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In this brief article, we consider an M-member ‘individual-based’ continuous time swarm model in an n-dimensional
space and extend the results in Gazi and Passino (2003) by specifying a general class of attraction/repulsion functions that
can be used to achieve swarm aggregation. These functions are odd functions that have terms for attraction and repulsion
acting in opposite directions in compliance with real biological swarms. We present stability analysis for several cases of
the functions considered to characterize swarm cohesiveness, size and ultimate motions while in a cohesive group.
Moreover, we show how the model can be extended for achieving formation control. Furthermore, we discuss how
the attraction repulsion functions can be modified to incorporate the finite body size of the swarm members. Numerical
simulations are also presented for illustration purposes.

1. Introduction

In recent years the topic of distributed (or coopera-

tive) coordination and control of multiple autonomous

agents has gained a lot of attention in the engineering

literature. This is mainly because of emergence of

engineering applications such as formation control of

multi-robot teams and autonomous air vehicles. For

example, in Giulietti et al. (2000) the authors describe

formation control strategies for autonomous air

vehicles, whereas Balch and Arkin (1998), Desai et al.

(2001), Leonard and Fiorelli (2001), Ögren et al. (2001)

and Olfati-Saber and Murray (2002) describe differ-

ent approaches for formation control of multi-agent

(multi-robot) teams. Similarly, Reif and Wang (1999)

consider a distributed control approach for groups of

robots, called the social potential fields method.

Our results in Gazi and Passino (2003) were for an

‘individual-based’ continuous time model for swarm

aggregations in n-dimensional space. There, we showed

that for the given model the individuals will form

a cohesive swarm in a finite time, and we obtained an

explicit bound on the swarm size. In Gazi and Passino

(2004) we used a similar model for a swarm moving in

an environment with an attraction/repulsion profile (or

nutrient/toxic substances environment) and showed

stable convergence of the swarm to more favourable

regions of the profile (i.e. the space). This article is an

extension of the results in Gazi and Passino (2003) to a

more general case. In Gazi and Passino (2003) our

results were based on a particular attraction–repulsion

function. Here, first we specify a class of attraction/

repulsion functions which result in swarm aggregation.

One of the characteristics of these functions is that they

are odd functions which contain terms of attraction and

repulsion between the individuals. As a difference from

the attraction/repulsion function considered in Gazi and

Passino (2003), the class presented here can have

unbounded repulsion in order to prevent the individuals

occupying the same space. We present stability analysis

for several cases to characterize swarm cohesiveness, size

and ultimate motion. We also show how with a simple

modification the model can be extended/generalized to

formation control, an issue not considered in Gazi and

Passino (2003). Moreover, we discuss how the attrac-

tion/repulsion functions can be modified in order to

incorporate a finite body size or ‘safety’ area for the

swarm members, another issue not considered in Gazi

and Passino (2003). This leads to swarm aggregation

with more uniform density and size which scales

with the number of individuals, similar to swarms in

nature.

Our model is essentially a kinematic model for

swarm aggregations. However, it can be viewed as an

approximation for some swarms with point mass

dynamics with negligible mass such as bacteria as was

discussed in Gazi and Passino (2004) for foraging

swarms. Moreover, given agents with predefined vehicle

dynamics, it can serve as a virtual system generating

reference trajectories. In other words, it can serve as

a virtual system which the vehicles need to track

and the control algorithms for that can be designed

using variety of techniques including sliding mode

control (Gazi 2003).

The inter-individual interactions in our model are

based on artificial potential functions, a concept

that has been used extensively for robot navigation

and control (Khatib 1986, Rimon and Koditschek

1992) and were first used for multi-agent coordination

in Reif and Wang (1999). However, we get our primary
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inspiration from the literature on swarming in math-
ematical biology (Warburton and Lazarus 1991,
Grünbaum and Okubo 1994). (For a more complete
list of articles on swarming, see Gazi and Passino
(2003, 2004)). Note also that our results are similar in
nature to the formation stability studies in the literature;
however, the work here is also different in the sense that
we consider not only formation control but also define
cohesiveness independent from the relative positions of
the agents as the main stability property and obtain
results in this framework. The model and the set-up in
} 2 is similar in nature to other models using artificial
potential fields such as Reif and Wang (1999) and
Leonard and Fiorelli (2001). However, note that
in Reif and Wang (1999) no stability analysis was
given. In Leonard and Fiorelli (2001), on the other
hand, they have point mass dynamics for each agent,
study group control using ‘virtual leaders’, and limit
the analysis to two- or three-dimensional space, whereas
here we consider a general n-dimensional space with
different attraction/repulsion functions. Note also that
our results were obtained independently from the ones
in Leonard and Fiorelli (2001). Last, we would like to
also mention that recently there have been important
studies on swarming incorporating nearest-
neighbours communications and obstacle avoidance
including the work by Olfati-Saber and
Murray (2003) and Tanner et al. (2003 a, b). An initial
version of the current article can be found in Gazi and
Passino (2002).

2. The class of attraction/repulsion functions

We use the same swarm model as in Gazi
and Passino (2003), where we consider a swarm of M
individuals in an n-dimensional Euclidean space.
The position of individual i is described by xi 2 R

n.
We assume synchronous motion and no time delays,
i.e. all the individuals move simultaneously and know
the exact relative position of all the other individuals.
The motion dynamics evolve in continuous time with the
equation of motion of individual i given by

_xxi ¼
XM

j¼1, j 6¼i

gðxi � xjÞ, i ¼ 1, . . . ,M ð1Þ

where g: Rn
! R

n represents the function of attraction
and repulsion between the individuals. Note that in the
above model we consider the individuals as points and
ignore their dimensions. Later we will show how it can
be modified in order to handle individuals with finite
body size.

Consider functions g(�) of type

gðyÞ ¼ �y gaðkykÞ � grðkykÞ½ � ð2Þ

where ga: R
þ
! R

þ represents (the magnitude of)
the attraction term, whereas gr: R

þ
! R

þ represents
(the magnitude of) the repulsion term, and
kyk ¼

ffiffiffiffiffiffiffiffi
y>y

p
is the Euclidean norm. We assume that

on large distances attraction dominates, that on short
distances repulsion dominates, and that there is a unique
distance at which the attraction and the repulsion
balance. In other words we assume that g(�) satisfies

(A1) There exist a unique distance � at which we have
gað�Þ ¼ grð�Þ. Moreover, we have gaðkykÞ >
grðkykÞ for kyk > � and grðkykÞ > gaðkykÞ for
kyk < �.

One issue to note here is that for the attraction/repulsion
functions g(�) defined as above we have gðyÞ ¼ �gð�yÞ.
In other words, the above g(�) functions are odd (and
therefore symmetric with respect to the origin). This is
an important feature of the g(�) functions that leads to
aggregation behaviour. Note also that the combined
term �ygaðkykÞ represents the actual attraction, whereas
the combined term ygrðkykÞ represents the actual
repulsion, and they both act on the line connecting the
two interacting individuals, but in opposite directions.
The vector y determines the alignment (i.e. it guarantees
that the interaction vector is along the line on which y is
located), the terms gaðkykÞ and grðkykÞ affect only the
magnitude, whereas their difference determines the
direction (along vector y).

It has been observed in nature that there are
attraction and repulsion forces (with attraction having
longer range than repulsion) between individuals
that lead to the swarming behaviour (Warburton
and Lazarus 1991, Grünbaum and Okubo 1994). For
example, for fish attraction is generally based on vision
and has a long range, whereas repulsion is based on the
pressure on the side of the fish and has a short range
(but is stronger than attraction). Moreover, it has been
observed that both attraction and repulsion are always
‘on’ and the resulting behaviour is due to the interplay
between these two forces, and there is a distance (called
the ‘equilibrium distance’ in biology) at which attraction
and repulsion between two individuals balance. Note
that our model captures this by having attraction and
repulsion terms in the motion equation acting in oppo-
site directions, and the ‘equilibrium distance’ is the
unique distance � at which we have gað�Þ ¼ grð�Þ.

The next assumption that we have about the
attraction and repulsion functions is

(A2) There exist corresponding functions Ja: R
þ
!

R
þ and Jr: R

þ
! R

þ such that

ryJaðkykÞ ¼ ygaðkykÞ and ryJrðkykÞ ¼ ygrðkykÞ:

In other words, we choose gaðkykÞ and grðkykÞ such that
these conditions are satisfied. Note that the functions
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JaðkykÞ and JrðkykÞ can be viewed as potentials of
attraction and repulsion, respectively, created around
each individual. Then, the above assumption restricts
the motion of the individuals toward each other along
the gradient of these potentials (i.e. along the combined
gradient field of these potentials). For simplicity (and
easy reference) we will denote with G the set of attrac-
tion/repulsion functions g(�) satisfying Assumptions
(A1) and (A2). An example of an attraction/repulsion
function that satisfies the above conditions is the
function that we used in Gazi and Passino (2003),
which is

gðyÞ ¼ �y a� b exp �
kyk2

c

 !" #
: ð3Þ

With the above in mind, note that the motion of each
individual is given by

_xxi ¼ �
XM

j¼1, j 6¼i

rxiJaðkx
i
� xjkÞ � rxiJrðkx

i
� xjkÞ

� �
ð4Þ

for all i ¼ 1, . . . ,M. Note that _xxi is along the negative
gradient and leads to a motion towards a minimum.
This together with the assumptions on gað�Þ and grð�Þ
imply that we should choose the attraction and repul-
sion potentials such that the minimum of Jaðkx

i
� xjkÞ

occurs on or around kxi � xjk ¼ 0, whereas the mini-
mum of �Jrðkx

i
� xjkÞ (or the maximum of Jrðkx

i
�

xjkÞ) occurs on or around kxi � xjk ! 1, and the mini-
mum of the combined Jaðkx

i
� xjkÞ � Jrðkx

i
� xjkÞ

occurs at kxi � xjk ¼ �. In other words, at kxi � xjk ¼

� the attraction/repulsion profile between two interact-
ing individuals has a global minimum. Note, however,
that when there are more than two individuals the
minimum of the combined profile does not necessarily
occur at kxi � xjk ¼ � for all j 6¼ i. Moreover, there
exists a family of minima. If we view Jaðkx

i
� xjkÞ and

�Jrðkx
i
� xjkÞ as potential energy profiles due to the

relative positions of the individuals xi and xj, then
their motions are towards a minimum energy
configuration.

Swarming in nature normally occurs in a distributed
fashion. In other words, there is no leader (or boss) and
each individual decides independently its direction of
motion. Our model captures this in its simplest
form by having separate equations of motion of each
individual that do not depend on an external variable
(such as a command from a boss or another agent).
In contrast, an individual’s motion depends only on
the position of the individual itself and its observation
of the positions (or relative positions) of the other
individuals. Note also that as was discussed in Gazi
and Passino (2004) for foraging swarms our swarm
model can be viewed as an approximation of a model

with swarm members which have point mass dynamics
for some organisms such as bacteria. In particular, for
individuals which move based on the Newton’s
law mia

i
¼ F i with negligible mass (i.e. mi � 0) moving

in an environment with high viscosity it can be shown
that the model reduces to the model that we consider
here with the appropriate choice of the force (control)
input F i. For more details see Gazi and Passino (2004).

Another way to view the motion equations is as if
the swarm members in the model presented here are
virtual agents generating trajectories for real agents to
follow as is sometimes done in formation control. Then,
given agents with predefined vehicle dynamics, one can
design the control inputs to these agents so that to
follow the trajectories generated by our model
(provided that aggregation is the desired behaviour).
For example, given mobile robots with fully actuated
dynamics Miðx

i
Þ €xxi þ fiðx

i, _xxiÞ ¼ ui under some bounded-
ness conditions it is possible to design a sliding mode
controller in order to force them to follow the gradient
of the combined potential and therefore to obey the
motion in (4). Some work in this direction was already
done in Gazi (2003).

There are several reasons for considering the class of
g(�) of form of (2). First of all, we show that the results
in Gazi and Passino (2003) are not limited to the g(�)
function in (3) and will hold for a class of functions
satisfying certain properties. Moreover, we allow for
unbounded repulsions in g(�) in (2) leading to avoidance
of possible collisions between the individuals.
Furthermore, we show that with appropriate choice of
g(�) from within the class considered here, it is possible
to incorporate a finite body size or safety area for each
individual and therefore achieve a ‘more uniform’
swarm density or a swarm size scaling with the number
of individuals as seen in real biological swarms.

As in Gazi and Passino (2003) define the centre of
the swarm as �xx ¼ 1=M

PM
i¼1 x

i. Note that since the func-
tions g(�) are odd, and therefore symmetric with respect
to the origin, the centre �xx of the swarm is stationary for
all t. This is stated formally in the following lemma.

Lemma 1: The centre �xx of the swarm described by the
model in (1) with an attraction/repulsion function gð�Þ 2 G

is stationary for all t.

Proof: The time derivative of centre is given by

_�xx�xx ¼ �
1

M

XM
i¼1

XM
j¼1, j 6¼i

gaðkx
i
� x j

kÞ � grðkx
i
� x j

kÞ
� �

ðxi � x j
Þ

¼ �
1

M

XM�1

i¼1

XM
j¼iþ1

gaðkx
i
� x j

kÞ � grðkx
i
� x j

kÞ
� �

ðxi � x j
Þ

�
þ gaðkx

j
� xikÞ � grðkx

j
� xikÞ

� �
ðx j

� xiÞ
�
¼ 0

œ
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Now, let us define the state x of the system as the
vector of the positions of the swarm members
x ¼ ½x1>, . . . , xM>

�
>. Note that x 2 R

nM . Let the invar-
iant set of equilibrium (or stationary) points be
Oe ¼ fx: _xx ¼ 0g: Note that x 2 Oe implies that _xxi ¼ 0
for all i ¼ 1, . . . ,M, implying that all individuals stop.

Theorem 1: Consider the swarm described by the model
in (1) with an attraction/repulsion function gð�Þ 2 G. For
any xð0Þ 2 R

nM , as t ! 1 we have xðtÞ ! Oe.

Proof: We choose the (generalized) Lyapunov function
J: RnM

! R defined as

JðxÞ ¼
XM�1

i¼1

XM
j¼iþ1

Jaðkx
i
� xjkÞ � Jrðkx

i
� xjkÞ

� �
: ð5Þ

Taking the gradient of J(x) with respect to the position
xi of individual i we obtain

rxi JðxÞ ¼
XM

j¼1, j 6¼i

rxiJaðkx
i
� xjkÞ �rxi Jrðkx

i
� xjkÞ

� �
¼ � _xxi

ð6Þ

which follows from (4).
Now, taking the time derivative of the Lyapunov

function along the motion of the system we obtain

_JJðxÞ ¼ rxJðxÞ½ �
> _xx ¼

XM
i¼1

rxiJðxÞ
� �>

_xxi ¼
XM
i¼1

� _xxi
� �>

_xxi

¼ �
XM
i¼1

k _xxik2 � 0

for all t implying decrease in J(x) unless _xxi ¼ 0 for all
i ¼ 1, . . . ,M. If the function g(�) is chosen such that the
set defined as O0 ¼ fx: JðxÞ � Jðxð0ÞÞg is compact, then
using the LaSalle’s invariance principle we can conclude
that as t ! 1 the state x(t) converges to the largest
invariant subset of the set defined as

O1 ¼ fx 2 O0 : _JJðxÞ ¼ 0g ¼ fx 2 O0 : _xx ¼ 0g � Oe:

Note, however, that O0 may not necessarily be compact
for every gð�Þ 2 G, which may happen if the correspond-
ing J(�) is not radially unbounded. Therefore, the fact
that _JJðxÞ � 0 does not, in general, directly imply bound-
edness. Note, however, that in our swarm for every indi-
vidual i we have rxi JðxÞ

� �>
_xxi ¼ �k _xxik2 � 0, which

implies that every individual moves in a direction of
decrease of J(x). Therefore, the set defined as
Ox ¼ fxðtÞ : t � 0g � O0 is compact and we still can
apply LaSalle’s invariance principle arriving at the
conclusion that as t ! 1 the state x(t) converges to
the largest invariant subset of the set defined as

O2 ¼ fx 2 Ox : _JJðxÞ ¼ 0g ¼ fx 2 Ox : _xx ¼ 0g � Oe:

Since in both of the above cases both O1 and O2 are
invariant themselves and satisfy O1 � Oe and O2 � Oe,
we have xðtÞ ! Oe as t ! 1 and this concludes the
proof. œ

Note that in some engineering swarm applications
such as uninhabited air vehicles (UAVs) individuals
never stop. Therefore, the results here may seem not
to be applicable. However, in some biological examples
such as fruiting body formation by bacteria or engi-
neering applications in which a group of agents are
required to ‘gather together’ to be loaded on a vehicle
and transferred to a new area it is possible (or desirable)
to have the agents aggregate and stop. Moreover, note
also that the results here are based on relative inter-
individual interactions and describe only aggregation.
It is possible to extend them to mobile swarms by having
a motion (or drift) term in the equation of motion
together with the aggregation term described here.
As a result, if all the individuals share exactly the
same motion term (e.g. a predefined speed profile or
trajectory of motion), then we will achieve a cohesive
swarm moving collectively since the aggregating term
would decay as they would arrange in the minimum
energy configuration (relative arrangement) as the
above result suggests. In other words, the results
here will guarantee cohesiveness during motion. For
example, in Gazi and Passino (2004) it was shown how
the model of a swarm moving in a ‘plane’ profile (i.e.
environment) of nutrients of toxic substances can be
reduced to the model in Gazi and Passino (2003) (and
therefore the one here) with appropriate definition of the
error variables.

Note that our approach is distributed in a sense that
the individuals do not have to know the global
Lyapunov or potential energy function J(x) given
in (5). Instead, it is sufficient if they know the local or
their internal Lyapunov or potential energy function
defined as

JiðxÞ ¼
XM

j¼1, j 6¼i

Jaðkx
i
� xjkÞ � Jrðkx

i
� xjkÞ

� �

since

_xxi ¼ �rxiJiðxÞ ¼ �rxiJðxÞ

where J(x) can be written as JðxÞ ¼ 1
2

PM
i¼1 JiðxÞ. Note

also that for implementation each individual i may,
instead of using actual position difference ðxi � xjÞ
to the other individuals j 6¼ i, use some observation or
estimate êeij ¼ ðxi � x̂xjÞ of the position errors in deter-
mining its motion. However, the stability for this
case needs to be investigated further. For initial results
on this topic see Passino (2003) and Liu and Passino
(2004).
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The result in Theorem 1 is important. It proves
that asymptotically the individuals will converge to
a constant position and therefore to a constant relative
arrangement. However, it does not say anything
about where these positions will be. We conjecture
that given the initial positions of the individuals
xið0Þ, i ¼ 1, . . . ,M, the final configuration (i.e. the
relative arrangement) to which the individuals in the
swarm will converge is unique. However, it is not easy
to find a direct relation between x(0) and the final
position x(1). This is an important problem, since it
will solve the formation control problem for autono-
mous agents obeying our model. Then, given any
desired formation, one would need to choose the initial
conditions such that this formation is achieved.
Unfortunately, it will still have a shortcoming since
in formation control it is desirable that the formation
is achieved independently of initial conditions. Later
we will show how with a little modification the model
can also be used for formation control.

One disadvatage of Theorem 1 is that it does not
specify any bound on the resulting size of the swarm.
Therefore, we need to investigate this issue further.

3. Swarm cohesion analysis

In this section, we will try to find bounds on the
ultimate swarm ‘size’. To this end, we define the distance
between the position xi of individual i and the centre �xx
of the swarm as ei ¼ xi � �xx. The ultimate bound on the
magnitude of ei will quantify the size of the swarm.
Taking the time derivative of ei we have
_eei ¼ _xxi � _�xx�xx ¼ _xxi, since from Lemma 1 we have _�xx�xx ¼ 0.
Now, let the Lyapunov function for each individual be
Vi ¼

1
2
keik2 ¼ 1

2
ei>ei. Taking the time derivative of Vi we

obtain

_VVi ¼ _eei>ei ¼ �
XM

j¼1, j 6¼i

gaðkx
i
� xjkÞ

�
�grðkx

i
� xjkÞ

�
ðxi � xjÞ>ei: ð7Þ

Below, we analyse the case in which we have a linear
attraction and a constant or bounded repulsion.

3.1. Linear attraction and bounded repulsion case

In this section we consider the special case in which

gaðkykÞ ¼ a

for some finite positive constant a > 0 and for all y (as is
the one in (3)), which corresponds to linear attraction
since the actual attraction is given by ygaðkykÞ ¼ ay.
Incorporating the value of gaðkx

i
� xjkÞ in (7) we obtain

_VVi ¼�a
XM

j¼1, j 6¼i

ðxi � xjÞ>ei þ
XM

j¼1, j 6¼i

grðkx
i
� xjkÞðxi � xjÞ>ei:

Now, note thatXM
j¼1, j 6¼i

ðxi � xjÞ ¼
XM
j¼1

ðxi � xjÞ ¼ Mxi �
XM
j¼1

xj

¼ Mxi �M �xx ¼ Mei: ð8Þ

Substituting this in the _VVi equation we obtain

_VVi ¼ �aMkeik2 þ
XM

j¼1, j 6¼i

grðkx
i
� xjkÞðxi � xjÞ>ei

� �aMkeik keik �
1

aM

XM
j¼1, j 6¼i

grðkx
i
� xjkÞkxi � xjk

" #

which implies that _VVi < 0 as long as
keik > 1=aM

PM
j¼1, j 6¼i grðkx

i
� xjkÞkxi � xjk. This, on

the other hand, implies that as t ! 1 asymptotically
we have

keik �
1

aM

XM
j¼1, j 6¼i

grðkx
i
� xjkÞkxi � xjk:

Note that this equation holds for any type of repulsion,
provided that the attraction is linear. Now, assume that
the repulsion is constant or bounded (as is the one in
(3)), i.e. assume that

grðkx
i
� xjkÞkxi � xjk � b

for some finite positive constant b. Then, we conclude
that asymptotically for this case we will have

keik �
bðM � 1Þ

aM
<

b

a
¼
4
"

which provides a bound on the maximum ultimate
swarm size. Moreover, noting that for keik � " we
have _VVi � �akeik2 ¼ �2aVi, one can show that we will
have keik < " for all i in a finite time bounded by

�tt¼
4
max
i2S

�
1

2a
ln

"2

2Við0Þ

 !( )

where S is the set of all individuals S ¼ f1, . . . ,Mg.

Remark: Note that if instead of having gaðkykÞ ¼ a,
we had g(�) such thatXM

j¼1, j 6¼i

gaðkx
i
� xjkÞðxi � xjÞ>ei � �keik2

for some � > 0 and for all i ¼ 1, . . . ,M, then, with a
similar analysis to above, we would be able to conclude
that asymptotically we have

keik �
1

�

XM
j¼1, j 6¼i

grðkx
i
� xjkÞkxi � xjk �

bðM � 1Þ

�
:

Above we could establish an explicit bound on the
swarm size for the case when the attraction is linear and
the repulsion is bounded. This is a direct generalization of
the results in Gazi and Passino (2003). Next, we will ana-
lyse the case for which we have an unbounded repulsion.
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3.2. Linearly bounded from below attraction and
unbounded repulsion

By linearly bounded from below attraction we mean
the case in which we have

gaðkx
i
� xjkÞ � a ð9Þ

for some finite positive constant a and for all kxi � xjk.
For the repulsion functions, on the other hand, we will
consider the unbounded functions satisfying

grðkx
i
� xjkÞ �

b

kxi � xjk2
: ð10Þ

An example of attraction/repulsion function g(�) satisfy-
ing the above assumptions is shown in figure 1(a).

First, we define the cumulative (or overall)
Lyapunov function as V ¼

PM
i¼1 Vi and note that since

at equilibrium _eei ¼ _xxi ¼ 0, we have also _VVi ¼ 0 for all
i and therefore _VV ¼ 0. In other words, we have

_VV ¼�
XM
i¼1

XM
j¼1, j 6¼i

gaðkx
i
� xjkÞ � grðkx

i
� xjkÞ

� �
ðxi � xjÞ>ei

¼�
XM�1

i¼1

XM
j¼iþ1

gaðkx
i
� xjkÞ � grðkx

i
� xjkÞ

� �
ðxi � xjÞ>ei

�

þ gaðkx
j
� xikÞ

�
�grðkx

j
� xikÞ

�
ðxj � xiÞ>ej

�
¼�

XM�1

i¼1

XM
j¼iþ1

gaðkx
i
� xjkÞ � grðkx

i
� xjkÞ

� �
kxi � xjk2

¼�
1

2

XM
i¼1

XM
j¼1, j 6¼i

gaðkx
i
� xjkÞ

�
�grðkx

i
� xjkÞ

�
kxi � xjk2

¼ 0

where to obtain the third equality we used the fact that
for any � 2 R we have

�ðxi � xjÞ>ei þ �ðxj � xiÞ>ej ¼ �kxi � xjk2 ð11Þ

which is true since xi � xj ¼ ei � e j. From the above
equation we obtain

XM
i¼1

XM
j¼1, j 6¼i

gaðkx
i
� xjkÞkxi � xjk2

¼
XM
i¼1

XM
j¼1, j 6¼i

grðkx
i
� xjkÞkxi � xjk2: ð12Þ

This equation, in a sense, says that at equilibrium the
attraction and repulsion will balance.

Remark: Note that the cumulative Lyapunov function
V is only one way to quantify the cohesion/dispersion of
the swarm. In other words, instead of V, we could
equally well choose

�VV ¼
1

2

XM�1

i¼1

XM
j¼iþ1

kxi � xjk2

which would quantify the interindividual distances
instead of the distances to the centre. In some applica-
tions, where the centre is moving or the relative motion
or positions to each other of the individuals is more
important than their relative motion to a predefined
point such as their centre, it may be better to use
a function like �VV . In fact, we arrive at the same conclu-
sion using �VV since it can be shown that

_�VV�VV ¼ �
M

2

XM
i¼1

XM
j¼1, j 6¼i

gaðkx
i
� xjkÞ

�
�grðkx

i
� xjkÞ

�
kxi � xjk2 ¼ M _VV :
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Figure 1. Example g(�) functions. (a) Linear attraction and unbounded repulsion. (b) Constant attraction and unbounded
repulsion.
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One issue to note here is that, if we had only attrac-
tion (i.e. if we had grðkx

i
� xjkÞ 	 0 for all i and j, j 6¼ i),

then the above equation would imply that the swarm
shrinks to a single point, which is the centre �xx. In
contrast, if we had only repulsion (i.e. if we had
gaðkx

i
� xjkÞ 	 0 for all i and j, j 6¼ i), then the swarm

would disperse in all directions away from the centre �xx
towards infinity. Having the attraction dominating
at large distances prevents the swarm from dispersing,
whereas having the repulsion dominating on short
distances prevents it from collapsing to a single point,
and the equilibrium is established in between.

Note that since the actual attraction term is ygaðkykÞ,
we have gaðkx

i
� xjkÞkxi � xjk � akxi � xjk for this case

(and hence the name linearly bounded from below
attraction). Using this fact, we have

a
XM
i¼1

XM
j¼1, j 6¼i

kxi � xjk2 �
XM
i¼1

XM
j¼1, j 6¼i

grðkx
i
� xjkÞkxi � xjk2:

Similarly, from the bound on grðkx
i
� xjkÞ we know

that grðkx
i
� xjkÞkxi � xjk2 � b and obtain

XM
i¼1

XM
j¼1, j 6¼i

grðkx
i
� xjkÞkxi � xjk2 � bMðM � 1Þ:

Now, note that using the fact that
ei ¼ 1=M

PM
j¼1ðx

i
� xjÞ (see (8)) and the equality in

(11) for the sum of the squares of the error one can
show that

XM
i¼1

keik2 ¼
1

2M

XM
i¼1

XM
j¼1, j 6¼i

kxi � xjk2

holds.
Combining these equations with (12) we obtain

2aM
XM
i¼1

keik2 � bMðM � 1Þ

which implies that at equilibrium we have

1

M � 1

XM
i¼1

keik2 �
b

2a
:

Then, for the root mean square of the error we have

erms ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

keik2

vuut �

ffiffiffiffiffi
b

2a

r
¼
4
"rms ð13Þ

which establishes a bound on the swarm size and implies
that the swarm will be cohesive. Note also that this
inequality shows that keik will be ultimately bounded by

keik �

ffiffiffiffiffiffiffiffi
bM

2a

r
¼ "rms

ffiffiffiffiffi
M

p

for all t. In other words, no swarm member can diverge
to infinity.

3.3. Almost constant attraction and unbounded
repulsion

In this section we consider the attraction functions
that satisfy gaðkx

i
� xjkÞ ! 0 as kxi � xjk ! 1.

However, we assume also that

gaðkx
i
� xjkÞ �

a

kxi � xjk
: ð14Þ

For the repulsion function we use the same type
of functions as in the previous section, i.e. functions
satisfying (10). An example of attraction/repulsion
function g(�) satisfying the above assumptions (with a
constant attraction) is shown in figure 1(b).

For this case we have

a
XM
i¼1

XM
j¼1, j 6¼i

kxi � xjk �
XM
i¼1

XM
j¼1, j 6¼i

grðkx
i
� xjkÞkxi � xjk2:

Also, since we have

keik ¼
1

M

XM
i¼1

ðxi � xjÞ

�����
����� �

1

M

XM
i¼1

kxi � xjk

(which is obtained using the equality in (8)) in a similar
manner to earlier we obtain

aM
XM
i¼1

keik � bMðM � 1Þ

which, on the other hand, implies that

1

M � 1

XM
i¼1

keik �
b

a
:

In other words, the average of the errors satisfies

eavg ¼
4 1

M

XM
i¼1

keik �
b

a
¼
4
"avg,

at equilibrium, implying cohesiveness of the swarm.
Also, we can deduce from this inequality that for this
case also keik will be ultimately bounded by the bound

keik �
Mb

a
¼ M"avg:

One shortcoming of the results obtained so far
is that the bounds obtained (i.e. ", "rms, and "avg) are
independent of the number of individuals M.
Therefore, it could be the case that as the number of
individuals increase the density of the swarm may
also increase. This might happen even for the case with
unbounded repulsion, which guarantees that the indi-
viduals will not occupy the same point, but does not
necessarily guarantee uniform swarm density. Such a
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behaviour will not be consistent with real biological
swarms. By creating a private or safety area for each
individual, it is possible to account for the finite body
sizes of the individuals and also to achieve swarm size
which increases with the number of individuals imply-
ing, in a sense, more uniform swarm density. This will be
discussed in the next section.

4. Individuals with finite body size

In this section, we will discuss how the model can be
modified in order to handle finite body size or some
private or safety area for the swarm members. In other
words, the swarm members will be viewed as entities
with finite body size instead of points without dimen-
sions. In particular, we will consider individuals which
are hyperspheres in the n-dimensional space.

Assume that all the individuals have the same size
and let � be the radius of the hypersphere representing
the body size or private (safety) area of each agent.
Let xi be the centre of the hypersphere for individual i.
Then, in order for two individuals i and j not to collide
we need kxi � xjk > 2�. Note that this is not guaranteed
to be the case given the attraction/repulsion functions
considered in the preceding sections. The main reason
for that is the fact that for the repulsion function grð�Þ
we have

lim
kxi�xjk!0þ

grðkx
i
� xjkÞkxi � xjk ¼ 1

which, since as kxi � xjk ! 0þ the repulsion becomes
unbounded, prevents the individuals from occupying
the same space, i.e. prevent collisions for point-
individuals. However, it is not suitable for individuals
with finite body size. Therefore, in order to incorporate
for the body size or to create a safety area of the
individuals, the repulsion function could be modified
to be of ‘hard-limiting’ type satisfying

lim
kxi�xjk!2�þ

grðkx
i
� xjkÞkxi � xjk ¼ 1

where � is the parameter representing the radius of
the safety area or the body size of the individuals as
mentioned above.

Note that with the assumption that initially all the
swarm members are sufficiently far apart from each
other, i.e. that we have kxið0Þ � xjð0Þk > 2� for all
ði, jÞ, j 6¼ i, this type of repulsion function will
guarantee that kxiðtÞ � xjðtÞk > 2� is satisfied for all
t and all ði, jÞ, j 6¼ i.

One issue we would like to emphasize is that for this
case the results (i.e. the derived bounds on the swarm
size) in the preceding sections will not hold. In fact, the
hard-limiting repulsion functions will guarantee that
the swarm size will scale with the number of individuals
and therefore will result in a swarm density which is,

in a sense, more uniform. To see this first consider the
two dimensional space R

2. The private area of an indi-
vidual is a disk with centre xi and radius � with occupa-
tion area equal to Vai ¼ ��2. Given the fact that
kxiðtÞ � xjðtÞk > 2� for all t and all ði, jÞ, j 6¼ i and the
safety areas of the swarm members are disjoint, the total
area occupied by the swarm will be Vtas ¼ M��2.

Assume that all the swarm members are ‘squeezed’
cohesively as close as possible in an area (a disk) of
radius r around the swarm centre �xx. Then, we have

�r2 � M��2

from which we obtain that a lower bound on the
radius of the smallest circle which can enclose all the
individuals is given by

rmin ¼ �
ffiffiffiffiffi
M

p
:

This, on the other hand, implies that in R
2 the

swarm will have a size which is always greater than
�
ffiffiffiffiffi
M

p
. This is important because it shows that the

lower bound on the swarm size depends on M, implying
that the swarm size will scale with the number of
individuals. In particular, even the size of the smallest
possible swarm will be greater than rmin because of the
unoccupied area ‘lost’ between the swarm members. The
most compact swarm is achieved when the individuals
are located on a regular grid with the grid points as the
edges of equilateral triangles with edge size equal to 2�
and the total of (M� 2) triangles. Defining � as the
density (the number of individuals per unit area/volume)
of the swarm the above inequalities imply that

� �
1

��2
:

In other words, the density of the swarm is upper
bounded implying that the swarm cannot become
arbitrarily dense.

With similar analysis to the above, we can show
that on R

n for any n the lower bound on the swarm
size is given by

rmin ¼ �
ffiffiffiffiffi
M

n
p

:

This bound implies that as the dimension n of the state
space gets larger, the relative effect of M on the swarm
size gets smaller, which is an intuitively expected result.
As in the two-dimensional case, the smallest swarm
occurs when the individuals are placed on a regular
grid where each individual is located at the vertex of
an equilateral shape (triangle in R

2, tetrahedron in R
3,

etc.). Similar to the n¼ 2 case it can be shown that the
density of the swarm is upper bounded by

� �
�ðnÞ

�n
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where �(n) is a constant for a given n. In other words,
it depends only on the dimension n of the state space.

Having relatively uniform swarm density is an
important characteristic of real biological swarms and
therefore, desired characteristic of mathematical models
of swarms. The discussion in this section shows that
incorporation of hard-limiting type of repulsion func-
tions will lead to a behaviour which is more consistent
with biology. Moreover, in engineering applications
creating a safety area around each individual might be
more effective in avoiding collisions.

5. Extension to formation control

The formation control problem is an important
problem in the multi-agent and robotics literature and
recently there has been substantial research in that area.
As we mentioned in an earlier section, with a little
modification our model can be extended (generalized)
to handle the formation control (stabilization) problem.
To see this consider the case in which the attraction/
repulsion functions g(�) are pair dependent. In other
words, consider the case in which we have

_xxi ¼
XM

j¼1,j 6¼i

gijðx
i
� xjÞ, i ¼ 1, . . . ,M ð15Þ

where gijð�Þ 2 G for all pairs ði, jÞ and gijðx
i
� xjÞ ¼

�gjiðx
j
� xiÞ. Note, however, that ðxi � xjÞ ¼ ðxk � xlÞ

does not necessarily imply gijðx
i
� xjÞ ¼ gklðx

k
� xlÞ. In

other words, in this new model the attraction and
repulsion functions and therefore the equilibrium
distance �ij for different pairs of individuals can be
different.

Now, consider the problem of formation stabiliz-
ation, where the desired formation is uniquely specified
with respect to rotation and translation (i.e. uniquely in
terms of relative inter-individual arrangement) by the
formation constraints

kxi � xjk ¼ dij

for all ði, jÞ, j 6¼ i. Note that with these constraints
there are a family of possible arrangements since these
conditions continue to be satisfied when the formation
is rotated or translated in an arbitrary way. With the
above requirements in mind, the idea is to choose each
of the attraction/repulsion functions gijð�Þ such that
�ij ¼ dij for every pair of individuals ði, jÞ. This, in
turn, results in the fact that the generalized Lyapunov
function J(x) defined in (5) has a minimum achieved at
the desired formation and that once the formation
is achieved we have _xxi ¼ 0 for all i. Note that
Theorem 1 still holds implying that all the individuals
will eventually stop. If the attraction/repulsion functions
have been chosen such that J(x) has a unique minimum

(again with respect to rotation and translation
implying a family of minima) at the desired formation,
then Theorem 1 will imply global asymptotic stability
of the desired formation. However, usually there exist
local minima in J(x) (i.e. the minimum corresponding
to the desired formation is not necessarily unique).
Therefore, it is not always possible to globally guarantee
convergence to the desired formation. Nevertheless,
from Theorem 1 still it is possible to deduce
local asymptotic stability for the equilibrium at the
desired formation. This could be stated formally as
follows.

Corollary 1: Consider the generalized swarm model in
(15) with pair dependent attraction/repulsion functions
gijð�Þ 2 G. Assume that gijð�Þ are chosen such that
�ij ¼ dij , where dij are the desired formation distances.
Then, the equilibrium at the desired formation is locally
asymptotically stable. Moreover, if gijð�Þ are such that
J(x) has unique minimum at the desired formation, then
asymptotic stability holds globally.

We would like also to emphasize that for this
case, i.e. for the case with generalized pair dependent
attraction/repulsion functions and its application to
formation control, Lemma 1 also still holds, i.e. the
centre �xx of the swarm is stationary. This implies that
the generalized model is for stabilizing stationary
formations around their centre �xx. However, as men-
tioned before, they can easily be extended to the case
of moving formations (swarms) with the same motion
term of the individuals.

Finally, we would like to mention that the results
on the cohesiveness of the swarm obtained in the pre-
ceding sections will still hold for the more general
model considered in this section, i.e. for the model
with the pair dependent attraction/repulsion functions
g(�), as described in (15), as long as each of the attrac-
tion/repulsion functions gijð�Þ are from the class G

defined earlier. The only difference would be that the
bounds on the swarm size will be given in terms of the
minimum attraction parameter amin and the maximum
repulsion parameter bmax. For example, for the
linearly bounded from below attraction and unbounded
repulsion case we will have amin ¼ min1�i, j�Mfaijg and
bmax ¼ max1�i, j�Mfbijg and the bound "rms in (13) still
holds with the parameters a and b interchanged with
amin and bmax, respectively.

6. Simulation examples

In this section we will provide some simulation
examples in order to illustrate the operation of the
swarm model. We chose either n¼ 2 or n ¼ 3 for the
simulations for easy visualization. However, note that
the results hold for any n. We first choose the case
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of almost constant attraction and unbounded repulsion

with gaðkx
i
� xjkÞ ¼ a=kxi � xjk, and grðkx

i
� xjkÞ ¼

b=kxi � xjk2 with parameters a ¼ b ¼ 0:2. The plot in

figure 2(a) shows the behaviour of M ¼ 31 swarm

members with initial positions chosen at random. As

one can see, the individuals form a cohesive cluster

(around the centre) as predicted by the theory. For

this case we have the bound "avg ¼ b=a ¼ 1 as the ulti-

mate size of the swarm. Figure 2(b) shows the average

eavg of the distances of the individual positions to the

swarm centre. Note that the average converges to a value

smaller than "avg, confirming the analytical derivations.
The behaviour of the swarm for the other two cases is
similar.

Now, consider the case of hard-limiting repulsion

grðkx
i
� xjkÞ ¼

b

ðkxi � xjk � 2�Þ2

with � ¼ 1. In other words, we would like the individ-
uals to have a safety area of radius � ¼ 1 and therefore
keep a distance of at least 2� ¼ 2 units apart from each
other. Figure 3(a) shows the behaviour of the swarm
for this case. As is seen from the figure the behaviour
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of the swarm is similar to the case in which no hard-

limiting repulsion is used. Figure 3(b), on the other

hand, shows the positions of the individuals denoted

as spheres after the swarm has been formed and the

individuals have almost stopped. As can be seen from

the figure the individuals keep distance

kxiðtÞ � xjðtÞk > 2� for all pairs (i, j) as desired. We

used M ¼ 21 individuals for this simulation.

Figure 4(a) shows the final positions of the swarm

members for a swarm with 11 individuals in a two-

dimensional space. As can be seen from the figure the

swarm members do not collide with each other and

are distributed in almost a grid-like arrangement.

Figure 4(b), on the other hand shows the final positions

of a swarm with 31 individuals. As can be seen from the

figure, once more there are no collisions. Moreover, the

swarm size has scaled significantly with the number

of individuals as expected from the discussions in the

earlier sections.

Figure 5(a) and (b) show the minimum, the average,

and the maximum distances between the individuals in

the swarm for the cases with M ¼ 11 and M ¼ 31

agents, respectively. As we can see, while the minimum

distance between pairs is still greater than 2� ¼ 2 for
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both of the cases, the maximum distance is larger

for the case with more individuals, implying that the

size of the swarm scaled with the number of individuals

while the density of the swarm remained relatively

constant which, on the other hand, conforms with our

expectations. Having the swarm density nearly

constant is an important feature of the real biological

swarms and this shows that our model can describe

that fact.

Now, consider the model in (15). Assume

that we have six agents that are required to form a for-

mation of an equilateral triangle with three of the

agents in the middle of each edge and distances between

two neighbouring agents equal to 1. For this case we

design the attraction/repulsion functions for each

pair of individuals such that the generalized Lyapunov

function achieves a unique minimum at the desired

formation. This is done by choosing gijð�Þs such

that the equilibrium distances are one of �ij ¼ 1,

�ij ¼ 2, or �ij ¼
ffiffiffi
3

p
for different pairs ði, jÞ of individuals

depending on their relative location in the desired

formation. Figure 6 shows the trajectories of the

agents with initial positions chosen at random. As

one can see the agents move and form the required

formation while avoiding collisions in accordance

with the expectations since we used unbounded

repulsion.

7. Concluding remarks

In this article we considered a class attraction/repul-

sion functions and extended our earlier results on swarm

aggregations in Gazi and Passino (2003). We derived

bounds on the swarm size for three different cases of

attraction/repulsion functions. A disadvantage of the

swarm model considered is that the agents need to

know (or sense) the (relative) position of all the other

agents. This results in the fact that as the number of the

swarm members grows, the computation needed by

each agent also grow linearly. This does not happen in

approaches based on nearest neighbour rules, since an

individual can have only a limited number of

neighbours. Also, in crowded biological swarms the

individuals may not necessarily know the position of

all the other agents although in engineering applica-

tions this could be overcome with technologies such as

the global positioning system.

The model considered has the advantage that it

allows for global stability results to be obtained,

whereas with nearest neighbour rules only local stability

is possible. Moreover, it can be used not only for

achieving swarm aggregations, but also for formation

stabilization. The introduction of a ‘private area’ for

the individuals prevents occurrence of collisions, an

issue overlooked by many authors. Moreover, it leads

to a swarms size which scales with the number
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Figure 6. Equilateral triangle formation of six agents.
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of individuals and therefore to a ‘more uniform’ swarm
density, which is an important feature of real biological
swarms.

The attraction/repulsion functions discussed here
are not limited to only the swarm model considered.
They can be used in other models such as anisotropic
swarms with reciprocal and non-reciprocal
interactions Chu et al. (2003) as well as swarms moving
in a noisy environment (Passino 2003, Liu and Passino
2004). In engineering applications with agents/vehicles
with predefined dynamics, the model in this article can
serve as a virtual system generating the trajectories
for the real agents. Then, using methods like sliding
mode control the agents can be ‘forced’ to obey the
model (Gazi 2003). Communication or sensing delays
(in obtaining the positions of the other agents in the
swarm) could be also incorporated in the model in
future work.
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