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Decentralized redistribution for cooperative patrol
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SUMMARY

This paper addresses the problem of enabling a group of autonomous vehicles to effectively patrol an
environment significantly larger than their communication and sensing radii. Our formulation uses an
a priori spatial decomposition of the environment into smaller areas in order to provide a framework for
the allocation of vehicles to different parts of the environment. We develop a distributed cooperative
control algorithm that transfers vehicles between these areas based on only local information and prove
that it achieves the proper environment-wide distribution of vehicles within a finite time interval. Various
applications are discussed and simulations are included to illustrate convergence dynamics as
well as to quantify practical performance as a function of problem parameters. Copyright # 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

This work is motivated by a mission scenario in which a group of autonomous vehicles is tasked
to cooperatively patrol a relatively large environment (e.g. a region of land whose dimensions
dramatically exceed the vehicles’ maximum communication and sensing radii). The reason for
assuming such a small communication radius stems from the proposed deployment of
autonomous micro-vehicles whose transmission power may be limited by the capability of their
hardware, or is deliberately limited in order to conserve energy. Alternatively, even a full-sized
vehicle may voluntarily limit its transmission power in order to avoid broadcasting its position
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to enemy forces trying to find and destroy it (or trying to avoid that vehicle finding and
destroying them). The basis for the assumption of a limited sensing radius will depend on what
kind of sensing the vehicles perform. If, for example, they are trying to detect enemy radio
signals or are using radar, then the same hardware constraints that limited the vehicles’
communication will impede their sensing range as well. On the other hand, if the vehicles are
taking visible light or infrared images, then the pixel resolution of those images will naturally
limit the effective sensing range (not to mention the limitations imposed by physical obstructions
in the environment such as trees or hills). In our mission scenario we also assume that the group
must maintain a continuous presence in the environment in order to provide effective detection
and monitoring of potential targets or other objects of interest. This is in contrast to the type of
mission scenarios in which the vehicle would only need to look at each point in the environment
once. For example, if vehicles are looking for targets that can move or hide, then a single search
of the environment could miss them. Also, the purpose of many patrol missions is to protect
against enemy infiltration and so the environment (or at least its borders) must be continually
monitored.

A scenario of the type just described imposes two somewhat competing requirements on the
vehicle group. The first requirement is one of dispersion. In order to avoid large gaps in their
coverage of the area, it is necessary for the vehicles to spread themselves throughout the entire
environment. If, for instance, the group chose to move in a tight formation through the
environment (e.g. a ‘mowing the lawn’ approach as in [1]), then a mobile target might easily
evade this formation by timing its movements correctly or simply by chance. Since the
environment is very large, keeping the group in a tight formation increases the distance a vehicle
would have to travel to get to any spot in the environment, whereas dispersing the group will
mean that at least one vehicle should be able to get to any particular point in a relatively short
amount of time and thus no part of the environment will go very long without being observed.
Also, a large formation of vehicles generates more noise, a larger thermal or radar signature, etc.
and so targets that can move or hide might find it much easier to evade such a formation than a
single vehicle.

The second requirement imposed by our scenario is one of cohesion and is a product of the
range-limited nature of the inter-vehicle communications. In order to effectively patrol the
environment it is necessary for the group to cooperate, and that means they must, at least
occasionally, meet up in order to communicate. If the group simply disperses without any
coordination strategy, then we are faced with two obvious problems. The first is that a vehicle
will not have any way to pass on information about targets it has found, thus rendering that
information and the entire mission useless. The second is that without some sort of feedback
mechanism it will be impossible to maintain the proper dispersion of agents. For instance, if a
vehicle is destroyed, malfunctions, or needs to refuel then, without feedback, the gap in coverage
that this creates will not be filled. Alternatively, if more vehicles are added to the mission, the
group will have to redistribute itself in order to properly accommodate the new arrivals. It may
also be that the proper distribution of vehicles in the environment may change from time to time
(e.g. if the relative importance of patrolling certain parts of the environment shifts), and so the
group may have to respond to that as well.

The approach to this problem that we take in this paper is as follows. We first decompose the
environment into a number of smaller areas to which individual vehicles are dynamically
assigned (see Figure 1). The idea behind this spatial decomposition is that by restricting a vehicle
to a small section of the environment, it should be easier to determine how that vehicle should
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behave in order to efficiently patrol that area. More specifically, if we provide one or more
locations in an area to which a vehicle can go to in order to communicate with another vehicle,
then the small size of the area means that a vehicle can patrol a significant portion of that area in
between visits to those locations and still communicate on a fairly regular schedule. That is to
say that a vehicle can spend most of its time actually patrolling the area and still remain
connected to the group through periodic communication. Of course, in order for a vehicle to
communicate by going to one of these special locations, there must be another vehicle there.
This brings us to the second part of our approach which is the establishment of a number of
coordinators. Coordinators are simply a small number of the group’s vehicles that loiter in places
where two or more areas meet and provide the previously mentioned ‘locations’ where the other
vehicles can come to communicate. Exactly where a coordinator is located depends on the
details of the specific scenario. For example, if the vehicles are fixed-wing aircraft, then they
obviously cannot stay in exactly one spot. In this case, a coordinator could fly a periodic
trajectory in relation to some nominal location and then the other vehicles could fly backwards
along this trajectory and eventually make contact with the coordinator. If the coordinator is a
ground vehicle or rotary aircraft then it could remain in one spot, but since this increases its
chances of being discovered and destroyed by enemy forces, it could periodically relocate to
another location. As long as the number of these locations is fixed and the coordinator is
guaranteed to visit each of them on a regular basis, then a vehicle seeking to communicate with
it need only go to one of those locations and wait for the coordinator to show up. We note that
if the number of vehicles in the group is small, we may not want to dedicate any of them to serve
in the role of a coordinator. (Even though the coordinator vehicles could conceivably perform
other useful tasks in addition to acting as a communication relay, the fact that they are closely
tied to a specific location will reduce their effectiveness in doing so.) In this case there is

Figure 1. Example environment decomposed into four areas.
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the possibility of using some sort of other device to fulfil the need for coordinators. Depending
on how much information we need them to store and process, such a device could potentially be
fairly small, and thus easily hid somewhere in the environment. A small device could also be
relatively disposable and simply replaced if destroyed (although whatever information it
currently held could not).

The preceding formulation of the problem in terms of areas and coordinators divides the
group of vehicles into a two-level hierarchy. At the bottom level we have the majority of the
vehicles, and from this point on we will simply use ‘vehicle’ and ‘vehicles’ to refer to this portion
of the group. Being confined to one area at a time the vehicles’ main job is simply to gather
information from that limited region and report it back to the coordinators. Forming the upper
level, the coordinators are responsible for directing the vehicles’ efforts within the area
(i.e. telling them where to go look if a certain part of the area has something interesting in it or
has not been observed for a while), and, most importantly, shifting vehicles between the areas
they oversee (i.e. the ones they ‘connect’ by virtue of their nominal location) in order to achieve
the proper distribution of vehicles across all the areas in the environment. For now we consider
the proper distribution of vehicles to be one in which the number of vehicles in each area is
globally balanced. By this we mean that the number of vehicles in any area differs from that of
any other area by no more than one. The reasoning behind our desire for a globally balanced
distribution is that unless we have specific information that leads us to believe it is better to
concentrate more vehicles in certain regions, we want to spread them as uniformly as possible
across the environment to reduce the gaps in coverage. When the areas are all the same size (as
would be the case with a regular gridding of the environment), then this corresponds to wanting
the number of vehicles in each area to be as equal as possible (and unless the number of vehicles
is evenly divisible by the number of areas, then the best we can do is to have any two areas differ
by no more than one vehicle).

Another important responsibility of a coordinator is collecting the information from the
vehicles and passing it on to other systems (e.g. to other coordinators via the vehicles) and, since
the coordinators will not usually be given the authority to make major decisions without human
validation (e.g. attacking targets), they will also have to get information back to (and receive
instructions from) a human operator. Because of the limited communication radius of the
vehicles, the easiest way to do this would simply be to include the human operator as one of the
coordinators of the system. If the system is a long distance from any available operator,
however, then extra measures must be taken in order to ensure that that operator receives
information on either a periodic or as-needed basis (e.g. sending a vehicle back to the operator’s
location or at least close enough to for it to communicate with him).

Other work in cooperative control that shares some similarities with our scenario includes
formulations that deal with ‘pop-up’ targets [2, 3] and those that deal with the spatial allocation
of resources [4]. However, the most closely related work to ours is on load balancing in
distributed computing [5] (with the vehicles viewed as a finite number of discrete load blocks and
the areas as the processors) with a few key exceptions. In our mission scenario, decisions to
move vehicles from a given area to a neighbouring one are made in a distributed manner at the
interconnections between the two areas (i.e. by the coordinators). Essentially, the coordinators
for an area must share the vehicles in that area which is in contrast to the traditional load-
balancing formulation in which one processor has total control over one (and only one)
collection of load blocks. Also, in discrete load-balancing systems, a locally balanced state is all
that is guaranteed, so neighbouring processors may differ by as much as the size of the largest
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load block for both the delay and non-delay cases [6,7] and so the global imbalance grows with
the diameter of the network. While such imbalances may be acceptable in a system with a large
total load, since the ratio of vehicles to areas may be fairly small in the scenarios proposed
above, it is important to achieve a globally balanced state as discussed. With few limited
exceptions, the issue of achieving a globally balanced load distribution has received very limited
attention in the literature prior to this work. The message passing algorithm presented in [8] is
able to achieve a state in which every processor’s set of neighbours is balanced within the largest
block size, but is still not able to guarantee that that will result in a globally balanced state. It is
possible to reduce the expected size of the global imbalance by employing non-deterministic
algorithms such as the one presented in [9], although these types of formulations do not preclude
pathological cases that keep the system from balancing and also may result in a balanced system
becoming unbalanced. The algorithm presented in [10], which shares some commonalities with
this work, is able to achieve a globally balanced distribution but is specific to applications
involving a regular grid of parallel processors and does not address the delays, asynchronism,
and distributed calculation present in our model. A final difference between the usual load-
balancing framework and our problem is that in traditional load-balancing systems there is the
desire that the occurrence and volume of load transfer events should diminish as load
imbalances become small. In the algorithm we present, however, whenever the number of
vehicles is not evenly divisible by the number of areas, the ‘excess’ vehicles will continue to
transition between different areas so that some sort of average coverage is achieved on each one
(a desirable characteristic for our scenario).

2. DISTRIBUTED COOPERATIVE PATROL ALGORITHM

In this section we discuss the requirements we will impose on the interconnections between the
areas and coordinators, how the coordinators can estimate the number of vehicles in an area,
and our model and control algorithm.

2.1. Area–coordinator interconnection structure

The area–coordinator interconnection is best described by a bipartite graph in which the areas
form one set of nodes and the coordinators form the other set. In this graph a coordinator node
is connected only to the nodes of the areas for which it is responsible (see Figure 2 for an
example). Although we would like to consider the widest class of interconnections possible, in
this work we primarily limit ourselves to the specific topology of a unidirectional ring (with line
topologies considered as an extension). In this topology there is an equal number of area and
coordinator nodes, which alternate in sequence to form a ring comprising all of the nodes in the
graph. The ring is unidirectional in that we will only allow the coordinators to transfer vehicles
around the ring in one direction (i.e. each coordinator is limited to moving vehicles from one
specific area to another specific area). Without loss of generality we will assume that the areas
are numbered in sequence around the ring and for convenience we will associate each
coordinator with the area from which it may remove vehicles (see Figure 3). Using the terms
i þ 1 and i � 1 to denote the areas after and before area i on the ring (and i þ 2 being the second
area after area i; etc.), we have that coordinator i is restricted to moving vehicles from area i to
area i þ 1 exclusively.
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Although we have limited our interconnection graph to a unidirectional ring, we need to note
that this does not limit us to area–coordinator interconnections with ring-like spatial layouts.
For instance, the three by three grid of areas in Figure 2 can be turned into a unidirectional ring
(following the numeric labelling of the area nodes in Figure 2(b)) by simply restricting the
manner in which the coordinators may move vehicles. For example, we would only let
coordinator 4 move resources from area 4 to area 5 and from area 5 to area 6, and force it to
ignore its connection to area 9 altogether. This sort of methodology has two clear advantages.
First, we use far fewer coordinators than we would if we insisted on having a unique coordinator
for every area (a third fewer in the example of Figure 2). Secondly, restricting the way in which a
coordinator may transfer vehicles does not in any way interfere with its role as a collector and
distributor of information (i.e. in the above example coordinator 4 may still help direct the
patrolling of vehicles within area 9 and serve to pass along any interesting information to
coordinators 3 and 5 faster than would happen if that information had to follow the same
unidirectional ring as the vehicles). From this discussion it should be clear that the general shape

(a) (b)

Figure 2. A example of an area–coordinator interconnection (a) and its representation as a bipartite graph
(b) with the areas as grey nodes and the coordinators as black nodes.

Figure 3. A three area/coordinator unidirectional ring.
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of a ring can be ‘bent’ in order to match the physical layout of the environment. Of course, in
the design of area–coordinator connections we need to make sure that we avoid certain tree-like
structures (as well as some less obvious topologies) because of the need to have at least one
possible ring present in the underlying graph.

2.2. Estimation methods

Due to the range-limited nature of the communication between the vehicles and coordinators
and the fact that more than one coordinator may alter the number of vehicles in an area, a
coordinator for an area will not immediately be aware that some vehicles have been added or
removed from that area and thus will have, in general, an inaccurate perception of the number
of vehicles currently present in that area. It is important, therefore, for each coordinator to have
an intelligent way of estimating the true number of vehicles in an area, preferably in a way that
preserves some sort of useful relationship between the estimate and the true value. In what
follows we present a way to do this in light of the restricted way vehicles may be transferred
around our unidirectional ring interconnection.

The first requirement of our estimation process is that each vehicle spends no more than a
bounded length of time in an area between the times that it ‘checks in’ with a specific
coordinator by moving to that coordinator’s communication zone and letting that coordinator
know that it (the vehicle) is, or still is, in the area. To be more precise, if a vehicle has checked in
with a coordinator at time t; then it has until time tþD to check in again, where D > 0 is a
preset length of time known to both the vehicles and coordinators. Also, when a vehicle is first
moved into an area at time t it has until time tþD to check in with all the other coordinators for
that area. In general the bound on the maximum time between check ins, D; is determined by the
size of the areas and the vehicles’ speed. This bound should be generous enough to account for
the facts that a vehicle has to check in with all the other coordinators for the area, may
encounter unexpected delays in travel (e.g. obstacles for ground vehicles or headwinds for air
vehicles), and should spend most of its time patrolling the area (i.e. not simply travelling
between coordinators in order to meet an over demanding check-in schedule).

One of the purposes of having the vehicles check in with the coordinators for an area on a
regular basis is to allow those coordinators to maintain a fairly accurate list of the vehicles in
that area, which is accomplished in the following manner. Whenever a coordinator moves an
extra vehicle into an area it gives it a unique identification number that has never been used
before. Due to the restriction of the unidirectional ring which limits coordinator i to adding
vehicles to area i þ 1; the simplest way to do this is for coordinator i to give each vehicle it adds
to area i þ 1 a number with three fields: the designation of the area (i þ 1), the time it was moved
to that area, and one other number to distinguish between vehicles that may have been added at
the same time (e.g. the vehicle’s serial number). In the event that a vehicle is found in the area
without being moved there (i.e. when the system is initially set up or more vehicles are added to
system from outside), then that vehicle is identified in the same way. If we want to let
coordinator i þ 1 label vehicles found in area i þ 1 (instead of only letting coordinator i do it)
then we will have to add another field to the vehicle’s identification number for finding the
coordinator’s designation in order to prevent duplication. Once the vehicles have identification
numbers, the coordinators can each keep a list of the vehicles it thinks are in that area.
Whenever a coordinator is visited by a vehicle not on its list (or moves a vehicle into the area), it
adds it to the list. Whenever a coordinator has not been visited by a vehicle on its list for a time
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period longer than D (or when it removes a vehicle itself), it assumes that that vehicle has been
removed from the area and removes it from its list (and we again see the importance of using a
generous bound D). A coordinator’s estimation of the number of vehicles in an area is then
simply the length of its corresponding list.

In general, we would expect a coordinator’s list to be inaccurate for two reasons: first, because
there may be vehicles recently added to the area that have not checked in, and second, because
there may be vehicles that have been removed from the area for which not enough time has
expired for the coordinator to cross them off its list. However, by restricting ourselves to the
unidirectional ring interconnection we can do better than this. If we assume that no vehicles
enter or leave the system after some initial time (a common assumption in problems of this type
[5–7]), then we know that after a time period of length D that the following must be true: first,
coordinator i’s estimate of the number of vehicles in area i will be less than or equal to the true
number because it is the only coordinator that may remove vehicles from that area. Second,
coordinator i’s estimate of the number of vehicles in area i þ 1 will be greater than or equal to
the true number because it is the only coordinator that may add vehicles to that area. Thirdly, if
coordinator i does not move any vehicles from area i to area i þ 1 from time t to time tþD;
then its estimate for area i is greater than or equal to the true number in area i at time t and its
estimate for area i þ 1 is less than or equal to the true number in area i þ 1 at time t:

We note that with the unidirectional ring all of the above assertions would still be true if
instead of editing their lists when vehicles visited to check in (or failed to do so), the coordinator
adding (removing) vehicles to (from) an area simply informed the other coordinator over a
communication channel with some delay. Although in the general case physically checking in
with a coordinator has the advantage of giving that coordinator a period of exclusive control to
move it to another area (i.e. it solves the problem of two coordinators trying to move the same
vehicle simultaneously), this is not necessary for the case of the unidirectional ring because only
one coordinator per area has the authority to remove vehicles. Thus, we can see that our range-
limited communication scenario is almost equivalent to a scenario in which communication is
confined to a certain topology (i.e. only coordinators that share an area are directly connected)
and subject to substantial delays.

2.3. Model and distributed control strategy

In this section we will model the upper level of our system hierarchy, namely the method by
which the coordinators will achieve a globally balanced distribution of vehicles in the areas
despite their limited interconnections and the inaccuracies in estimation resulting from delays.
To create a mathematical representation of the system we will use a discrete event system model
of the same form used in [11]. The state of the system will be updated asynchronously at discrete
time instants according to the occurrence of particular events describing the relevant behaviour
of the system. The sequence of events is non-deterministic but is constrained by the state of the
system at each time step as well as by casual links between pairs of events.

The state of the complete system will be composed of those variables describing the ‘plant’
(i.e. the number of vehicles in each area) and those describing the distributed controller (i.e. the
coordinators’ estimates of the number of vehicles in the areas they connect). Let N be the total
number of areas in the ring and let N ¼ f1; . . . ;Ng be the set of these areas. For the plant, each
area i 2N has an associated variable xi 2 N whose value is equal to the number of vehicles
in that area (where we take the definition of the natural numbers to be N ¼ f0; 1; 2; . . .g;
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i.e. the non-negative integers as opposed to just the positive integers as is sometimes seen). Let
xP ¼ ½x1; . . . ;xN �

> be the entire state of the plant. For the controller, coordinator i (the
coordinator that moves vehicles from area i to area i þ 1 has a (possibly outdated) estimate of
the true values of xi and xiþ1: Let these estimates be denoted by *xii and *xiiþ1; respectively, and let
xC ¼ ½ *x

1
1; *x

1
2; . . . ; *x

N
N ; *x

N
1 �
> denote the entire state of the controller. The entire state of the system

is then x ¼ ½x>P ; x
>
C �
> and we let the state space be denoted by X ¼ N3N : Let xðkÞ 2 X denote the

state of the system at logical time index k (with similar notation for its components).
We first present two subsets of this state space that reflect some of our assumptions about the

system. The first,

XL ¼ x 2 X :
XN
i¼1

xi ¼ L

( )

with L ¼
PN

i¼1 xið0Þ; is actually a family of subsets parameterized by the initial condition of the
plant xPð0Þ: As discussed in Section 2.2, one of our primary assumptions will be that no vehicles
enter or leave the system during its operation. This assumption is equivalent to the statement
that xðkÞ 2 XL for all k50: The second subset of interest

XE ¼ fx 2 X : *xi�1i 5xi5 *xii 8i 2Ng

defines the condition wherein the coordinator that may add vehicles to area i does not
underestimate the true number and the coordinator that may remove vehicles from area i does
not overestimate the true number. By assuming that xðkÞ 2 XE for all k50; we will be able to
greatly simplify our model and later analysis. The justification for such an assumption has
already been discussed in Section 2.2. For convenience, let X0 ¼ XL \XE be the intersection of
the these first two subsets, giving us xðkÞ 2 X0 for all k:

There are two types of events of interest for our system, namely, the transfer of vehicles from
one area to the next and a change in one of a coordinator’s estimates (i.e. when it recognizes that
a vehicle has been added to or removed from a particular area). Let e

aðiÞ
i denote the ‘partial’

event of coordinator i transferring aðiÞ 2 N vehicles from area i to area i þ 1: By the logic
underlying our assumption that the initial state lies in X0; we need only consider estimate
changes for coordinator i that either increase its estimate *xii or decrease its estimate *xiiþ1:
Therefore, let e

bðiÞ
i denote that coordinator i has detected bðiÞ 2 N vehicles in area i that it has

not seen before. Similarly, let e
gðiÞ
i denote that coordinator i has noted the absence of gðiÞ 2 N

vehicles in area i þ 1 (i.e. has not seen those vehicles for a length of time D and can safely
assume they have been previously removed by coordinator i þ 1).

Let the total event space E be defined as the union of the following sets minus the null set |

Pðfe
aðiÞ
i : aðiÞ 2 N; i 2NgÞ ð1Þ

Pðfe
bðiÞ
i : bðiÞ 2 N; i 2NgÞ ð2Þ

Pðfe
gðiÞ
i : gðiÞ 2 N; i 2NgÞ ð3Þ

wherePð�Þ is the power set of its argument. Thus, we can use eðkÞ 2 E to denote the combination
of partial events (i.e. transfers of vehicles and estimate updates) that occur simultaneously at
time k:
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Which events may actually occur will depend on the state of the system; specifically, a set-
valued enable function g : X! E is defined as follows: if eðkÞ 2 gðxÞ; then

(a) for each e
aðiÞ
i 2 eðkÞ the following conditions must hold:

(i) aðiÞ ¼ 0 if and only if *xiiðkÞ4 *xiiþ1ðkÞ;
(ii) if *xiiðkÞ > *xiiþ1; then 14aðiÞ4dð *xiiðkÞ � *xiiþ1ðkÞÞ=2e;

(iii) e
a0ðiÞ
i =2 eðkÞ if aðiÞ=a0ðiÞ:

Condition (i) prevents coordinator i from transferring vehicles from area i to area i þ 1
unless it thinks that area i has more vehicles than area i þ 1: Condition (ii) uses the ceiling
operator d�e (i.e. the smallest integer greater than or equal to its argument) and ensures
that coordinator i attempts to balance the number of vehicles in areas i and i þ 1 by
passing at least one vehicle from the former to the latter, but not more than would make
the number of vehicles in area i less than one below area i þ 1 after the transfer (this is
more aggressive than most load-balancing schemes which stipulate that a processor
should not pass an amount of load that would make it less lightly loaded than its
neighbours [5, 6]). We note that the assumption xðkÞ 2 X0 and these first two conditions
prevent a coordinator from transferring more vehicles than those that actually exist in
area i: Condition (iii) simply limits coordinator i to a single transfer of vehicles per
composite event eðkÞ:

(b) for each e
bðiÞ
i and e

gðiÞ
i in eðkÞ it must be the case that bðiÞ4xiðkÞ � xiiðkÞ and gðiÞ4xiiþ1ðkÞ

�xiþ1ðkÞ or else the state of the controller might not satisfy the condition of XE at the
next time index (which is physically impossible under our controlling assumptions). It is

also necessary that both e
b0ðiÞ
i =2 eðkÞ if bðiÞ=b0ðiÞ and e

g0ðiÞ
i =2 eðkÞ if gðiÞ=g0ðiÞ for the same

reason as condition (iii) in part (a).

Now, at each time index k some event eðkÞ 2 gðxðkÞÞ occurs and alters the state of the system
according to an update function xkþ1 ¼ f ðxðkÞ; eðkÞÞ defined by

xiðkþ 1Þ ¼ xiðkÞ � aðiÞ þ aði � iÞ ð4Þ

*xiiðkþ 1Þ ¼ *xiiðkÞ � aðiÞ þ bðiÞ ð5Þ

*xiiþ1ðkþ 1Þ ¼ *xiiþ1ðkÞ þ aðiÞ � gðiÞ ð6Þ

where the indexed a; b; and g values here on are taken from the partial events in eðkÞ (and we let aðiÞ;
bðiÞ; or gðiÞ equal zero if coordinator i does not have a corresponding partial event). Simply put, the
function f updates each xi 2 xP by subtracting the vehicles transferred out of area i by coordinator i
and adding those transferred into it by coordinator i � 1: It also updates a coordinator’s estimates
according to that coordinator’s actions and new information it has received.

Let EN be the set of all event trajectories. The set of valid event trajectories EV � EN contains
all event trajectories E ¼ ½eð0Þ; eð1Þ; . . .� such that there exists a state trajectory X ¼ ½xð0Þ;
xð1Þ; . . .� 2 XN satisfying eðkÞ 2 gðxðkÞÞ for all k 2 N: Whereas the enable function captures
the dynamics of this system from one time step to the next, we will need to define a set of
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allowed trajectories in order to fully describe its behaviour over time. This subset of EV ; denoted
EB; consists of all event trajectories that meet the following conditions:

(1) There exists a positive integer B such that for every event trajectory E 2 EB and for any
time index k; the series of events eðkÞ; eðkþ 1Þ; . . . ; eðkþ B� 1Þ contains at least one
occurrence of the partial event e

aðiÞ
i for all i 2N if *xiiðk

0Þ > 0 for all k0 2 fk; . . . ; kþ B� 1g:
This is equivalent to saying that whenever coordinator i thinks that there are vehicles in
area i (which implies that there actually are vehicles in that area) then it must try to
balance the number of vehicles in area i and area i þ 1 within B events. Because
coordinators can only communicate with a vehicle when they check in, that is also the
only time they can decide to transfer that vehicle. Therefore, the parameter B must be the
maximum number of events that can occur within the maximum length of time a vehicle
can go without checking in with a coordinator.

(2) For the same constant B as above, it must be the case for every event trajectory E 2 EB;
any time index k; and every i 2N; that if the series of events eðkÞ; eðkþ 1Þ; . . . ;
eðkþ B� 1Þ does not contain a partial event e

aðiÞ
i with aðiÞ > 0; then we must have

*xiiðkþ BÞ5xiðkÞ and *xiiþ1ðkþ BÞ4xiþ1ðkÞ: This is simply a mathematical restatement of
the last estimation property discussed in Section 2.2, and B is again the maximum number
of events that can occur in the maximum length of time D that a vehicle can go without
having checked in with a particular coordinator.

Based on the conditions laid out above for the set of allowed trajectories, there is a need for us
to show that the number of events that may occur in a finite period of time is indeed finite. To do
this we note that each event index k corresponds to a vehicle checking in with a coordinator.
Since the physical act of checking in involves both communication and computation, it must
take a certain amount of time which can be bounded from below by a positive constant. In
reality we will not want the vehicles to repeatedly check in with the coordinators as they have
other work to do (i.e. patrolling the area they are in), and so this lower bound is apt to be
relatively large. In any case, the number of events a single vehicle may trigger in any time period
of length D has an upper bound, and since there are a finite number of vehicles in the system, the
total number of events that can be triggered in that same time period is also bounded.

3. CONVERGENCE RESULTS

3.1. Distribution dynamics and convergence time bound

In this section we analyse the system model of Section 2.3. We will show that the set

XI ¼ fx 2 X0 : jxi � xjj41 for all i; j 2Ng

(representing the subset of X0 for which the number of vehicles in any area differs from that of
any other area by no more than one, i.e. the desired globally balanced distribution) is invariant
and that for any initial condition xð0Þ 2 X0 the state of the system converges to XI in a finite
length of time that can be bounded from above by a function of the model parameters
(specifically, the number of areas N; the number of vehicles in the system L; and the magnitude
of delays B). We include here the important lemmas and the final convergence theorem and
present their proofs in the Appendix.
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Lemma 1
The set XI is invariant with respect to the system model in Section 2.3.

The proof of the above lemma shows that trajectories within the invariant set XI are not, in
general, static. When the total number of vehicles L; is not evenly divisible by the number of
areas N; the excess vehicles are continually transferred around the ring so that the number of
vehicles at each node alternates between two consecutive integers bL=Nc and bL=Nc þ 1 (where
b�c is the floor operator, i.e. the greater integer less than or equal to its argument). When L is
divisible by N; however, it is easily shown that the only possible state within XI is the perfectly
balanced state xi ¼ xj for all i; j 2N:

Lemma 2
For the system model described in Section 2.3, the minimum number of vehicles in any area
mðkÞ ¼ mini2N xiðkÞ is non-decreasing in time. Similarly, the maximum number of vehicles in
any area MðkÞ ¼ maxi2N xiðkÞ is non-increasing in time.

The above lemma shows that our system model is ‘well-behaved’ in that the global imbalance
in the system, as measured by MðkÞ �mðkÞ; is non-increasing with time. The essence of the
following lemma and theorem is to show that this imbalance must eventually decrease to a value
of one or zero.

Lemma 3
Let nðkÞ ¼

4

jfi 2N : xiðkÞ ¼ mðkÞgj be the number of areas with only mðkÞ vehicles at time k: For
the system model described in Section 2.3, for any time index k and any xðkÞ 2 X0 �XI ; there
exists a finite number T42BdN=2e such that either mðkþ TÞ > mðkÞ or nðkþ TÞ5nðkÞ: In other
words, whenever the state of the system is not in the invariant set XI ; it is eventually the case
that the minimum number of vehicles in any area increases or the subset of areas that have only
that minimum number decreases in size.

Theorem 1
For the system model in Section 2.3, for any initial condition xð0Þ 2 X0 there exists a finite
number T42BdN=2eðN � 1ÞðbL=Nc þ 1Þ such that xðkÞ 2 XI for all k5T :

A couple of remarks should be made about the above bound on the convergence time of our
system model. The first thing to note is that this bound is generally conservative with respect to
its dependence on the size of the ring N (a fact illustrated by the simulation results in Section 4
below). This conservativeness stems from the ‘worst-case scenario’ nature of our analysis which,
while making such analysis tractable, ignores the fact that much of the system’s progress
towards a globally balanced state will usually be done in parallel instead of serially. It is also
interesting to note that the bound in Theorem 1 is cast in terms of the average number of
vehicles per area L=N as opposed to the total number L: The reason for this is that the
coordinators are implicitly trying to lift the minimum number of vehicles in an area as close as
they can to the average L=N (because accomplishing that feat means the system is very close to
the globally balanced state). So, in effect, if we increase the length of the ring while leaving the
total number of vehicles constant, it may take longer to raise the minimum number of vehicles
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per area by one, but that minimum has to be raised fewer times overall in order for the system to
reach the globally balanced state.

3.2. Extension to line topologies

A simple modification of the system model presented in Section 2.3 will allow us to achieve
global balancing on line topologies. A line topology is an area–coordinator interconnection of N
areas and N � 1 coordinators in which coordinator i connects areas i and i þ 1 but no
coordinator connects areas 1 and N (i.e. like a ring with one coordinator removed). See
Figure 4(a) for the graph associated with a five-area line. In order to achieve global balancing on
a line we will make a transformation of the interconnection as follows. We first rename the areas
of the line interconnection as zones and then we assign two areas to each zone where both of
these areas cover the entire physical area of their zone (i.e. they overlap completely). We then
connect these areas into a unidirectional ring as shown in Figure 4(b). More specifically, a
coordinator in the system is allowed to move vehicles from area i to area i þ 1 if and only if both
those areas are in one of the two zones to which the coordinator is connected in the original
topology.

Note that this set-up by itself almost allows us to globally balance the number of vehicles in
the zones because globally balancing the ring of areas will mean that the number of vehicles in
any two zones cannot differ by more than two. In order to achieve true global balancing of the
zones, however, we must make a small modification to the system modelled in Section 2.3. Let
us assume that areas 1 and N lie in one or the other of the zones with only one coordinator (i.e.
one of the zones on either end of the line). Now, vehicle transfers from any area i=N to area
i þ 1 will obey the rules laid out in the enable function g of Section 2.3. Vehicle transfers from
area N to area 1; however, will be handled a little differently. For this case, conditions (i) and (ii)
of the enable function will be replaced by the following rules:

if *xNNðkÞ4 *xN1 ðkÞ þ 1 then aðkÞ ¼ 0 ð7Þ

if *xNNðkÞ5 *xN1 ðkÞ þ 2 then 14aðkÞ4
*xiiðkÞ � *xiiþ1ðkÞ

2

� �
ð8Þ

32 2 431 33 3

910 2 431 78 6

21 2 431 43 5

1 4

(a)

(b)

Figure 4. Original line topology shown in (a) and transformation into a ring shown in (b). Dashed
rectangles in (b) denote zones (i.e. the original areas in (a)). Co-ordinator labels are repeated in (b) to

clearly show which coordinator is responsible for each part of the ring.
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where b�c is the floor operator, i.e. the largest integer less than or equal to its argument. The
effect of this modified enable function is that the number of vehicles allowed to be transferred
from area N to area 1 is limited so that area N has at least as many vehicles as area 1 after the
transfer (and vehicles must be transferred when doing so will not violate this rule). Under this
modification we have the following results.

Theorem 2
For the modification of the system model of Section 2.3 described by (7) and (8), for any initial
condition xð0Þ 2 X0 there exists a finite number T42BðN � 1Þ2ðbL=Nc þ 1Þ such that xðkÞ 2 XI

for all k5T :

Theorem 3
For any k 2 N such that xðkÞ 2 XI ; the line topology formed from the modified ring of Section
3.2 with N areas is guaranteed to have 1

2
N globally balanced zones for all k05kþ T ; where

T ¼ 1
2
NðN � 1Þ:

Theorem 2 is almost identical to Theorem 1 in both its analysis and final result. The only
difference is the modified rules (7) and (8) effectively slow down the (worst case) dynamics of the
system by a factor of approximately two. The result of Theorem 3 is possible only because of the
way we have set up the modified ring and where we located the ‘special’ coordinator that uses
the modified rules. This modification forces the distribution of the vehicles in the globally
balanced ring into a specific configuration where the zones are also globally balanced (see proofs
in the Appendix).

3.3. Extension to prioritized balancing

While uniformly distributing the patrol vehicles across the environment may be the smart thing
to do if we have no prior information about where the targets might appear, in many practical
cases we will want to concentrate more vehicles in parts of the environment that have a higher
priority than other parts. In this section we will discuss a few methods that help us to achieve
such a goal.

There are three simple solutions to this problem that simply manipulate the way the system is
set up in order to concentrate more vehicles in certain parts of the environment. First, if we
know ahead of time what we want the distribution of vehicles to look like, we can partition the
environment into areas in such a manner that the parts of the environment with higher priority
are covered by areas of smaller size. Then, by using the same algorithm as in Section 2.3, when
the system achieves a globally balanced distribution of vehicles across the areas, the areas of
smaller size will have a higher density of vehicles (see Figure 5). The main problem with this
method is that it is not very flexible; if the desired distribution changes, then the areas would
have to change size and shape and many coordinators would likely have to adjust their position,
creating a host of problems for vehicles that were trying to check in with them.

The second simple solution is to start with physical areas that are all the same size and then
attach a number of ‘virtual areas’ to each physical area in proportion to its priority. Vehicles
assigned to a virtual area would patrol the part of the environment covered by the physical area
to which that virtual area is attached (similar to the way the two areas covered a zone in the line
topology above). For example, if the priority of area i was twice that of area j; then two virtual
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areas could be added to area i and one to area j so that i would have twice as many vehicles as j
once all the virtual areas were balanced. The advantage of this solution is that virtual areas can
be added or deleted in response to changes in the priorities of the real areas. The disadvantages
to this solution are that (1) the priorities of the real areas must be integer valued, and (2) since
(in the balanced state) the number of vehicles in each virtual area may oscillate between two
consecutive integers, the number of vehicles in a physical area with many virtual areas can vary
considerably. Specifically, the number of vehicles in a physical area with v virtual areas can vary
from vbL=Nc to vbL=Nc þ v (where bL=Nc is the smallest number of vehicles in any virtual area
when the system is balanced).

The third simple solution would simply be to give each coordinator the option to ‘steal’
vehicles from the system (i.e. keep vehicles in its area but report them as removed) whenever it
discovers that there are high priority tasks to be done in its area and then return those vehicles
after those tasks were accomplished. Although we have no analytical results for to prove this, so
long as frequency and magnitude of these vehicle ‘thefts’ is limited, it is reasonable to assume
that the redistribution dynamics of the system will keep the areas fairly well balanced.

We now present a fourth (and not so simple) option, which is to return to the formulation in
which the areas are synonymous with the regions of the environment and generalize the
algorithm of Section 2.3 in order to accommodate the possibility that some areas have a higher
priority than others. Simply put, we would like each area to have a certain portion of the total
number of vehicles (referred to as balancing ‘virtual load’ in [6, 7]). In Section 2.3 it was assumed
that this proportion was simply 1=N for each of the N areas. For the more general case, each
area i 2N is given a priority value pi 2 ð0;1Þ and its ideal proportion of the total load is given
by pi=P; where P ¼

PN
j¼1 pj : In keeping with the notation established in Section 2.3, the same

area’s ideal number of vehicles is given by ðpi=PÞL and represents that area’s ‘fair share’ of the L
vehicles. Of course, this value will not typically be an integer for all areas, so any feasible
division of the vehicles will result in some areas having more than their fair share and some
having less. Determining the best distribution in this situation is what is known as either an
allocation problem or an integer sharing problem and it has received a lot of attention in the area
of political science because of its relevance to proportional representation in legislative bodies
(e.g. if L ¼ 435 and p1; . . . ; p50 are the populations of the U.S. states, then solving this allocation
problem determines the number of seats each state receives in the House of Representatives).

Figure 5. Example of surveillance area layout with areas of unequal size. The density of AAVs in area 5
will be higher than the other areas if the number of AAVs per area is the same.
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Of course, the optimality of the allocation can be defined in many different ways, each requiring
a different solution method and possibly producing a different result. A comprehensive review of
this problem can be found in both [12, 13].

The optimality criterion in which we are primarily interested is reducing the maximum
imbalance between the quantities xi=pi and xj=pj for any two areas i and j: This is a direct
extension of our desire in Section 2.3 to reach a goal set where the number of vehicles in two
areas differ by no more than one. Strictly speaking, we want to minimize the following cost
function:

max
i;j2N

xi

pi
�

xj

pi

����
���� ¼ max

i2N

xi

pi
�min

j2N

xj

pj
ð9Þ

where it should be clear that this is equivalent to our previous goal of x 2 XI when pi ¼ pj for all
i; j 2N: Since multiplication of each patrol area’s priority by a common number does not
change their desired proportions but does reduce the value of this cost function, the following
relative cost function is often used instead

maxi2Nxi=pi
minj2Nxj=pj

¼ max
i;j2N

pjxi

pixj
ð10Þ

and note that the same allocation minimizes both (9) and (10).
This optimality criterion is not covered in the previous references, but is addressed in [14].

That work proposes using dynamic programming methods to determine the optimal allocation.
Given the complexity of finding the optimal allocation we will not attempt to solve that problem
in a distributed manner, but rather develop an algorithm that forces the distribution of vehicles,
xðkÞ; into a region of the state space where the value of the cost function (10) is within a some
known bound of its optimal value.

The model we will use for our proportional balancing system will be identical to that in
Section 2.3 with the exception of the enable function gðxÞ and the goal set. To reflect the change
from balancing vehicle numbers to balancing weighted versions thereof, conditions (i) and (ii)
for part (a) of gðxÞ are redefined as

if
*xiiðkÞ

pi
4

*xiiþ1ðkÞ

piþ1
then aðiÞ ¼ 0 ð11Þ

if
*xiiðkÞ

pi
>
*xiiþ1ðkÞ

piþ1
then 14aðiÞ5

pið1� *xiiþ1ðkÞÞ þ piþ1ð1þ *xiiðkÞÞ

pi þ piþ1
ð12Þ

Rule (11) and the lower limit on aðiÞ in (12) ensure that coordinator i transfers at least one
vehicle if area i has a higher number of vehicles in proportion to its priority than does area i þ 1
(and none if it has less). The upper limit on aðiÞ in (12) has been recalculated to ensure that
coordinator i does not pass more than the minimum number of vehicles necessary to reverse the
sign of the imbalance between xi=pi and xiþ1=piþ1: It is easily verified that if pi ¼ piþ1 then
(11) and (12) are equivalent to conditions (i) and (ii) of the original enable function gðxÞ in
Section 2.3.

Our goal set for prioritized balancing will be the following:

XP ¼ x 2 X0 :
xiþ1

piþ1
�

xi

pi
5

1

pi
þ

1

piþ1
8i 2N

� �
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Unfortunately, this set is defined as a collection of local conditions rather than a single global
one as XI is. Indeed, even when pi ¼ piþ1 for all i; j 2N; XI is a proper subset of XP for all but
a few trivial situations (i.e. when L and/or N are less than two). The fact that we can achieve
better results for the non-proportional case justified its separate analysis in Section 3.1. The
following analysis of the proportional balancing case will show that the set XP is invariant and
the system model converges to this set in a finite time of known bound.

Lemma 4
The set XP is invariant with respect to the system model of Section 2.3 and the modifications to
the enable function defined by (11) and (12).

As with XI in Section 3.1, trajectories within XP are hardly ever static. Unfortunately,
because of the strictly local results that we are able to achieve with prioritized balancing, we are
not guaranteed that the system will ever achieve the minimum global imbalance. In fact, due to
the ‘churning’ nature of trajectories in XP; the system will not even stay at the state with the
minimum global imbalance unless pi; i ¼ 1; . . . ;N and L are such that it is possible to have zero
global imbalance (otherwise there must be at least one area i such that xiþ1ðkÞ=piþ1 � xiðkÞ=pi is
greater than zero, which will eventually result in coordinator i transferring a vehicle from area i
to area i þ 1).

Theorem 4
For the system model of Section 2.3 with the modifications to the enable function defined by
(11) and (12), for any initial condition xð0Þ 2 X0 there exists a finite number T 2 N such that
xðkÞ 2 XP for all k5T ; where

T5
2BðGN � GÞ

ðG� 1Þ2
L

miniðpipiþ1Þ

� �

and G ¼ maxid1þ pi=piþ1e:

Because of the many worst-case assumptions made in its derivation, the bound in Theorem 4
is typically extremely conservative. Even though the bound on T is not of much use, its
derivation does provide insight into the dynamics of the system (see Appendix).

At this point it is instructive to explain why prioritized balancing fails to achieve the minimum
global imbalance as the non-proportional algorithm does. The main reason for this shortcoming
is the ambiguity that the prioritized algorithm introduces at the local level of the coordinators.
In both the prioritized and non-prioritized algorithms, a coordinator must make decisions based
on only the number of vehicles in two areas. In the non-prioritized case a coordinator i makes an
estimate of the average number of vehicles per area for the whole system by taking the average
of just areas i and i þ 1; and then, if it can, transfers vehicles from area i to area i þ 1 to achieve
this average (giving area i þ 1 the extra vehicle is there is one). For example, take a system that
has reached a globally balanced state where each area has either 3 or 4 vehicles. Assuming
perfect estimates for simplicity, if we have either xi ¼ 3;xiþ1 ¼ 3; or xi ¼ 4;xiþ1 ¼ 3; or xi ¼
3;xiþ1 ¼ 4 then coordinator i will correctly estimate that proper minimum number of vehicles
per area (i.e. *m ¼ 3) and can act accordingly to move the excess vehicles forward on the ring if it
is in a position to do so. In the case where xi ¼ 4;xiþ1 ¼ 4 coordinator i will improperly estimate
*m as being 4, but since it will not take any action in this case, the ambiguity here does not hurt.
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Now, consider a similar situation in the prioritized balancing case. The closest analogy to the
globally balanced state of the non-prioritized case is if each area i has either *mi ¼ bðpi=PÞLc or
*mi þ 1 vehicles (i.e. the integer part of its fair share of the total vehicles or that number plus
one). For our example, let pi ¼ 2 and piþ1 ¼ 3 and let L be such that *mi ¼ 2 and *miþ1 ¼ 3: If
coordinator i arrives at a situation in which xi ¼ 3 and xiþ1 ¼ 4; then it does not have enough
information to act correctly in order to keep the overall system balanced. Since the only way
coordinator i can estimate *mi and *miþ1 is to make a weighted average of those two areas, it will
wind up estimating these minimum vehicle numbers as b2

5
� 7c ¼ 2 and b3

5
� 7c ¼ 4; respectively,

instead of their correct values of 2 and 3. Thus, the coordinator will not know it is acting
incorrectly when it transfers a vehicle from area i to area i þ 1:

4. SIMULATIONS

4.1. Redistribution dynamics

The purpose of this section is to provide the illustrative example of the system dynamics. To do
this we simulated a system with 10 areas and 127 vehicles which is initially globally balanced but
loses all the vehicles in areas 7–10 shortly into the simulation. That is to say that the system
experience a step disturbance which, if we redefine our initial time, is equivalent to starting the
system in an unbalanced state. We also note that the simulation probably has an unrealistically
high number of vehicles for our patrol scenario, but we do this because it helps highlight the
system dynamics. Check in times of the vehicles were staggered at random intervals and
coordinators made a transfer decision every time a vehicle checked in with it. In our simulation
we used real-time delays (as opposed to the event time used in the model and analysis) so all
state values will appear as functions of t as opposed to k: Since we gain no additional insight by
scaling the length of the delays, in all our simulations one unit of time is taken to be equal to the
maximum delay between successive check ins by an individual vehicle. Figure 6 shows the
resulting trajectory of xiðtÞ for each area i ¼ 1; . . . ; 10 and shows how the system recovers a
globally balanced state within 30 time units of the disturbance (albeit at a lower number of
vehicles per area). In this plot we can see how the system responds fairly gracefully to the
disturbance, noting how the minimum and maximum number of vehicles in an area are non-
decreasing and non-increasing, respectively. The same data are also shown in Figure 7 with the
value of xiðtÞ plotted in shades of grey in order to show how the holes created by the disturbance
at time t ¼ 5 get filled in from the other areas of the ring. This figure also shows the dynamic
nature of the globally balanced state (i.e. from time t ¼ 35 onward we can see how the ‘excess’
vehicles shuffle along the ring in a staggered fashion).

4.2. Average convergence time

Next, since the bound on convergence time expressed in Theorem 1 is generally conservative, we
are motivated to perform some statistical analysis of the system’s practical performance via
Monte Carlo simulations to determine the average convergence time for a typical scenario. In
order to do this we started each simulation in an initial condition that created the maximum
initial imbalance (i.e. putting all the vehicles into a single area) while initializing all the
coordinator estimates to zero since this should produce a good estimate of the system’s actual
worst-case performance and takes into account the initial time period before our assumption of

B. J. MOORE AND K. M. PASSINO182

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:165–195

DOI: 10.1002/rnc



x 2 XE is guaranteed to be valid. The travel time between coordinators was fixed and constant
for all areas with the check in times of the vehicles randomly staggered. Co-ordinators again
made a decision to transfer a vehicle every time one checked in. The convergence time of the
system was investigated for different combinations of the number of areas N and the average
number of vehicles per area L=N: The length of the travel time between coordinators was not
varied as the results for this simulation set-up would simply be scaled in proportion to this time.
The data points that appear in Figures 8 and 9 are the average of 50 simulation runs each. While
this may seem like a small number of runs to use, it is justified by the extremely small sample
variance.

Figure 6. Number of vehicles in each area of a ring when a number of vehicles are removed at time
t ¼ 5: Trajectories xiðtÞ; i ¼ 1; . . . ; 10 are drawn in grey with maxi2N xiðtÞ and mini2N xiðtÞ
highlighted with bold black lines. One time unit is equal to the maximum delay between successive

check ins by an individual vehicle.

Figure 7. Same data as Figure 6 plotted spatially with the value of xiðtÞ denoted by the grey value
of the block at ðt; iÞ (black equals zero and white equals 13).
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Figure 8. Average convergence time versus average number of vehicles per area for different
numbers of areas. One time unit is equal to the maximum transit time of a vehicle between

the coordinators of its assigned area.

Figure 9. Average convergence time versus number of areas for different values of the
average number of vehicles per area. One time unit is equal to the maximum transit time of a

vehicle between the coordinators of its assigned area.
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When the number of areas in the ring is kept constant and the average number of vehicles
per area was increased, we found a roughly logarithmic relationship between the average
number of vehicles and the convergence time of the system (Figure 8) rather than the linear
one implied by the bound of Theorem 1. This discrepancy is due to the nature of our analysis
in the proof of that theorem. In that analysis we always assume that the number of vehicles
transferred is the minimum of one per event and that these events happen at the slowest possible
rate. What happens in our simulation set-up, however, is that over a period of two time units
(i.e. the time between two successive visits of a vehicle to the same coordinator) a coordinator
transfers roughly the maximum number of vehicles that it can. Since this upper limit is
proportional to the relative imbalance of the two areas a coordinator connects, the global
imbalance is reduced at a rate roughly proportional to its size. This phenomenon is observed
somewhat in Figure 6 where the rate at which the global imbalance decreases slows down as the
system nears the balanced state. Since the settling time of the dynamical system ’z ¼ �az
increases in proportion to the logarithm of its initial condition z0; it is not too surprising for us
to find a similar relationship in our simulations results.

When the average number of vehicles per area is held constant our simulation results
(Figure 9) suggest that the convergence time has an (asymptotically) linear relationship
to the number of areas in the ring (as opposed to the quadratic bound in Theorem 1). To see
why we kept the average number of vehicles per area L=N constant instead of just the
total number L let us instead consider what we could expect in the latter case as the number of
areas increased. Going between one and L areas the convergence time would increase because it
would naturally take longer for the vehicles to spread out from their original area. For any
number of areas larger than L; however, once the vehicles get spread out across the first L areas,
the system is already as balanced as it can it, and so the convergence time could not increase
any further.

5. CONCLUSIONS

In this paper we have presented a novel formulation of the resource/load-balancing problem in
which a distributed set of coordinators must share responsibility for multiple groups of
resources (as opposed to the traditional formulation in which each coordinator has sole
responsibility for a single resource group). In addition, we have developed a distributed
cooperative control strategy that enables those coordinators to achieve a distribution
of vehicles that is globally balanced across the areas (instead of just locally balanced between
connected areas). The globally balanced state is achieved ‘gracefully’ in that the global
imbalance is non-increasing and it is also achieved within a finite time of known bound. To our
knowledge, this is the first cooperative control strategy capable of achieving global balancing in
a distributed and asynchronous setting. Although presented in the context of an autonomous
vehicle patrol mission, the algorithm developed here has significant application to generic
resource or load-balancing problems due to its ability to achieve this globally balanced state.

Our current research efforts lie in developing a cooperative control strategy for a larger class
of area–coordinator interconnections (i.e. not just a unidirectional ring). Achieving such a
generalization has the potential to decrease the convergence time of the algorithm by allowing
much more highly interconnected area set-ups. Potential future research directions include the
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analysis of situations in which vehicles may enter or leave the system at a constrained rate or in
which the areas’ priorities vary with time.

APPENDIX A

A.1. Proof of Lemma 1

Throughout this proof and the rest of this section we use the function mðkÞ ¼
4

minfxiðkÞ : i 2Ng to denote the smallest number of vehicles possessed by any area in the
ring at time index k: It should be clear from the definition of XI that xðkÞ 2 XI if and only if
xiðkÞ 2 fmðkÞ;mðkÞ þ 1g: Recall that xðkÞ 2 XI implies xðkÞ 2 X0 as well and so *xiiðkÞ4xiðkÞ and
*xiiþ1ðkÞ5xiþ1ðkÞ for all i 2N: For any enabled event eðkÞ 2 gðxðkÞÞ; its effect on the number of
vehicles in area i will be determined solely by xiðkÞ and the values aðiÞ and aði � 1Þ as described
by the update function f ðxðkÞ; eðkÞÞ: For clarity, we break down the argument into two cases as
follows:

Case 1: xiðkÞ ¼ mðkÞ: We have that aðiÞ ¼ 0 due to condition (i) of the enable function
because

*xiiðkÞ4xiðkÞ ¼ mðkÞ4xiþ1ðkÞ4 *xiiþ1ðkÞ

and because xi�1ðkÞ4mðkÞ þ 1 it follows that

*xi�1i�1ðkÞ4xi�1ðkÞ4mðkÞ þ 1 ¼ xiðkÞ þ 14 *xi�1i ðkÞ þ 1

which implies *xi�1i�1ðkÞ � *xi�1i ðkÞ41 and so aði � 1Þ 2 f0; 1g: Thus,

xiðkþ 1Þ ¼ xiðkÞ � aðiÞ þ aði � 1Þ ¼ xiðkÞ þ aði � 1Þ

and hence we have xiðkþ 1Þ 2 fmðkÞ;mðkÞ þ 1g:
Case 2: xiðkÞ ¼ mðkÞ þ 1: This time aði � 1Þ ¼ 0 because

*xi�1i�1ðkÞ4xi�1ðkÞ4mðkÞ þ 1 ¼ xiðkÞ4 *xi�1i ðkÞ

and aðiÞ 2 f0; 1g because

*xiiðkÞ4xiðkÞ ¼ mðkÞ þ 14xiþ1ðkÞ þ 14 *xiiþ1ðkÞ þ 1

Hence, we have

xiðkþ 1Þ ¼ xiðkÞ � aðiÞ þ aði � 1Þ ¼ xiðkÞ � aðiÞ

and so xiðkþ 1Þ 2 fmðkÞ;mðkÞ þ 1g again.
Thus, these two cases show that if xð0Þ 2 XI ; it must be the case that xðkÞ 2 XI for

all k: &

A.2. Proof of Lemma 2

To prove the first part of the hypothesis we show that xiðkþ 1Þ5mðkÞ for all i 2N and for all
k: For any time index k consider the possible change in each xiðkÞ: Since the number of vehicles
in an area i can only decrease when vehicles are transferred to area i þ 1; if coordinator i does
not have a corresponding partial event e

aðiÞ
i in eðkÞ; then we automatically have that xi�

ðkþ 1Þ5xiðkÞ5mðkÞ: Consider now the value of xiðkþ 1Þ when coordinator i does have
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a corresponding partial event e
aðiÞ
i 2 eðkÞ: Assume *xiiðkÞ > *xiiþ1ðkÞ (or else aðiÞ ¼ 0 and the

coordinator will still not transfer any vehicles)

xiðkþ 1Þ ¼ xiðkÞ � aðiÞ þ aði � 1Þ5xiðkÞ � aðiÞ

5 xiðkÞ �
*xiiðkÞ � *xiiþ1ðkÞ

2

� �

> xiðkÞ �
1

2
*xiiðkÞ �

1

2
*xiiþ1ðkÞ þ 1

� 	

5 xiðkÞ �
1

2
xiðkÞ �

1

2
xiþ1ðkÞ þ 1

� 	

¼
1

2
xiðkÞ þ

1

2
xiþ1ðkÞ � 1

5
1

2
mðkÞ þ

1

2
mðkÞ � 1 ¼ mðkÞ � 1

where the second inequality comes from condition (ii) of the enable function. The inequality
used in the third line is dbe5bþ 1: Due to the integer nature of the states, the result that
xiðkþ 1Þ > mðkÞ � 1 implies xiðkþ 1Þ5mðkÞ:

To prove the second part of the hypothesis, we similarly have that xiðkþ 1Þ4xiðkÞ4MðkÞ
unless coordinator i � 1 transfers vehicles into area i: Take a coordinator i � 1 which does have
a corresponding partial event e

aði�1Þ
i�1 2 eðkÞ and consider the value of xiðkþ 1Þ assuming *xi�1i�1�

ðkÞ > *xi�1i ðkÞ

xiðkþ 1Þ ¼ xiðkÞ � aðiÞ þ aði � 1Þ4xiðkÞ þ aði � 1Þ

4 xiðkÞ þ
*xi�1i�1ðkÞ � *xi�1i ðkÞ

2

� �

5 xiðkÞ þ
1

2
*xi�1i�1ðkÞ �

1

2
*xi�1i ðkÞ þ 1

� 	

4 xiðkÞ þ
1

2
xi�1ðkÞ �

1

2
xiðkÞ þ 1

� 	

¼
1

2
xiðkÞ þ

1

2
xi�1ðkÞ þ 1

4
1

2
MðkÞ þ

1

2
MðkÞ ¼MðkÞ þ 1

and xiðkþ 1Þ5MðkÞ þ 1 implies xiðkþ 1Þ4MðkÞ: Thus, the hypothesis has been proven. &

A.3. Proof of Lemma 3

Throughout the following argument, assume that mðkÞ does not increase. If it does, then the
hypothesis is proven trivially. Given the result of Lemma 2, this is equivalent to assuming that
mðkÞ remains constant.

In order to better illustrate the dynamics of the system model, we adopt the following
conventions for the remainder of this proof. Since the area–coordinator interconnection
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topology is a unidirectional ring, we will call the direction that vehicles are transferred along the
ring right, and the opposite direction left. Nodes with xiðkÞ ¼ mðkÞ will be referred to as holes
and those with xiðkÞ5mðkÞ þ 2 as hills. A group of nodes fi; i þ 1; . . . ; jg �N (where i may
equal j) such that xnðkÞ ¼ mðkÞ þ 1 for all i4n4j and such that neither xi�1ðkÞ nor xjþ1ðkÞ equal
mðkÞ þ 1 will be called a plateau with length given by ðj � i þ 1ÞmodN: The motivation for these
terms comes from visualizing the vehicles as unit sized blocks which are stacked according their
area (see Figure A1).

We first show that nðkÞ; the number of areas with only mðkÞ vehicles, is non-increasing. If nðkÞ
did increase, then at some time k there would be at least one coordinator i transferring vehicles
such that xiðkÞ5mðkÞ þ 1 and xiðkþ 1Þ ¼ mðkÞ (i.e. it would have to transfer so many vehicles
out of area i that that area went from being a hill or part of a plateau to being a hole). It would
also have to be the case that both xiþ1ðkÞ and xiþ1ðkþ 1Þ were greater than mðkÞ because (a) if
xiþ1ðkÞ ¼ mðkÞ then, as shown in the proof of Lemma 1, we would have aði þ 1Þ ¼ 0 and so any
transfer of vehicles from area i to area i þ 1 could at most change which areas have only mðkÞ
vehicles, but not the number of such areas, and (b) Lemma 2 tells us that xiþ1ðkÞ � aði þ
1Þ5mðkÞ so a positive value for aðiÞ would ensure that xiþ1ðkþ 1Þ5mðkÞ þ 1: We can then
borrow the intermediate inequality xiðkþ 1Þ > 1

2 xiðkÞ þ
1
2 xiþ1ðkÞ � 1 from the proof of Lemma 2

to see that xiðkþ 1Þ > mðkÞ; which is a contradiction.
To begin the proof that nðkÞ is eventually decreasing take any time index k and any state

xðkÞ =2 XI : Now, since xðkÞ =2 XI ; there exists areas %i and
%
i such that %i is a hill,

%
i is a hole, and

f%i þ 1; %i þ 2; . . . ;
%
i � 1g is a plateau with length not greater than N � 2: Assume for now that the

plateau is at least two areas long. Note that until coordinator %i or
%
i � 1 transfers some vehicles

(to areas %i þ 1 or
%
i; respectively), none of the other coordinators for the areas in f%i; %i þ 1; . . . ;

%
ig

will transfer any vehicles. This has already been shown for coordinator
%
i since x

%
iðkÞ ¼ mðkÞ; but

it also holds for the coordinators for the areas in the plateau (except coordinator
%
i � 1) because

*xiiðkÞ4xiðkÞ ¼ xiþ1ðkÞ4 *xiiþ1ðkÞ for i 2 f%i þ 1; . . . ;
%
i � 2g: Also note that until coordinator %i

transfers some vehicles out of area %i that area is guaranteed to remain a hill.
According to the second condition imposed by the set of allowed trajectories, EB; if

coordinator i does not transfer any vehicles from time index k to time index kþ B; then its

Figure A1. Illustration of terms.
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estimate *xiiðkþ BÞ is at least the value of xiðkÞ and its estimate *xiiþ1ðkþ BÞ is no more than
xiþ1ðk� BÞ: This means unless node %i transfers at least one vehicle to area %i þ 1 by time kþ B;
then

*x
%i
%iðkþ BÞ5x%iðkÞ5mðkÞ þ 2 > mðkÞ þ 1 ¼ x%iþ1ðkÞ5 *x

%i
%iþ1ðkþ BÞ

and then in accordance with the first condition of EB and the second condition of the enable
function g there must occur a partial event e

að%iÞ
%i

with positive að%iÞ within the next B time steps (i.e.
for some k0 such that kþ B4k04kþ 2B� 1). Therefore, by time kþ 2B we will have x%iþ1�
ðk0Þ5mðkÞ þ 2 and x%iðk

0Þ5mðkÞ þ 1 which means that area %i þ 1 becomes a hill without area %i
becoming a hole. In effect, a hill is forced to move right along the ring at least once every 2B time
steps.

By an argument parallel to the one above, unless node
%
i � 1 transfers a vehicle to area

%
i by

time kþ B; then

*x%
i�1

%
i�1ðkþ BÞ5x

%
i�1ðkÞ5mðkÞ þ 1 > mðkÞ ¼ x

%
iðkÞ5 *x%

i�1

%
i ðkþ BÞ

and so a partial event e
að
%
i�1Þ

%
i�1 with positive að

%
i � 1Þ must occur for some k00 such that kþ

B4k004kþ 2B� 1:We will then have x
%
i�1ðk

00Þ ¼ mðkÞ and x
%
iðk
00Þ ¼ mðkÞ þ 1 which means that

area
%
i � 1 has become a hole and area

%
i has been elevated to the level of a plateau. Here, we have

shown that a hole is forced to migrate to the left along the ring at least once every 2B time steps.
Given the forced motion of the hill and hole of interest we can see that the length of the

plateau must decrease by at least 2 by time index kþ 2B: We can now redefine %i and
%
i

appropriately (i.e. %i :¼ %i þ 1 and
%
i :¼

%
i � 1) and repeat the same argument as many times as

necessary in order to show that by no later than time index kþ 2BdðN � 2Þ=2e we have either
one or no areas in the plateau between %i and

%
i: In the case where the plateau is of zero length,

since coordinator
%
i will not transfer any vehicles, by some time k0 less than kþ 2B�

dðN � 2Þ=2e þ B� 1 we will have that *x
%i
%i
ðk0Þ5x%iðk

0 � BÞ5mðkÞ þ 2 and *x
%i

%
iðk
0 � BÞ ¼ x

%
iðk
0Þ ¼

mðkÞ and thus by some time k00 less than kþ 2BdðN � 2Þ=2e þ 2B� 1 coordinator %i will have a
corresponding partial event e

að%iÞ
%i
2 eðk00Þ with að%iÞ such that

14að%iÞ51
2
ð *x

%i
%iðk
00Þ � *x

%i

%
iðk
00ÞÞ þ 141

2
ðx%iðk

00Þ �mðkÞÞ þ 1

With this bound on að%iÞ; it is easily shown that x%iðk
00 þ 1Þ5mðkÞ þ 1 and x

%
iðk
00 þ 1Þ5mðkÞ þ 1

using the same logic as in Lemma 2. Hence, the hole is ‘filled in’ with vehicles from the hill, but
not so many that the hill becomes a hole itself. The same process occurs if the plateau has length
one because both coordinator %i and %i þ 1 ¼

%
i � 1 will be forced to transfer at least one vehicle to

areas %i þ 1 and
%
i; respectively, within the next 2B time steps. Either the hole first moves to area

%
i � 1 and then gets filled in from the hill in area %i (possibly simultaneously) or the hill first moves
to area

%
i � 1 and then fills in the hole in area

%
i (with the same guarantee that no new hole is

created when the old one is filled in). Every time that a hole gets filled in in this manner, the
number of holes obviously decreases by one. Since the entire process described above is
guaranteed to occur within dðN � 2Þ=2e þ 1 ¼ dN=2e iterations of length no greater than 2B; the
hypothesis is shown to be true for T ¼ 2BdN=2e: &

A.4. Proof of Theorem 1

Define mðkÞ and nðkÞ as in the previous proofs. Starting from any initial state xð0Þ 2 X and given
any event sequence E 2 EB defining a trajectory X ¼ ½xð0Þ; xð1Þ; . . .�; it follows from Lemma 3
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that when xðkÞ =2 XI and the minimum resource level mðkÞ remains constant, a process occurs
whereby a hole is eliminated within 2BdN=2e time steps. Since there can be no more than N � 1
holes, it follows that all the holes at the current minimum resource level must be eliminated
within 2BdN=2eðN � 1Þ time steps. Since the total number of vehicles in the system is equal to
some fixed finite value L; there exists a finite value *m which mðkÞ cannot exceed. Specifically,
*m ¼ bL=Nc: Since mð0Þ50; it must be the case that mðkÞ has increased to *m by time 2B *mdN=
2eðN � 1Þ and remains constant from that point on.

Again by Lemma 3, nðkÞ must keep decreasing. This time, however, once nðkÞ is reduced to
Nð *mþ 1Þ � L; those areas with more than *m vehicles must have *mþ 1 vehicles (or else

PN
i xiðkÞ

would not equal L). If there are more holes than Nð *mþ 1Þ � L; it will take at most another
2BdN=2eðN � 1Þ time steps for the excess holes to be eliminated. Thus, xðkÞ will enter the
invariant set XI no later than time T ¼ 2BdN=2eðN � 1ÞðbL=Nc þ 1Þ: &

A.5. Proof of Theorem 2

Proof
With the modification described by (7) and (8), we are no longer guaranteed that both a hill will
move right and a hole left every 2B time steps and thus decrease the length of the plateau
between them. This is because under (7) a hill at area N will not move to area 1 if area 1 is a
plateau, nor will a hole at area 1 move to area N if area N is a plateau. However, we are
guaranteed that if the plateau consists of at least one area, then either the hill or the hole will
move in every 2B time steps (because it is not possible to have both the hill at area N and the
hole at area 1 in this case). Also, when the hill and hole are at consecutive areas then even if they
are at areas N and 1 the hole will be filled in with 2B time steps. Thus, the holes are still
guaranteed to eventually get filled in, only it could take not just 2BdN=2e time steps to fill in a
hole as in the unmodified system, but up to 2BðN � 1Þ time steps (i.e. the plateau must decrease
in length by just one area every 2B time steps, the maximum length of a plateau is N � 2 areas,
and it could take another 2B time steps to fill in the hole after the plateau has been eliminated).
The maximum value for T is then taken from Theorem 1 by substituting 2BðN � 1Þ for
2BdN=2e: &

A.6. Proof of Theorem 3

Take any k such that the modified ring associated with the line topology has xðkÞ 2 XI : Let
H be the number of areas which are holes in the globally balanced state. These H holes
must eventually move left on the ring until areas 1 through H are holes and areas H þ 1
through N form a plateau, at which point all vehicle transfers stop because of rule (7).
Because of the way the modified ring is set up (with areas 1 and N in one of the end zones
of the line topology), when this state is reached either all the zones will have at most one
area which is a hole (i.e. if H4N=2) or at least one area which is a hole (i.e. if H5N=2).
In this situation the number of vehicles in any two zones can differ by no more than one,
so they are globally balanced. To form a worst-case bound on the number of time steps
it may take to reach this state, note when xðkÞ 2 XI ; the hole that will eventually be in
area 1 must be in some area i4N �H þ 1 at time k and thus must be in area 1 no later than
kþ 2BðN �HÞ: Similarly the hole that eventually winds up in area 2 must get there no
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later than kþ 2BðN �HÞ þ 2BðN �H þ 1Þ; etc. so the hole that is eventually in area H gets
there no later than (and thus the zones are globally balanced by) kþ 2B

PH�1
i¼0 ðN �H þ iÞ ¼

kþ 2BðHN � 1
2
HðH þ 1ÞÞ: This quadratic bound is maximized at both H ¼ N � 1 and H ¼ N

(although when H ¼ N the zones are actually balanced as soon as the areas area globally
balanced). Thus, when the areas are globally balanced at time step k; the zones will be globally
balanced no later than time step kþ 1

2
NðN � 1Þ: &

A.7. Proof of Lemma 4

To prove the set XP is invariant it suffices to show that if xiþ1ðkÞ=piþ1 � xiðkÞ=pi is less than
1=pi þ 1=piþ1 (true for all i 2N if and only if xðkÞ 2 XP) then xiþ1ðkþ 1Þ=piþ1 � xiðkþ 1Þ=pi is
as well. Take any i 2N and consider the value of xiþ1ðkþ 1Þ=piþ1 � xiðkþ 1Þ=pi:

Case 1: xiþ1ðkÞ=piþ1 � xiðkÞ=pi50: Here, it must be the case that *xiiþ1ðkÞ=piþ1 � *xiiðkÞ=pi50
because of the conditions imposed on the estimates by our assumption that x 2 X0 � XE :
This implies that aðiÞ ¼ 0 by the modified enable function and consequently we
have both xiðkþ 1Þ5xiðkÞ and xiþ1ðkþ 1Þ4xiþ1ðkÞ: Therefore, xiþ1ðkþ 1Þ=piþ1 � xiðkþ 1Þ=pi
will be no greater than xiþ1ðkÞ=piþ1 � xiðkÞ=pi; so it must still satisfy the local condition
of XP:

Case 2: xiþ1ðkÞ=piþ1 � xiðkÞ=pi50: In this case coordinator i may transfer vehicles from area i
to area i þ 1: In this case we make use of the upper limit on aðiÞ from (12) to show that the same
bound holds,

xiþ1ðkþ 1Þ

piþ1
�

xiðkþ 1Þ

pi
¼
xiþ1ðkÞ þ aðiÞ

piþ1
�

xiðkÞ � aðiÞ
pi

¼
pixiþ1ðkÞ � piþ1xiðkÞ þ ðpi þ piþ1ÞaðiÞ

pipiþ1

5
pixiþ1ðkÞ � piþ1xiðkÞ þ pið1� *xiiþ1ðkÞÞ þ piþ1ð1þ *xiiðkÞÞ

pipiþ1

¼
pi þ piþ1 þ piðxiþ1ðkÞ � *xiiþ1ðkÞÞ þ piþ1ð *x

i
iðkÞ � xiðkÞÞ

pipiþ1

4
pi þ piþ1

pipiþ1
¼

1

pi
þ

1

piþ1

where the last inequality follows from the fact that both xiþ1ðkÞ � *xiþ1i ðkÞ and *xiiðkÞ � xiðkÞ are
non-positive because x 2 XE : &

A.8. Proof of Theorem 4

To prove the existence of a finite convergence time T ; assume that for all k 2 N; xðkÞ =2 XP and
prove the hypothesis by contradiction. Lemma 4 showed us that if xiþ1ðkÞ=piþ1 � xiðkÞ=pi is less
than 1=pi þ 1=piþ1 then so is xiþ1ðkþ TÞ=piþ1 � xiðkþ TÞ=pi for all T 2 N (i.e. once a node
meets the local criterion of XP; it continues to do so from that point on). Thus, for our
assumption to be true, there must be at least one node i such that xiþ1ðkÞ=piþ1 � xi�
ðkÞ=pi51=pi þ 1=piþ1 for all k: This implies *xiiðkÞ=pi5 *xiiþ1ðkÞ=piþ1 for all k and this in turn
implies that aðiÞ ¼ 0 for all k (i.e. coordinator i will never transfer a vehicle from area i to area
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i þ 1 because it always thinks (correctly) that the weighted number of vehicles in area i þ 1
exceeds that of area i).

Now since xðkÞ 2 XL; we have an upper bound of L for xðkÞ; which means that there
exists Ti�151 such that aði � 1Þ ¼ 0 for all k > Ti�1: If not, then xiðkÞ would go to infinity as
vehicles continued to be added to area i without being removed by coordinator i: Similarly,
there must exist some time Ti�251 such that aði � 2Þ ¼ 0 for all k > Ti�2 if xi�1ðkÞ is to
remain bounded after time Ti�1: Indeed, there must be some time T051 such that aðiÞ ¼ 0 for
all i 2N and all k > T0: In other words, since coordinator i never transfers any vehicles
around the ring, there must be some finite time after which all coordinators cease to transfer
vehicles.

Using the conditions that define the allowed trajectories EB; if coordinator i þ 1
does not transfer any vehicles of area i for B time steps and coordinator i � 1 does not
transfer any vehicles into area i during the same period, then coordinator i’s estimate
of the number of vehicles in area i and area i þ 1 will be correct. Therefore, after time
T0 þ B all the estimated values in xCðkÞ will be correct and the only way for aðiÞ to be zero
for all i and all k > T0 þ B is to have xiðkÞ=pi4xiþ1ðkÞ=piþ1 for all i: However, it is a fact
that if no element of a set of real numbers is greater than the others, then they must all be
equal. This implies that xiþ1ðkÞ=piþ1 � xiðkÞ=pi ¼ 0 for all i 2N and all k > T0 þ B which is
less than 1=pi þ 1=piþ1: This means xðkÞ 2 XP for all k > T0 þ B; which contradicts our
assumption. Hence, there must exist some T51 such that xðTÞ 2 XP (and xðkÞ 2 XP

for all k5T follows from Lemma 1). This completes the proof that a finite convergence time
exists.

In order to derive a bound on the value of T we will require a few more definitions. Let a
group of nodes I �N that satisfies both the properties xiþ1=piþ1 � xi=pi51=pi þ 1=piþ1 for all
i 2 I and the property that there exists a unique node i 2 I such that i þ 1 =2 I be referred to as a
block. Simply speaking, a block is a group of consecutive areas that satisfy the local condition
used in the definition of XP and which is bounded on the left and right by an area which does
not (using the same convention for direction as in Figure 1). We will refer to the blocks that
contain the areas i 2N satisfying xi=pi > xiþ1=piþ1 as active blocks, which is to say that there is
at least one coordinator for an area in those blocks that will eventually transfer a vehicle to the
next area in the ring. Blocks without such an area are referred to as inactive. Let us also refer to
the area to the immediate right of a block as its leading edge.

We have already shown that nodes satisfying xiþ1=piþ1 � xi=pi51=pi þ 1=piþ1 at a particular
time continue to do so from then on, and thus blocks do not decrease in size. Active blocks
can expand to the right by raising the number of vehicles in their leading edge area
until it becomes part of the block, but active blocks may also become inactive before this
happens. Inactive blocks cannot become active again by themselves but may merge with an
active block on their left. So long as xðkÞ =2 XP; there must be one or more active blocks (because
xðkÞ =2 XP implies xiþ1=piþ15xi=pi for at least one area i) and these blocks must grow and merge
until xðkÞ enters XP (because they must keep transferring vehicles to the right and onto their
leading edges).

Let IðkÞ denote the evolution of a block that remains active for all k such that xðkÞ =2 XP:
In order to get a bound on the convergence time of the system model with proportional
balancing, we need to know how long it can take before this block has transferred
enough vehicles to its leading edge to turn that area into part of the block. Let us define
a value G ¼ maxid1þ pi=piþ1e to be a worst-case storage limit for nodes within a block.
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To illustrate the importance of this value, let us take a node i 2 IðkÞ and show what results when
G vehicles are added to it,
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And so we see that G is the minimum number of vehicles that must be transferred to an area i
in a block before we are guaranteed that it will (eventually) have to pass a vehicle on to area
i þ 1: Since this holds for all areas in a block, we can see that it may take the transfer of G2

vehicles to area i in order to eventually get coordinator i þ 1 to transfer one vehicle to area i þ 2:
Similarly, in order to add one vehicle to area i þ n; it might be the case that Gn vehicles must be
added to node i:

The above information will help us bound the maximum length of time that may pass before
the size of IðkÞmust increase by at least one node. Let in be the leading edge of block IðkÞ and let
nðkÞ ¼ jIðkÞj be its length. Because of the constant load condition imposed by xðkÞ 2 XL; the
imbalance xinþ1=pinþ1 � xin=pin can be no more than L=pinþ1 (i.e. if all the vehicles were on node
in þ 1). Therefore, no more than

L
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vehicles must be transferred to area in in order for it to become part of the block. For simplicity
we over bound this value as follows:
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Now assume that all of these vehicles have to come from the far left side of the block, i.e. from
area in � nðkÞ: In accordance with the previous discussion, coordinator in � nðkÞ may have to
transfer as many as GnðkÞ�1 vehicles to node in � nðkÞ þ 1 in order to eventually add one vehicle
to area in; and so it may have to transfer GnðkÞ�1dL=miniðpipiþ1Þe vehicles in order to eventually
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make area in part of the block. If node i � nðkÞ transfers vehicles at the minimum rate of one per
2B time steps (i.e. B time steps to guarantee its estimates are correct (and thus permit the
transfer of vehicles) and another B time steps to actually transfer a vehicle), than it could take
2BGnðkÞ�1dL=miniðpipiþ1Þe time steps to get all the necessary vehicles from node in � nðkÞ to node
in � nðkÞ þ 1: Making the simplifying assumption that all of these vehicles must arrive at area
in � nðkÞ þ 1 before coordinator in � nðkÞ þ 1 starts transferring any of the GnðkÞ�2dL=mini�
ðpipiþ1Þe vehicles it must transfer into area in � nðkÞ þ 2; we can see that the time it takes before
node in joins the block can be bounded from above by
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If we now make another extremely conservative assumption that it takes this long for a single
block to grow from one area to two, two areas to three, and so on until it goes from N � 1 area
to N (and ceases to be a block because xðkÞ is then in XP), then the convergence time of the
algorithm can be bounded from above as follows:
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Where the N � 1 term in the second to last line is dropped for simplicity because it is relatively
small in comparison to ðGN � GÞ=ðG� 1Þ for even modest values of N (since G52). This
completes the derivation of a specific bound on the convergence time of the system. &
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