding the third
possibility (because it automatically gives us a desired result), it is our task to show
that the second possibility eventually happens.

Property 3 ensures that no vehicles will be removed from area a as long as it
remains a hole for k′ ≥ k + 2B(NA − 2). Until shown otherwise, assume coordinator
C(a) does not add any vehicles to area a for k′ ≥ k + 2B(NA − 2). Thus Eq. 10
gives us

xC(a)
a (k′) = xa(k′) = m for all k′ ≥ k + 2B(NA − 2) + B (40)

So coordinator C(a) has an accurate estimate of xa(k′) for all k′ ≥ k+2B(NA −2)+ B.
Now, in order to show that coordinator C(a) will eventually transfer a vehicle from
a to a, we first need to show that x̃C(a)

a (k′) ≥ m + 2 for all k′ greater than some
value. If coordinator C(a) does not transfer any vehicles out of area a from time step
k + 2B(NA − 2) on, then Eq. 9 gives us

xC(a)

a (k′) = xa(k′) ≥ m + 2 for all k′ ≥ k + 2B(NA − 2) + B (41)

Unfortunately, coordinator C(a) is not generally restricted from removing vehicles
from area a and the logic leading up to Eq. 41 does not hold when coordinator C(a)

makes such a removal before k + 2B(NA − 2) + B. We can, however, get an identical
bound using another line of reasoning. Let k� ≥ k + 2B(NA − 2) be some time step
such that eα

a→a� ∈ e(k�) for some a� ∈ D(C(a)) and some α ≥ 1 (i.e., a time step when
coordinator C(a) transfers vehicles out of area a). If a� = a, then we have our desired

J Intell Robot Syst

result. If a� �= a then we can analyze the value of x̃C(a)

a (k� + 1). We start with the
following equation which describes the update of coordinator C(a)’s estimate for xa

x̃C(a)

a (k� + 1) = x̃C(a)

a (k�) − α−
a (k�) + β

C(a)

a (k�) (42)

where α−
a (k�) is the number of vehicles C(a) transferred out of area a at time step

k� and β
C(a)

a (k�) is the number of previously unseen vehicles that check in with
coordinator C(a) at time step k�. We know βc

a(k
�) is non-negative and since a� �= a

rule (4) from part 3(a) of the control algorithm determines the upper bound on
α−

a (k�). We can thus proceed as follows,

x̃C(a)

a (k� + 1) ≥ x̃C(a)

a (k�) − α−
a (k�) (43)

≥ x̃C(a)

a (k�) −
⌊

x̃C(a)

a (k�) − x̃C(a)
a� (k�)

2

⌋
(44)

≥ x̃C(a)

a (k�) − x̃C(a)

a (k�) − x̃C(a)
a� (k�)

2
(45)

= 1

2

(
x̃C(a)

a (k�) + x̃C(a)
a� (k�)

)
(46)

If area a� is a hole at time k�, then this transfer eliminates a hole and we have
a desired result (recall that if a� was a hole, then it could not escape elimination
by moving to a� − 1 at k� because C(a� − 1) = c and coordinator C(a) is limited to
transferring vehicles from at most one one area in S(C(a)) per time step). Proceeding
in the case where a� is not a hole, we have xa� (k�) ≥ m + 1 and thus Eq. 8 gives us that
x̃C(a)

a� (k�) ≥ m + 1 as well. In addition, since α−
a (k�) ≥ 1 it must be the case that the

condition of rule (4) is met at time step k�, so we also have x̃C(a)

a (k�) ≥ x̃C(a)
a� (k�) + 2.

We can use these two inequalities to evaluate Eq. 46 as follows,

x̃C(a)

a (k� + 1) ≥ 1

2

(
x̃C(a)

a (k�) + x̃C(a)
a� (k�)

)

≥ 1

2

(
(x̃C(a)

a� (k�) + 2) + x̃C(a)
a� (k�)

)
(47)

= x̃C(a)
a� (k�) + 1 (48)

≥ m + 2 (49)

The implication of Eq. 49 is that if coordinator C(a) transfers some vehicles to an
area a� �= a at time step k� ≥ k + 2B(NA − 2), then for all k′ ≥ k� + 1 coordinator
C(a)’s estimate for area a satisfies x̃a(k′) ≥ m + 2. This is because events e+β

C(a),a after

time step k� cannot decrease x̃C(a)

a and another event eα
a→a� just gives us Eq. 49 again.

In summary, coordinator C(a) must try and balance area a at some time k′ such
that k + 2B(NA − 2) + B ≤ k′ ≤ k + 2B(NA − 2) + 2B − 1 and when it does it is
either the case that it has not transferred any vehicles out of a from k to k′ − 1
(in which case Eq. 41 applies) or that it transferred vehicles out of a at least once
in that interval (in which case Eq. 49 applies). Since both Eqs. 41 and 49 give us
x̃C(a)

a (k′) ≥ m + 2, and we have already shown that x̃C(a)
a (k′) = m + 1 for the values of

k′ under consideration, we have that C(a) must transfer at least one vehicle from a to

J Intell Robot Syst

a (given rule (6) in part 3(b) of the control algorithm) Thus the hill at a moves to a
by time step k + 2B(NA − 1) (or a hole somewhere in the system was eliminated at
an earlier time step).

In conclusion, the above proof has shown that a hole is eliminated in the (unbal-
anced) system at least once every 2B(NA − 1) time steps (and if all the holes at a
given minimum vehicle level are eliminated, that minimum must rise). Thus we have
shown that for some T ≤ 2B(NA − 1), either the condition (18) or condition (19) of
theorem must hold. ��

A.7 Proof of Corollary 1

Assuming that the function m(k) remains constant until proven otherwise, we can
see that since the time it takes to eliminate a is hole bounded from above by
2B(NA − 1) (Theorem 1), then all the holes that exist at a time k must be eliminated
no later than time k + 2B(NA − 1)2 because there can be at most NA − 1 holes
whenever the state of the system is not in XI . When all the holes are eliminated, the
minimum number of vehicles per area must increase by at least one, so we have that
m(k + 2B(NA − 1)2) ≥ m(k) + 1 for all k ∈ N. The initial value for this function
m(0) is at least zero and it cannot increase to more than m = ⌊ L

NA

⌋
because of our

assumption that the total number of vehicles is fixed at L. Thus the system must
converge to XI in no more than T = 2B(NA − 1)2

⌊ L
NA

⌋
time steps. ��

References

1. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Athena Scientific, Bellmont (1997)

2. Burgess, K.L., Passino, K.M.: Stability analysis of load balancing systems. Int. J. Control 61(2),
357–393 (1995)

3. Burgess, K.L., Passino, K.M.: Stability Analysis of Discrete Event Systems. Wiley, New York
(1998)

4. Cortés, A., Ripoll, A., Cedó, F., Senar, M.A., Luque, E.: An asynchronous and iterative load
balancing algorithm for discrete load model. J. Parallel Distrib. Comput. 62, 1729–1746 (2002)

5. Cortés, J., Martinez, S., Bullo, F.: Coordinated deployment of mobile sensing networks with
limited-range interactions. In: 43rd IEEE Conference on Decision and Control, pp. 1944–1949,
Paradise Island (2004)

6. Els, R., Monien, B.: Load balancing of unit size tokens and expansion properties of graphs. In:
SPAA ‘03: Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 266–273. ACM, New York (2003)

7. Finke, J., Passino, K.M., Sparks, A.: Cooperative control via task load balancing for net-
worked uninhabited autonomous vehicles. In: 42nd IEEE Conference on Decision and Control,
pp. 31–36, Maui (2003)

8. Frazzoli, E., Bullo, F.: Decentralized algorithms for vehicle routing in a stochastic time-varying
environment. In: 43rd IEEE Conference on Decision and Control, pp. 3357–3363, Paradise Island
(2004)

9. Henrich, D.: The liquid model load balancing method. J. Parallel Algorithms Appl. 8, 285–307
(1996) (Special Issue on Algorithms for Enhanced Mesh Architectures)

10. Liu, Y., Cruz, J.B., Sparks, A.G.: Coordinating networked uninhabited air vehicles for persistent
area denial. In: 43rd IEEE Conference on Decision and Control, pp. 3351–3356, Paradise Island
(2004)

11. Moore, B.J., Passino, K.M.: Decentralized redistribution for cooperative patrol. Int. J. Robust
Nonlinear Control 18, 165–195 (2008)

	Distributed Coordination Strategies for Wide-Area Patrol
	Abstract
	Introduction
	Global Balancing on a General Topology
	Overview of Dynamics and Results
	Interconnection Design Requirements
	Estimation Methods and Properties
	Basic Model of Distributed Dynamics

	Convergence Results
	Simulation Studies
	Conclusion
	Appendix
	A.1 Basic Properties
	A.2 Proof of Lemma 1
	A.3 Proof of Lemma 2
	A.4 Proof of Lemma 3
	A.5 Proof of Lemma 4
	A.6 Proof of Theorem 1
	A.7 Proof of Corollary 1

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

