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Bacterial Foraging Optimization

Kevin M. Passino, The Ohio State University, USA

ABSTRACT

The bacterial foraging optimization (BFO) ulgorithm mimics how bacteria forage over alandscape of nutrients
1o perform parallel nongradient optimization. In this article, the author provides a tutorial on BFO, including
anoverview of the biology of bacterial foraging and the pseudo-code that models this process. The algorithms
Jeatures are bricfly compared 1o those in genetic algorithms, other hio-inspired methods, and nongradiem
optimization. The applications and future directions of BFO are also presented.
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1 INTRODUCTION. BACTERIAL
FORAGING: E. COLI

'he £ coli bacterium has a plasma membrane,
cell wall, and capsule that contain, for instance,
the cytoplasm and nucleoid. The pili (singular,
prlus)are used fora type of gene transterto other
7. coli bactena, and flagella (singular, flagel-
lum) are used tor locomotion. The cell is about
Ly in diameter, and 2g0m in length. The £
coli cell only weighs about | picogram, and
15 composed of about 70% water. Sulmoncllu
ryphimurinm 1s a sinlar type of bacterium.
The £. coli bacterium is probably the best
understood microorganism. lts entire genome
has beensequenced; itcontains 4,639,221 ol'the
ALC,Gyand T letters™  adenosine, cytosine.

suanine, and thynine—-arranged into a total of’

F288 genes. When £, coli grows, it gets longer,
thendivides in the middle into two “daughters.™
Given suttictent food and held at the tempera-
ture of the human gut (one place where they
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live) of 37 deg. C, I coli can synthesize and
replicate everything it needs to make a copy
ot 1selt in about 20 min.; hence, growth of
a population of bacteria is exponential with a
relatively short “time to double™ the population
size. For nstance, following (Berg, 2000), if
at noon today you start with one cell and suf-
ficient food, by noon tomorrow there will be
27 17 < 107" cells,whichisenough to pack
acube 1T metersononeside. (Itshould be clear
that with enough food, at this reproduction rate,
they could quickly cover the entire earth with
a knee-deep layer!)

I'he /. cofi bacterium has a control system
that enables itto search for food and try to avoid
noxious substancees (the resulting motions are
called “raxes™). Tor instance, it swims away
from alkalme and acidic environments, and
towards more neutral ones. Toexplain the motile
behavior ot £ cofi bacteria, we will explain
s actuator (the Hagella), “decision-making,”
werorsand closed-loop behavior (ie., how it
HIOVCS I anous cnvironments: -is “motile

P oo bt sotten oot ot of (G Global




2 international Journal of Swarn Intedigence Research, 1(1), 1-16, January-March 2010

behavior™). You will see that £ cole performa
type of “saltatory search ™

1.1 Swimming and
Tumbling via Flagelia

Locomotion is achieved via u set of refatively
rigid flagelta that enable 1t to “swim™ via each
of them rotating in the same direction at about
100 — 200 revolutions per second (in control
systems terms, we think of the flagella as
providing for actuation). Each flagellum is a
left-handed helix configured so that as the base
of the flagellum (i.e., where it is connected to
the cell) rotates counterclockwise, as viewed
from the free end of the flagellum looking
towards the cell, it produces a force against the
bacterium so it pushes the cell. You may think
of each flagellum as a type of propeller. If a
flagellum rotates clockwise, then it will pull
at the cell. From an engineering perspective,
the rotating shaft at the base of the flagellum
is quite an interesting contraption that seems
to use what biologists call a “universal joint”
(so the rigid flagellum can “point” in different
directions, relative to the cell). In addition, the
mechanism that creates the rotational forces to
spinthe flagellumineitherdirection is described
by biologists as being a biological “motor”
(a relatively rare contraption in biology even
though several types of bacteria use it). The
motor is quite efficient in that it rotates a com-
plete revolution using only about 1000 protons
and thereby E. coli spends less than 1% of its
energy budget for motility.

An E. coli bacterium can move in two
different ways: it can “run” (swim for a period
of time) or it can “tumble.” and it alternates
between these two modes of operation its en-
tire lifetime (i.e., it is rare that the flagella will
stop rotating). First, we explain each of these
two modes of operation. Following that, we
will explain how it decides how long to swim
before it tumbles.

Ifthe flagellarotate clock wise, each flagel-
lum pulls on the cell and the net effect is that
each flagellum operates relatively independent
of the others and so the bacterium “tumbles”

about (i.e., the bacterium does not have a sel
direction of movement and there is little dis-
placement). Totumbleafterarun, the cell slows
down or stops first; since bacteria are so small
they experience almostnoinertia, only viscosity,
50 that when a bacterium stops swimming, it
stops within the diameter of a proton. Call the
time interval during which a tumble occurs a
“tumble interval.” Under certain experimental
conditions (an isotropic, homogeneous medi-
um-—one with no nutrient or noxious substance
gradients) for a “wild type” cell (one found
in nature), the mean tumble interval is about
.14 + 0.19 sec.(mean + standard deviation,
and it is exponentially distributed) (Berg, 1972,
2000). After a tumble, the cell will generally
be pointed in a random direction, but there is
a slight bias toward being placed in a direction
it was traveling before the tumble.

[fthe flagella move counterclockwise, their
effects accumulate by forming a “bundle” (it
is thought that the bundle is formed due to the
viscous drag of the medium) and hence, they
essentially make a “composite propeller” and
push the bacterium so that it runs (swims) in
one direction. On a run, bacteria swim at a rate
of about 10 — 20 s meters/sec., or about 10
body lengths per second (assuming the faster
speed and an E. coli that is 2 /¢ meters long,
a typical length), but in a rich medium they
can swim even faster (Lowe, Meister, & Berg,
1987). This is a relatively fast rate for a living
organism to travel; consider how fastyou could
move through water if you could swim at 10
of your body lengths per second. Call the time
interval during which a run occurs the “run
interval.” Under certain experimental conditions
(anisotropic, homogeneous medium---the same
as the one mentioned above) for a wild type
cell, the meanrun intervalisabout 0.86 4+ 1.18
sec.(and it is exponentially distributed) (Berg,
1972, 2000). Also, under these conditions, the
mean speed is 14.2 + 3.4 pm / scc. Runs are
not perfectly straight since the cell is subject to
Brownian movement that causes it to wander
off course by about 30 deg.in 1 sec. in one
type of medium, so this ishow much it typically
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can deviate on arun. In a certain medium, after
about 10 sec. it drifts off course more than 90
deg. and hence, essentially forgets the direction
it was moving (Berg, 1972). Finally, note that
in many bacteria, the motion of the tlagella can
induce other motions, e.g., rotating the bacteria
about an axis.

1.2 Bacterial Motile Behavior:
Climbing Nutrient Gradients

I'he motion patterns (called “taxes”™) that
the bacteria will generate in the presence of
chemical attractants and repellents are called
~chemotaxes.” For £. coli, encounters with
serine oraspartate result in attractant responses,
while repellent responses result from the metal
jons Niand Co, changes in pH, amino acids like
leucine, and organic acids like acetate. What is
the resulting emergent pattern of behavior for
a whole group of E. coli bacteria? Generally,
as a group they will try to find food and avoid
harmful phenomena, and when viewed under
a microscope, you will get a sense that a type
ofintelligent behavior has emerged, since they
will seem to intentionally move as a group.
To explain how chemotaxis motions are
senerated, we simply must explain how the £.
coli decides how long to run since, from the
abovediscussion, we know what happens during
a tumble or run. First, note that if an E. coli 1s
in some substance that is neutral, in the sense
(hat it does not have food or noxious substances,
and if it is in this medium for a long period of
time (e.g., more than one minute), then the
tlagella will simultaneously alternate between
moving clockwise and counterclockwise so that
the bacterium will alternately tumble and run.
[his alternation between the two modes will
move the bacterium, but in random directions,
and this enables it to “search” for nutrients.
l‘'or instance, in the isotropic homogeneous
¢nvironment described above, the bacteria al-
ternately tumble and run with the mean tumble
and run lengths given above, and at the speed
that was given. If the bacteria are placed in a
homogeneous concentration of serine (1.e., one
«with a nutrient but no gradients), then a variety

of changes occur in the characteristics of their
motile behavior. For instance, mean run length
and mean speed increase and mean tumble time
decreases. They do, however, still produce a
basic type of searching behavior; even though
it has some food, il persistently searches for
more. As an example of tumbles and runs in
the isotropic homogeneous medium described
above, in one trial motility experiment lasting
29.5 sec.. there were 26 runs, the maximum run
length was 3.6 sec., and the mean speed was
about 21 yum / sec. (Berg, 1972, 2000).

Next, suppose that the bacterium happens
to encounter a nutrient gradient (e.g., serine).
The change in the concentration of the nutri-
ent triggers a reaction such that the bacterium
will spend more time swimming and less time
tumbling. As long as it travels on a positive
concentration gradient (i.e., so that it moves
towards increasing nutrient concentrations) it
will tend to lengthen the time it spends swim-
ming (i.e., it runs farther). The directions of
movement are “biased” towards increasing
nutrient gradients. The cell does not change
its direction on a run due to changes in the
gradient—the tumbles basically determine the
direction of the run, aside from the Brownian
influences mentioned above.

On the other hand, typically if the bacte-
rium happens to swim down a concentration
gradient (or into a positive gradient of noxious
substances), it will return to its baseline be-
havior so that essentially it tries to search for
a way to climb back up the gradient (or down
the noxious substance gradient). For inslance,
under certain conditions, for a wild-type cell
swimming up serine gradients, the mean run
length is 2.19 + 3.43 sec., but if it swims
down a serine gradient, mean run length is
110 1 1.88 sec. (Berg, 2000). Hence, when
it moves up the gradient, it lengthens its runs.
The mean run length for swimming down the
gradient is the one that is expected, consider-
ing that the bacteria are in this particular type
ol medium: they act basically the same as ina
homogencous niedium so that they are engaging
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therr search/avordince behavior (o try to climb
back up the gradient

Finally, supposc that the concentration of
the nutrient 1s constant for the region it is in,
afler it has been on a positive gradient for some
time. In this case, after a penod of time (not im-
mediately), the bacterium will return to the same
proportion of swimming and tumbling as when
it was in the neutral substance so that it returns
to its standard searching behavior. It is never
satisfied with the amount of surrounding food;
italways seeks higher concentrations. Actually,
under certain experimental conditions, the cell
will compare the concentration observed over
the past 1 sec. with the concentration observed
overthe 3 sec. before thatand it responds to the
difference (Berg, 1972). Hence, it uses the past
4 sec. of nutrient concentration data to decide
how long to run (Segall, Block, & Berg, 1986).
Considering the deviations in direction due
to Brownian movement discussed above, the
bacterium basically uses as much time as it can
in making decisions about climbing gradients
(Berg, 1993). In effect, the run length results
from how much climbing it has done recently.
If it has made lots of progress and hence, has
just had a long run, then even if for a little
while it is observing a homogeneous medium
(without gradients), it will take a longer run.
Afler a certain time period, it will recover and
return to its standard behavior in a homoge-
neous medium.

Basically, the bacterium is trying to swim
from places with low concentrations of nutrients
to places with high concentrations. An opposite
type of behavioris used when itencounters nox-
lous substances. 1f the various concentrations
move with time, then the bacteria will try to
“chase” afler the more favorable environments
and run from harmful ones. Clearly, nutrient
and noxious substance diffusion and motion
will affect the motion patterns of a group of
bacteria in complex ways.

1.3 Underlying Sensing and
Decision-Making Mechanisms

The sensors are the receptor proteins, which are
signaled directly by external substances (e.g.,
in the case for the pictured amino acids) or via
the “periplasmic substrate-binding proteins.”
The “sensor” 1s very sensitive, in some cases
requiring less than 10 molecules of attractant to
trigger a reaction, and attractants can trigger a
swimming reaction in less than 200 ms. You can
then think of the bacterium as having a “high
gain” with a small attractant detection threshold
(detection of only a small number of molecules
can trigger a doubling or tripling of the run
length). On the other hand, the corresponding
threshold for encountering a homogeneous me-
dium after being in a nutrient rich one is larger.
Also, there is a type of time-averaging that is
occurring in the sensing process. The receptor
proteins then affect signaling molecules inside
thebacterium. Also, there is in effectan “adding
machine” and an ability to compare values and to
arrive at an overall decision about which mode
the flagella should operate in; essentially, the
different sensors add and subtract their effects,
and the more active or numerous have a greater
influence on the final decision. Even though the
sensory and decision-making system in £. coli
is probably the best understood one in biology,
we are ignoring the underlying chemistry that
is needed for a full explanation.

It is interesting to note that the “decision-
making system” in the £. coli bacterium must
have some ability to sense a derivative, and
hence, it has a type of memory! At first glance
it may seem possible that the bacterium senses
concentrations at both ends of the cell and finds
asimple difference torecognize a concentration
gradient (a spatial derivative); however, this
1s not the case. Experiments have shown that
it performs a type of sampling, and roughly
speaking, it remembers the concentration a
moment ago, compares it with a current one,
and makes decisions based on the difference
(i.e., it computes something like an Euler ap-
proximation to a time derivative). Actually, in
Yi, Huang, Simon, and Doyle (2000) the authors
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show how internal bactenal dectsion-makinyg
processes mvolve some type of mtegral feed-
back control mechantsm.

I summary, we see that with memory. a
tvpe of addition mechanism, an ability to make
compartsons. a few simple mternal “control
rules, Tand itschemical sensing and tocomotion
capabilities, the bacierium s able o achieve
a complex tvpe of scarching and avordance
behavior. Evolution has designed this control
systent Itis robust and clearly very suceesstul
al mecting s goals of survival when viewed
[rom a populiation perspective.

1.4 Elimination and
Dispersal Events

[0 1s possible that the local environment where
a population of bacteria lives changes either
vradually {¢.g.. via consumption ol nutrien(s)
or suddenly due to some other miluence. fhere
can be events such that all the bacteria i a
region are killed or a eroup s dispersed into
anew part of the environment. For example.
focal sigmificant mcreases i heat can kill a
population of bacteria that are currently m a
rezion with a high concentration ol nutrients
(vou can think o) heat as a (ype of noxious
mfluence). Or, it may be that water or some
ammal will move populations of bacteri from
one place to another i the enviromment. Over
fong pertads of time. such events have spread
vartous types ol bacteria mito virtually every
part ol our environment, from our nitestines,
1o hot springs and underground environments,
and oo

What s the effect ot ehmination and dis-

persal events onchemotaxis? Hhas the eftect ot

possibly destroying chemotactic progress. hut
iadso has the effect oFassisting m chemotaxis
anee dispersal may place bacteria near good
iood sources. Fromabroad perspective. elimina-
ponand dispersalis part of the population-leved
motile hehavior.
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1.5 Evolution of Bacteria

Mutaitons i £ coli oceur at a rate of about
(U per gene, per generation. i addition o
mutations that atlect its physiological aspects
(c.z., reproductive effictency at different tem-
peratures). £2. colibacteria occasionally engage
i a type of “sex called “conjugation.” where
small gene sequences are unidirectionally trans-
lerred from one hactertum to another. Hoseems
thatthese gene sequences apparently carry good
ftiness characteristics n terms ol reproductive
capabtlity. so conjugation is sometimes thought
ol as a transmittal of “fertility.™ To achieve
conjugation. a ptlus extends o make contacl
with another bacterinm, and the gene sequence
(ransiers through the pilus.

[t 1s nportant (o note that there are some
very basie differences in evolution for higher
organisns and bacternia. While conjugation
apparently spreads good™ gene sequences, the
“homogenizing effec on gene frequency from
conjugilion s relatively small compared o how
sexworks tnotherorganisms. Thisis partly since
conjugation 1s relatively rare, and partly simce
the rate of reproduciton is relatively high, on
the order ol hours depending on environmental
conditions. Dueto these characteristics. popula-
tion genetics tor 2. coli may be dominated by
selection sweeps triggered by the acquisition,
via sex. of an adaptive allele.

1.6 Taxes in Other
Swimming Bacteria

While most bacteria are motile and many
types have analogous taxes capabilities o £
coli bacterta, the spectlic sensimg, actuation,
and deersion-makimg mechanisms are differ-
ent cArmittage, 19990 Neidhardt, Ingraham.
& Schacehter, 1990). For instance, while the
proton driven motor on £ coli totates ata tew
handved vevolutions per second, Na - -driven
motors on some bacterta rotate at speeds up
o Ton ey olations per second, and on some
spevies. il motor can tuen ineither direction or
slop. Dilterent tvpes ol hacteria can sense dil-
ferentphenomena and have difterent underlying
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decision-making, so they may search forand try
toavoid different phenomena. Somebacteria can
sense theirown metabolic state and only respond
to compounds currently required for growthand
their pattern of responses may change based on
their environment. Studies of the mechanisms
for decision and control in various bacteria
do, however, indicate that they have common
features and hence, some have suggested that
there was a single early evolutionary event that
resulted in the swimming capability of bacteria.
Swimming generally moves a bacterium to a
more favorable environment for growth, or it
maintains it in its current position, and hence,
it gives the bacteriaa survival advantage. Some

scientists have suggested that the shapes of

motile bacteria developed to allow efficient
swimming. Some bacteria even change their
shape to reduce the adverse effects of moving
throughmore viscous media. Even though there
can be significant differences between species,
all swimming bacteria seem to have similar
swimming patterns, where there is an alterna-
tion between smoothswimming and achange in
dircction (i.¢., a lype of saltatory search). Next,
several examples of other types of sensing and
taxes in swimming bacteria are provided.
Some bacteria can scarch for oxygen,
and hence their motility behavior is based on
“aerolaxis.” while others search for desirable
temperatures resulting in “thermotaxis.” Actu-
ally, the £. coliis capable of thermotaxis in that it
seeks warmer environments witha temperature
range of 20 deg. 10 37 deg. €. Other bacteria,
such as Thiospirillum jenense, search for or
avoid light of certain wavelengths and this is
called “phototaxis” Actually, the £ colitries Lo

avoid intense blue light, so it is also capable of

phototaxis. Some bacteria swimalong magnetic
lines of force that enter the carth, so that when
in the northern hemisphere, they swim towards
the north magnetic pole, and in the southern
hemisphere, they swim towards the south

magnetic pole. (This is due to the presence of

a small amount of magnetic material in the cell
that essentially acts as a compass (o passively
reorient the cell)

There are square-shaped bacteria that are
propelled either forward or backward via fla-
gella, and when multiple such bacteria naturally
collide, their flagella can become “clumped.”
and this seems 1o be responsible for their
tumbling. Hence, their motility behavior is
characterized by forward movement, followed
by either forward or backward movement, and
anintermittent change in direction via tumbling
(Alam, Claviez, Ocsterhelt, & Kessel, 1984).
Vibrio alginolvticus move difterently when free-
living versus living on a surface. Free-living
Vibrio alginolvticus swims usingaNa ¢ -driven
motoron its flagella but when itis on the surface
of aliquid, it senses the increased viscosity via
the flagellar motor and then synthesizes many
proton-driven flagella, which then allow the
cell 10 move over surfaces (Armitage, 1999).
The cells move as groups (“rafts”™). since this
is thought to help overcome viscous drag and
surface tension. Inotherbacteria, flagellacan be
synthesized and discarded as they are needed.

1.7 Other Group
Phenomena in Bacteria

A particularly interesting group behavior has
been demonstrated for several motile species
of bacteria, including F. coli and S. tvphimu-
rium, where intricate stable spato-temporal
patterns (swarms)' are formed in semi-sold
nutrient media (Armitage, 1999; Budrene &
Berg, 1995a, 1995bh: Woodward, Tyson, Myer-
scough, Murray, Budrene, & Berg. 1995; Blat
& Eisenbach, 1995) . When a group of L. coli
cells is placed in the center ofa semi-solid agar
with a single nutrient chemo-efiector (sensor),
they move out from the center in a traveling
ring of cells by moving up the nutrient gradient
created by consumption of the nutrient by the
group. Moreover, if high levels of the nutrient
called succinate are used as the nutrient, then
the cells release the attractant aspartate, so that
they congregate into groups and hence, move as
concentric patterns of groups with high bacterial
density. (Note that many cells in those groups
permanently lose motility.) The spatial order
results from outward movement of the ring
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and the tocal releases ol the attractant: the cells
provide an attraction signal to each other so
they swarm together. Pattern Tonnation can be
sappressed by a background ofaspartate (since
it seems (hat this will in essence scramble the
chemical signal by eliminating its directional-
i1v). The pattern seems 1o form based on the
Jdominance of two stimuli (cell-cell signaling
and toragimg).

The role ol these patterns in natural envi-
ronments is not understood: however, there is
cvidence that stress 1o the bacterta results in
them releasing chemical signals thatother bac-
rerra are chemotactic towards. Henough stress
is present. then a whole group can secrete the
chemical signal strengthening (he total signal,
and hence, an aggregate of the bacteria forms.
[ seems Lhat this aggregate forms (o protect
the group from (he stress (e.g.. by elfectively
hiding many cells tnthe middle ot the group). 1t
~eems that the aggregates of the bacteria are not
necessarily stationary; under certain conditions
they can migrate. split, and fuse. This has led
researchers to hypothesize that there may be
other communication methodsbeingemployed
that are nol yet understood.

As another example, there are “biofilms™
that can be composed of multiple types ol bac-
enia (e.g.. 5 coliy that can coat various objects
te.g rools of plants or medical implants). 1t
wems that both motility and “quorum sensing™
are involved in biolilim formation. A biofilm is
Jomechanism Tor keeping a bacterial species in
2 hsed location, avoiding overcrowding, and
avording nutrient limitation and toxin produc-
tion by packing thematalow density ina~poly-
aecharide matrix.” Secreted chemicals provide
; amechanism for the cells to sense population
density. but motility seems to assistin the early
Javes of biofilm formation. H 1s also thought
thal chemotactic responses are used to drive
cutls 1o the outer edges of the biofilm, where
autrient concentrations may be higher.

I a variety ol bacteria, ncluding £ coli,
Complex patterns result primanly not from
motility, but from reproduction (Shapiro.
1997y, In some bacteria, it seems that there is a
cope ol stgnaling that occurs and results mothe

t - . - e e e — s e e it
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formation of regular patterns as the culture of

bacteria grows. Formation of such patterns is
sometimes (hought ol as a type of multicetular
“morphogenesis.” For example, the formation
ol'the “Trutting bodies™ by Myxococcus xanthins
can be viewed as a type ol morphogenesis, but
one that seems (o be primarily based on motil-
ity and cell deaths rather than reproduction
(Shimkets & Dworkin, 1997).

Other types ol bacteria exhibit group be-
haviors (Losick & Kaiser, 1997). For instance,
there are luminous bacteria that willemitno hight
until the population reaches a certain density.
lForinstance, the bacteria Fibrio fischerilives m
the occan atlow concentrations and its seereted
“awtoinducer” chemical signal & quite dilule
However, the squid Enprvina scolopes selects
these bacteria to grow moits hight organ. When
a sulliciently targe population 1s cultivated in
its light organ, the autoinducer chemical signals
aiven of by cach bacterium etfectively add to
result i a high concentration of this chemical
and. when it reaches a certain threshold, cach
cell will switch on its luminescence property so
that as a group they emita visible light (Losick
& Kaiser, 1997). The squid, which isanocturnal
forager, benelits since the light camoullages it
from predators below, since its light resembles
moonlight and henee, effectively eliminates its
shadow. The bacteria benelitby getting nourish-
ment and shelter. The bacteria and squid are in
asvinbiont relationship (i.c., they hive together
1o henefit each other).

Also, the sotl-dwelling streptomyecte
colonies can grow a branching network of'tong
fiber-like cells that can penetrate and degrade
vegelation and then feed on the resulting
decaying matter. (In terms of combinatorial
oplimization, you may think of finding optimal
trees or graphs.) Under starvation conditions,
they can cooperate o produce spores on a
structure called an “acrial mycelium™ that may
be carrted away.

As another example, in Proteus mirabilis
ihe rod-shaped cells existas “swimmers™ (hat
are driven by tewer than 10 Nagella when they
are m liquid media and they have chemotactic
responses analogous o those ol £ colis 1
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however, these swimmers are placed on a
solid surface, the swimmer cell “differentiates”
(changes) into a “swarner cell” that is an elon-
gated rod (of roughly the same diameter) with
more than 10,000 flagella. On solid surfaces,
the cells aggregate and exhibit swarm behavior
inforaging via group chemotaxis. 1f they are then
placedback inaliquid medium, there is a process
of “consolidation” where swarmer cells split
into swimmer cells. Moreover, when swarming
they exhibit the “Dienes phenomenon,” where
swarms of the same type of bacteria try to avoid
each other. (The mechanisms of this apparent
territorial behavior are not well-understood.)

2 E. COLI BACTERIAL SWARM
FORAGING FOR OPTIMIZATION

Suppose that we want to find the minimum

of J(0), 0 € R", where we do not have
measurements, or an analytical description, of
the gradient V.J(6) . Here, we use ideas from
bacterial foraging to solve this “nongradient”
optimization problem. First, suppose that
6 is the position of a bacterium and J(0)

represents the combined effects of attractants
and repellents from the environment, with, for
example, J(0) - 0, J(¢) =0, and J(0) -0

representing that the bacterium at location ¢

1s in nutrient-rich, neutral, and noxious envi-
ronments, respectively. Basically, chemotaxis
is a foraging behavior that implements a type
of optimization where bacteria try to climb up
the nutrient concentration (find lower and lower
values of J(@) ) and avoid noxious substances
and search for ways out of neutral media (avoid
being at positions ¢ where J(0) > 0).

2.1 An Optimization Model for
E. coli Bacterial Foraging

To define our optimization model of E. coli
bacterial foraging, we need to define a popula-
tion (set) of bacteria, and then model how they
execute chemotaxis, swarming, reproduction,
and elimination/dispersal. After doing this, we

will highlight the limitations (inaccuracies) in
our model.

2.1.1 Population and Chemotaxis

Define a chemotactic step to be a tumble fol-
lowed by a tumble or a tumble followed by a
run. Let J be the index for the chemotactic step.
Let £ be the index for the reproduction step.
Let £ be the index of the elimination-dispersal
event. Let

P(jk, £) = {0'(j,k,ﬁ) li = 1,2,...,5}

represent the positions of each member in

the population of the S bacteria at the 7"

chemotactic step, k" reproduction step. and
¢" elimination-dispersal event. Here, let
J(t, 7.k, €) denote the cost at the location of
the " bacterium 0'(j,k, €) € R" (sometimes
we drop the indices and refer to the 7" bacte-
rium position as ' ). Note that we will inter-
changeably refer to J as being a “cost” (using
terminology from optimization theory) and as
being a nutrient surface (in reference to the
biological connections). For actual bacte-
rial populations, S can be very large (e.g.,
S =10"),but » = 3 . Incomputersimulations,
we will use much smaller population sizes and
willkeep the population size fixed. We will allow
p = 3, so we can apply the method to higher
dimensional optimization problems.

Let N _ be the length of the lifetime of
the bacteria as measured by the number of
chemotactic steps they take during their life.
Let C(7) =~ 0, i=1,2,.....5, denote a basic
chemotactic step size that we will use to define
the lengths of steps during runs. To represent
a tumble, a unit length random direction, say

#(J) , is generated; this will be used to define
the direction of movement after a tumble. In
particular, we let

0+ 1k0) = 0k () 4+ Cl)
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~or that ('(4) is the size of the step taken in the
rudom direction specified by the tumble. If at
() v Lk ¢) thecost J(i,j + 1.k, ¢) isbetter
ttower) than at 6°(j, k, ¢) , then another step of
stze (i) in this same direction will be taken,
and again, if that step resulted in a position with
a hetter cost value than at the previous step,
another step is taken. This swim is continued as
fang as it continues to reduce the cost, but only
#p to a maximum number of steps, N . This
tepresents that the cell will tend to keep moving
if 1t is headed in the direction of increasingly

. favorable environments.

- 2.1.2 Swarming Mechanisms

The above discussion was for the case where

e cell-released attractants are used (o signal
- ather cells that they should swarm together.

Here, we will also have cell-to-cell signaling
¥ig an altractant and will represent that with

B0k, = 1,2,...,5, for the "
hgeterium, Let

-0.1

2N 4

~ be the depth of the attractant released by the

eedl (i quantification of how much attractant

“w redeased) and

e ameisure of the width of the atiractant signal

~{# quantlication of the diffusion rate of the
+hemical). The cell also repels a nearby cell in
<k

# setise that it consumes nearby nutrients and
& nul phiysically possible to have two cells at

e wane location. To model this, we let

il
SN Aigaet

iy the hetghtof the repellent effect (magnitude

<l gy edtect) and

be a measure of the width of the repellent. The
values for these parameters are simply chosen to
illustrate general bacterial behaviors, not torep-
resent a particular bacterial chemical signaling
scheme. The particular values of the parameters
are chosen with the nutrient profile in mind. For
instance, the depth and width of the attractant
is small relative to the nutrient concentrations
represented in the cost function. Let

J ce(PG.k)) = =178 ceri(,i()Lk,))

= _=1"S[-d attract(-w_attract m=1"p( m-
m*)*2) |

+ _1=17S [ h _repellent (-w_repellent
m=1"p(_m- m*i)"2) ]

denote the combined cell-to-cell attraction
and repelling effects, where 0 = [9;’“'30,,?
is a point on the optimization domain and 0
is the m” component of the " bacterium
position 0" (for convenience, we omit some
of the indices). Note that as each cell moves,
so does its J' (0,0'(j,k,£)) function, and this
represents that it will release chemicals as it
moves. Due to the movements of all the cells,
the J (0, P(j,k,¢)) function is time-varving
in that, if many cells come close together,
there will be a high amount of attractant and
hence, an increasing likelihood that other cells
will move towards the group. This produces
the swarming effect. When we want to study
swarming, the " bacterium, i = ,2....,8
will hill-climb on

’

'](iv jv ka f) + '],,,‘ (()7 P)

(rather than the J(i. j, k,¢) defined above) so
that the cells will try to find nutrients, avoid
noxious substances, and at the same time try
to move towards other cells, but not too close

to them. The J (0, P) function dynamically
deforms the search landscape as the cells move
to represent the desire to swarm (i.e., we model
mechanisms of swarming as a minimization
process).
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2.1.3 Reproduction and
Elimination/Dispersal

After N_chemotactic steps,areproduction step

istaken. Let N be the number ofreproduction
steps to be taken. For convenience, we assume
that S is a positive even integer. Let S r=S2
be the number of population members who
have had sufficient nutrients so that they will
reproduce (split in two) with no mutations.
For reproduction, the population is sorted in
order of ascending accumulated cost (higher
accumulated cost represents that it did not get
as many nutrients during its lifetime of foraging
and hence, is not as “healthy” and thus unlikely
toreproduce); then the S,» least healthy bacteria

dieand theother S healthiest bacteriaeach split
into two bacteria, which are placed at the same
location. Other fractions or approaches could be
used in place of Equation (2.1.3); this method
rewards bacteria that have encountered a lot
of nutrients, and allows us to keep a constant
population size, which is convenient in coding
the algorithm.

Let N be the number of elimination-
dispersal events, and for each such elimination-
dispersal event, each bacterium in the population
is subjected to elimination-dispersal with prob-
ability p,, - We assume that the frequency of
chemotactic steps is greater than the frequency
of reproduction steps, which is in turn greater
in frequency than elimination-dispersal events
(e.g., a bacterium will take many chemotactic
steps before reproduction, and several gen-
erations may take place before an elimination-
dispersal event).

2.1.4 Foraging Model Limitations

Clearly, we are ignoring many characteristics
of the actual biological optimization process
in favor of simplicity and capturing the gross
characteristics of chemotactic hill-climbing
and swarming. For instance, we assume that
consumptiondoes not affect the nutrient surface
(e.g., while a bacterium is in a nutrient-rich
environment, we do not increase the value of

J near where ithas consumed nutrients) where
clearly in nature, bacteria modify the nutrient
concentrations via consumption. A tumble does
not result in a perfectly random new direction
for movement; however, here we assume that
it does. Brownian effects buffet the cell, so
that after moving a small distance, it is within
a pie-shaped region of its start point at the tip
of the piece of pie. Basically, we assume thal
swims are straight, whereas in nature they are
not. Tumble and run lengths are exponentially
distributed random variables, not constant, as
we assume. Run-length decisions are actually
based on the past 4 sec. of concentrations,
whereas here we assume that at each tumble,
older information about nutrient concentrations
is lost. Although naturally asynchronous, we
force synchronicity by requiring, for instance,
chemotactic steps of different bacteria to occur
at the same time, all bacteria to reproduce at
the same time instant, and all bacteria that are
subjected to elimination and dispersal to do so
at the same time. We assume a constant popula-
tion size, even if there are many nutrients and
generations. We assume that the cells respond
to nutrients in the environment in the same
way that they respond to ones released by other
cells for the purpose of signaling the desire to
swarm. (A more biologically accurate model
of the swarming behavior of certain bacteria
is given in Woodward et al., 1995.) Clearly,
other choices for the criterion of which bacteria
should split could be used (e.g., based only on
the concentration at the end of a cell’s lifetime,
or on the quantity of noxious substances that
were encountered). We are also ignoring con-
jugation and other evolutionary characteristics.

Forinstance, weassumethat ('(¢), N ,and N,
remain the same for each generation.ﬂln nature
it seems likely that these parameters could
evolve for different environments to maximize
population growth rates.
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4.1 Bacterial Foraging

Optimization Algorithm

?lti smitialization, you must choose P,

a; \; .,V, N N,

p.,, and the C(i),

FE R N . If you use swarming, you will

b imu to pl(,k the parameters of the cell-to-

wﬁ sitractant functions. Also, initial values for
@t - 1.2,...,5 , mustbe chosen. Choos-
g theselo be in areas where an optimum value
Hikely toexistis a good choice. Alternatively,

; raty want to simply randomly distribute

i across the domain of the optimization
hiem. Uhe algorithm that models bacterial
wulation chemotaxis, swarming, reproduc-

o elimination, and dispersal is given below

ally, ; = k= ¢ =20).For the algorithm,

o that updates to the ¢ automatically result

anlatesto 2. Clearly, we could have added a

¢ sophisticated termination test thansimply

afying a maximum number of iterations.

" ¥timination-dispersal loop: ¢ =/ 1
lhlnmim.ﬂ()n loop: k = k + 1 Chemotaxis
‘;....p y -+l For i=1,2,....5, take a

motagtic step for bdcterlum i as follows.

--.-utt. d0 gk, 0) . Let

k) kO T (0GR, P )

. bl on the cell-to-cell attractant effect to the

wtconcentration). Let J, = J (i, J, K, é) to

- s value, since we may find abetter cost viaa

s Tumble: generatearandomvector A(4) € R

4 ech clement A (i), m=L2..p,a
winumber on [ L.1]. Move: let

G54 LR =0k +CL)

A (DAG)

{ius results in a step of size (/(4) in the
“tion of the tumble for bacterium i . Com-
gl I.4.¢),and then let

Hog s Lk W0 LR PG R LR 6,

=% *msm tnole that we use an approximation, since

we decide swimming behavior of each cell as if
the bacterianumbered {1,2,...,} havemoved,
and {7 + 1,i +2,...,S} havenot; this is much
simpler to simulate than simultaneous decisions
about swimming and tumbling by all bacteria at
the same time): Let 1 = 0 (counter for swim
length). While m -~ N_ (if have not climbed
down too long)

Letm=m + LAE S, j+ 1.k ) <

lust
(if doing better), let J, = J( j+ LA f)
and let

O+ 1.k 6) =0(+1,k0) +(:(i)_~_§ff;)_::
A(HAQ)

and use this '(j + [,k,¢) o compute the
new J(i,j + 1.k, ¢) as we did in (f) above.
Else, let m = N _. This is the end of the while
statement.

Go to next bacterium (i +1) if 1 =5
(i.e., go 1o (b) above to process the next bac-
terium).

If j. N ,gotostep 3. In this case, con-
tinue chemolzixis, since the life of the bacteria
1$ not over.

Reproduction: For the given £ and ¢,
and foreach + = 1,2,...,5, let

VH

/mum - le /’l” ﬁ)

be the health of bacterium i (a measure of
how many nutrients it got over its lifetime
and how successful it was at avoiding noxious
substances). Sort bacteria and chemotactic
purameters C(7) in order of ascending cost
J o (higher cost means lower health). The
S, bacteria with the highest .J, ~ values die
and the other S bacteria with the best values
split (and the copies that are made are placed
at the same location as their mother).
If & N“ , £o 1o step 2. In this case, we
have notreached the number of specified repro-
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duction steps, so we start the next generation
in the chemotactic loop.

Elimination-dispersal: For

1=1,2,...,§, with probability 7, eliminate
and disperse each bacterium (this keeps the
number of bacteria in the population constant).
To do this, if you eliminate a bacterium, sim-
ply disperse one to a random location on the
optimization domain.

If ¢ N . then go to step 1; otherwise
end.

Matlab code for this can be obtained at:
http://'www.ece.osu.edu/passino/

2.3 Guidelines for Algorithm
Parameter Choices

The bacierial foraging optimization algorithm
requires specification ofa variety of parameters.
First, you can pick the size of the population,
S . Clearly, increasing the size of S cansignifi-
cantly increase the computational complexity
of the algorithm. However, for larger values
of S, if you choose to randomly distribute the
initial population, it is more likely that you will
slart at least some bacterium near an optimum
point, and over time, it is then more likely that
many bacterium will be in that region, due 10
either chemotaxis or reproduction.

What should the values of the C(i),
1=1,2,...,5, be? You can choose a biologi-
cally motivated value; however, such values
may not be the best for an engineering applica-
tion. If the C(i) values are too large, then if
the optimum value lies in a valley with steep
edges, it will tend to jump out of the valley, or
it may simply miss possible local minima by
swimming through them without stopping. On
the other hand, if the C(4) values are too small,
then convergence can be slow, but if it finds a
local minimum, it will typically not deviate
too far from it. You should think of the C(7)
as a type of “step size” for the optimization
algorithm.

The size of the values of the parameters that
define the cell-to-cell attractant functions J'
will define the characteristics of swarming. 1f

the attractant width is high and very deep, the
cells will have a strong tendency to swarm(they
may even avoid going after nutrients and favun
swarming). On the other hand, if the attractant
width is small, and the depth shallow, there will
be little tendency to swarm and each cell will
search on its own. Social versus independent
foraging is then dictated by the balance between
the strengths of the cell-to-cell attractant signals
and nutrient concentrations.

Next, large values for N_ result in many
chemotactic steps, and, hopefully, more opti-
mization progress, but of course, more compu-
tational complexity. If the size of N is chosen
to be too short, the algorithm will generally
rely more on luck and reproduction, and in
some cases, it could more easily get trapped i
a local minimum (“premature convergence”).

You should think of N_ as creating a bias in
the random walk (which would not occur if
N_=0), with large values tending to bias
the walk more in the direction of climbing
down the hill.

If N_is large enough, the value of N,
affects how the algorithm ignores bad regions
and focuses on good ones, since bacteria in
relatively nutrient-poor regions die (this models,
with a fixed population size, the characteristic
where bacteria will tend to reproduce at higher

rates in favorable environments). If N is too

small, the algorithm may converge prematurely;

however, larger values of N clearly increasc
computational complexity.

A low value for N dictates that the
algorithm will not rely on random elimina-
tion-dispersal events to try to find favorable
regions. A high value increases computational
complexity but allows the bacteria to look
more regions to find good nutrient concentra-

tions. Clearly, if P, is large, the algorithm
can degrade to random exhaustive search. If,
however, it is chosen appropriately, 1t can help
the algorithm jump out of local optima and into
a global optimum.
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2.4 Relations to Other Nongradient
Optimization Methods

there are algorithmic analogies between the
genetic algorithm and the above optimiza-
ton maodel for foraging. There are analogies
briween the fitness function and the nutrient
voncentration function (both a type of “land-
sape’), selection and bacterial reproduction
thacteria in the most favorable environments

- gain 4 selective advantage for reproduction),

crvmsover and bacterial splitting (the children

- gre at 1he same concentration, whereas with
wnrmsover they generally end up in a region

atvyd their parents on the fitness landscape),
ard mutation and elimination and dispersal.

- Hewcever, the algorithms are not equivalent,

asud nerther is a special case of the other. Each

© masitsown distinguishing features. The fitness
- fura tion and nutrient concentration functions
- #re mof 1he same (one represents likelihood of
: sgvival lor given phenotypic characteristics,

i

B

sheveas 1he other represents nutrient/noxious

#sbutance concentrations, or for other forag-

predator/prey characteristics). Crossover
sesents mating and resulting differences in

sfbspring, something we ignore in the bacterial
Lsgang algorithm (we could, however, have

i less than perfect copies of the bacteria to
sent therr splitting). Moreover, mutation
sends sene mutation and the resulting
sypreal changes, not physical dispersal

ah environment,

From one perspective, note that all the

Cipieat teatures of genetic algorithms could
vent the bacterial foraging algorithm by

ntng evolutionary characteristics of a

s ehieir environment. From another per-

ts e tornging algorithms can be integrated
evadutioniry algorithms and thereby model
wwkey survivad activities thatoceur during the
i ui the population that is evolving (i.e.,
sieg suecess can help define fitness, mating

W tepanies, cte.). For the bacteria studied

¢ taeynng happens to entail hill-climbing

viaatype ofbiased random walk, and hence, the
foraging algorithm can be viewed as a method
to integrate a type of approximate stochastic
gradient search (where only an approximation
to the gradient is used, not analytical gradient
information) into evolutionary algorithms.
Of course, standard gradient methods, quasi-
Newton methods, etc., depend on the use of an
explicit analytical representation of the gradi-
ent, something that is not needed by a foraging
or genetic algorithm. Lack of dependence on
analytical gradient information can be viewed
as an advantage (fewer assumptions), or a dis-
advantage (e.g., since, if gradient information is
available, thenthe foraging or genetic algorithm
may not exploit it properly).

You probably also recognize some simi-
larities between certain features of the forag-
ing algorithm and simultaneous perturbation
stochastic approximation algorithm (SPSA)
(Spall, Hill, & Stark, 2000). What are they?
What are the relationships to other nongradient
methods (pattern search methods)? There are in
fact many approaches to “global optimization™
when there is no explicit gradient information
available; however, it is beyond the scope of
this article to evaluate the relative merits of
foraging algorithms to the vast array of such
methods that have been studied for many years.
To start such a study, it makes sense to begin
by considering the theoretical convergence
guarantees for certain types of evolutionary
algorithms, stochastic approximation methods,
and pattern search methods (e.g., see Spall et
al., 2000, for work along these lines), and then
proceed to consider foraging algorithms in this
context. It also seems useful to consider how
well the foraging algorithms will perform for
time-varying nutrient landscapes, whichoccurs
in the underlying biological problem and many
engineering problems.
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3 CONCLUSION. BFO
APPLICATIONS AND
DIRECTIONS

Since its initial development and introduction
and popularization via the book (Passino,
2002, 2004), BFO has been used in a number
of applications:

Optimization over continuous surfaces
(cost functions) (Passino, 2002); Algorithmic
extensions: Hybrid approach (Kim, Abrahamb,
& Choa, 2007); Comparative analysis with
other methods, in particular particle swarm
optimization (PSO) (Biswas, Dasgupta, Das,
& Abrahamb, 2008); Adaptive control: Intro-
duction of the idea and application to liquid
level control (Passino, 2002); proportional-
integral-derivative (P1D)controller tuning (Kim
& Cho, 2005); Harmonic estimation (Mishra,
2005); Active power filter for load optimiza-
tion (Mishra & Bhende, 2007); Transmission
loss reduction: Application in power systems
(Tripathy, Mishra, Lai, & Zhang, 2006); Opti-
mizing power loss and voltage stability limits:
Application in power systems (Tripathy &
Mishra, 2007). These are the most popular ap-
plications as measured by the number of cita-
tions to them on Google. Applications to fuzzy
controller construction/tuning, neural network
training, job-shopscheduling, electromagnetics,
stock market predication, optimal power flow,
motor control, temperature control, system
identification, and others have also been stud-
ied but apparently have not received as much
attention to-date. The reader 18 encouraged to
search the internet since more such applications
seem likely in the coming years.

Finally, additional applications and studies
ofthe method still holds potential: Optimization:
There is still a wide variety of domains in which
BFO could be useful for. For instance, it would
be useful to study its use in energy efficiency
optimization for buildings and distributed en-
ergy generation. Comparative analysis: There
is a need for a comprehensive Monte-Carlo-
based evaluation of its performance relative
to other nongradient methods (e.g., the genetic
algorithm). This should include evaluation for

a large data base of cost functions. Adaptive
control: The method holds potential to solve
more challenging adaptive control problems,
yet it needs to be compared to “genetic adap-
tive control methods” (see Passino, 2004, ot
the publications at: http://www.ece.osu.edu/
passino/).
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ENDNOTE

! Actually, microbiologists reserve the term
“swarming” for other characteristics of groups
of bacteria. Here, we abuse the terminology
and favor using the terminology that is used
for higher forms of animals such as bees.
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