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Cohesive Behaviors of Multiagent Systems With
Information Flow Constraints
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Abstract—Bacteria, bees, and birds often work together in
groups to find food. A group of mobile wheeled robots can be
designed to coordinate their activities to achieve a goal. Networked
cooperative uninhabited air vehicles (UAVs) are being developed
for commercial and military applications. In order for such
multiagent systems to succeed it is often critical that they can
both maintain cohesive behaviors and appropriately respond to
environmental stimuli. In this paper, we characterize cohesiveness
of discrete-time multiagent systems as a boundedness or stability
property of the agents’ position trajectories and use a Lyapunov
approach to develop conditions under which local agent actions
will lead to cohesive group behaviors even in the presence of i) an
interagent “sensing topology” that constrains information flow,
where by “information flow,” we mean the sensing of positions and
velocities of agents, ii) a random but bounded delay and “noise”
in sensing other agents’ positions and velocities, and iii) noise in
sensing a resource profile that represents an environmental stim-
ulus and quantifies the goal of the multiagent system. Simulations
are used to illustrate the ideas for multivehicle systems and to
make connections to synchronization of coupled oscillators.

Index Terms—Multiagent systems, multivehicle systems, sta-
bility analysis, swarms, synchronization of coupled oscillators.

I. INTRODUCTION

COOPERATIVE multiagent systems, sometimes called
“swarms,” have been studied extensively in biology [1],

[2], and physics [3], [4] where collective behavior of “self-pro-
pelled particles” is studied. Swarms have also been studied in
the context of engineering applications, including in collective
robotics where there are teams of robots working together by
communicating over a communication network [5], [6], in “in-
telligent vehicle highway systems” [7], [8], and in “formation
control” for robots, aircraft, and cooperative control for unin-
habited autonomous (air) vehicles [9], [10]. Swarm stability has
been studied in a continuous time ordinary differential equation
framework in, for instance, [10]–[12]. Early work in swarm
stability was done in a discrete-time framework [13], [14].
Subsequent work studied the one-dimensional discrete-time
asynchronous case with time delays in [15], [16]. The higher
dimensional case, where there is asynchronism, delays, and a
fixed “line” communication topology, is considered in [17]. A
coordinated control strategy is studied in [18] for a swarm to
climb resource profile when its gradient is not readily available.
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Recently, by using graph theory, some progress has been made
in the study of cohesion properties of multiple agents intercon-
nected by a switching topology [19], [20].

In this paper, we continue some of our earlier work by
studying stability properties of foraging swarms [12], which
has its synchronous discrete-time version in [21]. The main
difference with our previous work is that we consider the
effects of an interagent “sensing topology” and random but
bounded sensing delays in an asynchronous discrete-time
framework. The topology and delays both impose information
flow constraints on the multiagent system (where by “informa-
tion flow,” we mean the sensing of positions and velocities of
agents), which significantly complicate its ability to achieve
cohesive and purposeful behavior. While in [12] we exploited a
large-scale system stability methodology with scalar Lyapunov
functions and -matrices [22], here we extend some ideas
from the theory of numerical methods in distributed computing
[23], particularly, the agreement algorithm developed there.
However, it should be noted that there are significant differ-
ences between our model and the agreement algorithm model
since: i) there are no dynamics in [23] like the second-order
dynamics we use for our agents, ii) all values possessed by the
“processors” in [23] are always bounded by the formulation of
the agreement problem, iii) there is no receiving (or passing)
noise in [23], iv) among their interactions there exists no “re-
pulsion” effect among the values possessed by each processor,
and v) there exists no external effect on the processors analo-
gous to our “resource profile” that models an environmental
stimulus. With all these differences, we are able to show that
under certain conditions, even with noisy measurements and
the group objective of following a resource profile, the group
can become cohesive in the sense that interagent distances are
uniformly ultimately bounded. Moreover, under some condi-
tions a set of zero interagent distances is exponentially stable.
We show this via a general Lyapunov approach like in [24].
Some related work in using consensus methods for vehicular
applications includes [25]–[27]. Under the framework of graph
theory, the authors in [25] show that there exists an information
update strategy for a multiagent system, characterized by a
continuous model with time-varying topology, to reach global
consensus asymptotically if and only if the communication
graph has a spanning tree. In [26], the author studies a model
where zero-mass agents have a time-varying communication
topology, and provides conditions for such a system to achieve
convergence. The authors in [27] investigate the conditions
for formation control of a multiunicycle system with a static
information flow topology.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce a generic model for agents, interactions,
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and the environment. Section III holds the main results on sta-
bility and boundedness analysis of cohesion. Section IV holds
the results of simulations and applications of the theory, and
some concluding remarks are provided in Section V.

Notation

denotes the -dimensional Euclidean space, is the
nonnegative reals, denotes the set of all real ma-
trices, and is the nonnegative integers. is the Euclidean
vector norm. When is a vector, is the th component of .
The notation ( ), where and are vectors of the
same dimension, means that (respectively, )
for all . Similarly, if , and are all vectors with the same
dimension, ( ) means its com-
ponent (respectively, ) for
all , and equals to either or when . is the
absolute value of and it is taken componentwise when is a
vector. denotes the vector . denotes
the minimum integer that is larger than .

II. MATHEMATICAL MODEL

A. Agents, Sensing Topology, Interactions, and Environment

Here, we consider a system composed of an interconnection
of ( ) “agents,” where the th agent, , has
point mass dynamics given by

(1)

where is the position, is the velocity,
is the mass, is the control input, and is the
sampling time. To simplify notation, throughout the paper we
replace all “ ” with “ .” Also, we mainly consider the
case of . We assume for (and thus,

for ), . A double integrator model
is used here for each agent since for the study of the coordination
level of multiagent systems it is reasonable to assume that a
low-level (inner-loop) controller would compensate for fast and
nonlinear dynamics.

Let be a set of indices that label the agents.
Then, the sensing topology of the group of agents is character-
ized by a fixed (time-invariant) directed graph ,
where , and the positive direction of arc
is from to . We say that can affect (or, can sense ) only
if . So, the arc direction of is the direction of in-
formation flow. Let for all be the set of “neighbors”
of agent such that all can have their information about
positions and velocities be sensed by agent (but possibly with
some delays or errors). Clearly, by definition, means

(instead of ). Also, it can be that but
so that agent can sense agent but agent cannot sense

agent . We assume since it is reasonable to assume that
an agent knows its own position and velocity. We also assume
each includes at least one , that is, each agent has at

least one such neighbor. Define as the size of , so
.

Agent to agent interactions considered here are of the “at-
tract-repel” type where each agent seeks to be in a position that
is “comfortable” relative to its neighbors [12]. Attraction here
will be represented in in a form like where

is a scalar that represents the strength of attraction. For
repulsion, we use a repulsion term in of the form

(2)

where and . Other types of attraction and repul-
sion terms are also possible.

We use a “resource profile” , , to represent the
environment the agents move in. All agents move in the direc-
tion of , the negative gradient of , in
order to move away from “bad” areas and into “good” areas of
the environment [28]. There are many possible shapes for .
We will study a family of profiles that are differentiable every-
where and for all , with a known
constant.

B. Sensing Delays, Noise, and Asynchronism

We assume that the th agent, , can sense the positions
and velocities of all its neighbors, but with some time delay. In
particular, let indicate the amount by
which the position and velocity of agent sensed by agent at
the th step is outdated, with a known constant. Thus,
the position and velocity of agent sensed by at the th step
are written as and , respectively. For
simplicity of notation, hereafter we will write as . But,
it should be remembered that it is a time-varying integer-valued
term. We will also assume that each agent can sense its own
position and velocity without any delay, i.e., for all .

We assume that there exist sensing errors when each agent
senses its own and other agents’ positions and velocities. In
particular, let and be these sensing er-
rors (e.g., noise) for agent with respect to agent , respec-
tively. Thus, if , agent actually senses agent ’s po-
sition and velocity as and

. (In fact, precisely speaking,
each agent need not sense the absolute position and velocity
but the relative ones of agent . We will discuss more on this in
Section II-C.) Notice that, different from time delays, we allow
errors for an agent in sensing its own position and velocity, i.e.,
it could happen that and . We assume the
sensing error magnitudes are bounded by some constants, that
is, and for all and ,
where and are known.

Besides the position and velocity sensing errors, we also as-
sume there are some errors for agent in sensing ,
the gradient of the profile at its position at the th step. Note
that sensing errors related to profile could originate either from
position sensing errors (i.e., instead of ) or from gradient
sensing errors (i.e., instead of ). For simplicity, we do
not distinguish between these two cases and write the profile-re-
lated sensing error at the th step as , i.e., we assume
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that . It is assumed that
for all , with a known constant. To

simplify notation, we will write as from
now on. We also assume for , .

Next, we explain how our random delays lead to a type of
asynchronous operation for our multiagent system. Of course,
the motions of the agents are synchronous in the sense that the
time step is fixed. However, the time delays are random,
but only fall on the boundaries of time intervals quantified by

. So, we are considering a restricted form of asynchronism,
with the maximum sensing delay in real time. This is fur-
ther illustrated by the following example. Suppose for agent ,

, and . Also, suppose , and
and , with specific values from these sets chosen
randomly at each . It is possible that agent senses agent
according to , and agent ac-
cording to , where both sequences
are random. This means that agent can sense the positions and
velocities of agents and at different time steps. Thus, a re-
stricted form of asynchronism is observed in this example.

C. Controls and Dynamics

Suppose that the general form of the control input for each
agent at the th step is

(3)

Here, we think of the scalars and as the “attrac-
tion gains” which indicate how aggressive each agent is in ag-
gregating. The gain works as a “velocity damping gain.”
The gain is a “repulsion gain” which sets how much
that agent wants to be away from others and represents
its repulsion range. The gain represents the strength of
the agents’ desire to move along the negative gradient of the re-
source profile.

By writing the control input as in (3), we are assuming that
each agent can sense its own position and velocity, but with
some errors. Also, we assume agent can sense the profile gra-
dient at its position, but with some error. Recall in Section II-B,
to initiate the description of our problem, we also assumed that
agent can sense the (absolute) positions and velocities (pos-
sibly with some delays and errors) of all its neighbor .
However, it should be noted that this is not required. In partic-
ular, only the relative position and the relative
velocity need to be known by agent , as one
can see from (3).

Plugging (3) into (1) and eliminating all -related terms by
using , we have

(4)
where

It is easy to show that the function

, with any real vector, has

a unique maximum value of which is achieved
when [11]. Then, for any and , we have

(5)

where we used the fact that , and
. Since for any given vector we have

, . Thus, for all and we
have

(6)

Sometimes we know a constant integer such that
for all . Then, let , and we

have

(7)

Generally, using (7) instead of (6) helps alleviate conservative-
ness in the results, especially when . Nevertheless, for
brevity, we use (6) throughout the paper.

Similarly, recall by assumption, for all and
we have

(8)

Denote . Then, for
the last term in (4) we have

(9)
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III. STABILITY ANALYSIS OF COHESION PROPERTIES

In this section, we give the main results on stability analysis
of cohesion. In Section III-A we specify some mathematical
properties (Lemmas 1 and 2) and an assumption that we use in
the remainder of the paper. In Section III-B we quantify several
properties of the dynamics of agent position trajectories relative
to the sensing topology. Specifically, we first define some mea-
sures on the state of the system and show that the increment rates
of these measures are bounded (Lemma 3), and then we show
that (Lemmas 4 to 6) the difference between the upper and lower
boundaries of the measures decreases (componentwise) at the
rate of a geometric progression, but with some “perturbation”
term. In Section III-C, we start by defining an error coordinate
system. Then based on the results from Section III-B, we pro-
vide our main results (Theorem 1 and 2), which indicate that
the system trajectories are uniformly ultimately bounded in the
error coordinate system, and that under certain conditions the
set of zero interagent distances is exponentially stable. Finally,
in Section III-D, we interpret the results and give insights into
how system parameters and information flow constraints affect
cohesiveness.

A. Mathematical Preliminaries

Let , ,
, and . Let

and , . Also, denote
. Then, we can write (4) as

(10)

Let , with , , and defined in (5),
(8), and (9), respectively. Also, let . Obviously,

, and for all and .
Next, we present an assumption which will be used

throughout the remainder of this paper.
Assumption 1: The system parameters , , , , and

are such that , , , and .
The following two Lemmas which will be useful in our

proofs.
Lemma 1: If Assumption 1 holds, then i) ,

, , and ; and ii) and
for all .

Proof: Note that , we have i)
immediately. Also, note that and

for all , we have ii) holds.
Lemma 2: Suppose , , and are real vectors of the

same dimension, and is nonnegative componentwise. If
, then . Also, if

, then .
Proof: For the first part, consider the th entry of

each vector, with picked arbitrarily. Then, we have
. It can be shown that

, either or . Since is picked

arbitrarily, we have . The second
part is proven similarly.

B. Properties of Agent Position Dynamics Relative to Sensing
Topology

Define the state for the system as

...
...

...
(11)

where , with and
, . Define , the maximum

displacement from the origin of any agent over the last
time steps in each dimension, as

(12)

Similarly, let be the minimum such displacement,
defined as

(13)

First, we show that the rates of increase (decrease) of ele-
ments of (respectively, ) are bounded.

Lemma 3: If Assumption 1 holds, then for any integer and
, with , we have

(14)

with defined in Section III-A.
Proof: If Assumption 1 holds, then by Lemma 1,

and . Since , by the definition of , we
have from (10) that

for all , where we used the fact that
and . Since the previous equation holds

for all , we have
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With Lemma 2, we have from the aforementioned equation that

By definition of , this is

(15)

Now, for the case of , we have by using (15)
repeatedly

Since the previous equation also holds when , we have
for all .

Similarly, we can show that
for .

Next, we will prove three Lemmas, with our ultimate objec-
tive to show that there exist constants , ,

and such that
for all . This shows

that decreases (componentwise) at the rate of a
geometric progression, but with some “perturbation” term char-
acterized by . In proving these Lemmas, we use Lemma 3
and ideas similar to those in [23]. Next, we present another as-
sumption, a standard one for consensus problems [23], which is
needed by the following Lemmas.

Assumption 2: There exists a fixed nonempty set
of “distinguished” agents such that for every and every

, there exists a positive path from to in the directed
graph , defined in Section II-A.

Recall that in Section II-A we define the concept of sensing
topology and the corresponding directed graph of our system,
but the connectivity of the topology is not clearly defined. As
expected, such connectivity cannot be arbitrary. Assumption 2
gives a constraint on it. This assumption means that the posi-
tion and velocity information of every distinguished agent can,
through certain positive paths, affect every agent , even if and

are not directly connected to each other. Note that for a graph,
having such a distinguished set is a much milder condition than
being completely connected.

Throughout the next three Lemmas, we fix some . De-
fine , , as the set of and such
that is the minimum number of arcs in a positive path from

to in . Also, let . Then, there exists an integer
, , such that

and every belongs (and only belongs) to one of the sets
. Also, for every , , there

must exist some such that, by the definition of in
Section II-A, , i.e., can sense . One illustrative ex-
ample is given as follows. Fig. 1 shows the sensing topology
of five agents, where the direction of each arrow indicates the
positive direction of an arc in . For example, arc ,

Fig. 1. Simple sensing topology with five agents.

meaning the position and velocity information of agent 1 af-
fects agent 2 (or, agent 2 can sense agent 1). Arc ,

, since all agents can sense their own positions
and velocities. Moreover, agents 1 and 5 can sense each other,
and so can agents 2 and 4. Also, by Assumption 2, .
If we choose , then , , ,
and . If we choose , then , ,

, , and .
In the next lemma, we will show that in a -indexed fixed-

length time slot , with any nonnegative integer,
the position trajectory of agent , , is bounded in terms of

, , , and system parameters.
Lemma 4: If Assumptions 1 and 2 hold, then for any agent

, and for every ,
with any , we have

(16)

where ,
, and

Proof: Knowing , we have
from (10)

(17)

Moreover, note that since . Thus,
,

that is, .
Since , we have and, thus,

.
Therefore, . In the proof, we consider two cases
separately: and .

Case (i): : When , all -related terms on
the right-hand side of (17) have time indices in the range of

(where could be negative) and
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thus, are less than or equal to by definition. Therefore,
(17) can be immediately written as

(18)

Since and , (16) holds for this
case.

Case ii): : Before
we proceed, for each fixed and define two sets and

, which will be used in our deduction. Specifically, let

which is the set of agents that satisfy by
the definition of , and let

which is the set of agents that, though they may or may not
satisfy , have Lemma 3 applicable to

and with and . Also,
let and be the sizes of and , re-
spectively. Then, . Obviously, for all

we have (and thus,
by definition), and for all we

have (and, thus, we can apply Lemma 3 to
and ) since all the numbers involved here

are integers. These facts will be used in our deduction. Note that
we do not know the explicit sets and ; all we know
is that they exist for any . The explicit values in the sets
clearly depend on but we allow to be arbitrary in the time
slot , so the analysis that follows
is valid for all in this time slot.

Now, (17) can be rewritten as

By definition of and , the terms are
nonnegative. Thus

Next, using Lemma 3 and the fact that , we have

Using the assumption of and the fact
that , we have after some manipulations

(19)

Recall in (19). For now,
consider , then from (19) we have

(20)

Since (18) gives

we have from (20) that

Repeating this procedure for all
and using the facts that and ,

we have

Finally, in the previous equation, using the fact that for a geo-
metric series, with , the sum

(21)

we prove the first part of the lemma. The second part is proven
similarly.

So far, we have shown that in an -indexed time slot ,
the position trajectory of any agent is bounded in terms
of , , and system parameters. In the next
lemma, we will show that for the same agent as in Lemma 4,
for any agent there exists a and cor-
respondingly, an -indexed fixed-length time slot ,
such that in the position trajectory of agent is bounded in
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terms of , , and system parameters, as
defined in Lemma 4.

Lemma 5: If Assumptions 1 and 2 hold, then for every
, there exists some such that for every

, with ,
and for every , we have

(22)

where and (and particu-
larly, ), with , and as defined in Lemma 4, and

.
Proof: We show this by induction. From Lemma 4, obvi-

ously this holds for case, where and .
Suppose it holds for the case of , , then we
need to show that it also holds for any . By Assump-
tion 2, for any there must exist some such
that . Note that for , by the induction hypothesis, it sat-
isfies

(23)

where .
Now, for

, we have from (10)

Since , for all possible . By Lemma 3

Note that , so and, thus,
the previous equation can be written as

(24)

Let . Recall , then
. Rewrite (23) as

(25)

By assumption,
, therefore, in (24) we have

Since (25) is valid on , it must also be valid on . Thus,
we can plug (25) into (24) directly by replacing with

, and this gives

This proves the first part of the Lemma. The second part is
proven similarly.

Intuitively, Lemma 4 means that if agent has its po-
sition and velocity changed at any time step , then
its position trajectory will be affected by that change thereafter
since it can sense its own information without delay, while in
comparison, Lemma 5 means that, when agent changes its po-
sition and velocity at , for an agent (meaning it is
arcs away from agent on the topology), possibly it cannot be
affected by this change until time step since the
sensing delay on each arc could be up to steps.

Notice that . Thus, given an
agent , Lemma 5 holds in time slot for any agent

. This means that with respect to agent , the position
trajectory of any agent is bounded in in terms of

, , , and system parameters. This gives us
the following Lemma, which, as we stated earlier, shows that

decreases at the rate of a geometric progression,
but with some “perturbation” term.

Lemma 6: If Assumptions 1 and 2 hold, then for every
, we have

(26)

where , with defined in Lemma
5.

Proof: We first show that . To see
this, pick any , then from the parameters
defined in Lemma 5 and (21), after some manipulations we have

Thus, if , then , otherwise
. Therefore,

. Notice that since for all .



LIU AND PASSINO: COHESIVE BEHAVIORS OF MULTIAGENT SYSTEMS WITH INFORMATION FLOW CONSTRAINTS 1741

Now, given ,
for every we have by the definition of

Note that for each , and , from Lemma
5 we have for the fixed that

where we used the facts that and
. Therefore

Similarly

Subtracting these two equations, we obtain (26).
Note that is only affected by system parameters,

sensing errors and resource profiles and thus, is bounded. So
from (26), intuitively we can see that when is
sufficiently large, the first term on the right-hand side of (26)
will dominate the second term and thus, will
decrease in time. Next, we will quantify this idea and provide a
uniform ultimate bound on the position trajectories.

C. Cohesion: Uniform Ultimate Boundedness and Exponential
Stability

Before we proceed, we define an error coordinate system. Let

(27)

be the averaged centroid position of all the agents during the last
time steps, with as defined in (11). By definition,

. Define
as the position error (i.e., relative

displacement) of agent with respect to at time step
, with and . Thus, , , is the th

component of the error vector. In this error coordinate system,
we define for the system as

...
...

...

In this error coordinate system, define the set

(28)

Let denote a metric on and be
the distance between and the set . Since has only one
element, and it is the zero element, a valid choice for the metric
is

(29)

For convenience, we collect some relevant parameters from
Lemmas 4–6.

(Lemma 4) ,
, and

, with .
(Lemma 5) for

(and, particularly, ), with
.

(Lemma 6) .
Next, we present our main results on uniform ultimate bound-

edness and exponential stability characterizations of cohesive-
ness. We show this via a general Lyapunov approach like that in
[24].

Theorem 1: Given a multiagent system described by (10),
if Assumptions 1 and 2 hold, then the trajectories of (10) are
uniformly ultimately bounded in the error coordinate system.
Let

where is defined in Lemma 4, is defined in Lemma 6,
is any constant such that , and

. Let and
. Then, there exists a finite

such that

(30)

for all , with any positive real number. In partic-
ular, , where

if

otherwise

with . Also, for
all .

Proof: We employ a Lyapunov stability theoretic ap-
proach to prove this theorem. Choose Lyapunov function

. Obviously, is time-varying, which
is allowed in the following analysis. In the error coordinate
system, we have

and, thus
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Next, we show is bounded from above and below by
two functions.1 Since

with a componentwise absolute value, we have
. Then, by the definition of

and (29)

Also, by definition, . In
summary, we have

(31)

Next, we will show that for arbitrary , , there exists
a finite such that for all .
To do this, we first show that there must exist a finite such
that , with as defined
earlier. Obviously, . Since ,
from Lemma 6, we have for all ,

Notice that , we have for each

(32)

If , we have from (32) that

(33)

Since , given arbitrary , there must exist
a finite such that . In particular, if

, then ; otherwise, and
there exists an integer such that ,
where

(34)

and, thus, .
Next, we prove by induction that for all

intervals of , . When ,
from Lemma 3 we have for all

1Consider a continuous function f : < ! < . If f(0) = 0, f is strictly
increasing on [0;1), and lim f(r) =1, then f is said to belong to class
KR[24].

since . Suppose it holds for . Then for
each , it must satisfy either i)

or, ii) . If is such
that case i) holds, then we have
from (33); if is such that case ii) holds, then we have, from
Lemma 3, . In either case,

, . That is,
for all .

Finally, since is picked arbitrarily, we have
for all

. The UUB property for follows similarly.

For some applications, it is possible that the terms related to
noise, repulsion and profile are negligible. That is, . So,
(10) can be rewritten as

(35)

Then, the stability property of this system is given by the fol-
lowing theorem.

Theorem 2: Given a multiagent system described by (35), if
Assumptions 1 and 2 hold, then the set , defined in (28), is
invariant and exponentially stable. Moreover, for all

as .
Proof: To see why is invariant, note that in

we have for all , , and . Correspondingly,
for all and

, with defined in (11). Recall that
, so we have from (35)

for all at any time step . Thus, is such that
all are still in . So, is invariant.

Before we proceed, we define a Lyapunov function in
the error coordinate system. As in Theorem 1, let

. Let .
Choose Lyapunov function . Note that by
definition, if , then . That is, at
time step , gives the maximum when , though
possibly reaches the maximum with some
at some other than .

To prove that is exponentially stable, note that (31) holds
here and we first show that is nonincreasing in time. No-
tice when , Lemma 3 gives and

and thus, for all .
Therefore,

This means is nonincreasing.
Next, we will show that there exist some constants and
such that , which

means is exponentially stable. When , (32) gives
for all and all . So,

and by induction, we have for any
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that . Recall that
is nonincreasing, so for any , and for any

, we have

That is, , where
, and is such that .

Such choice of is feasible since . Since is
picked arbitrarily, by the definition of , we have

Finally, since , the pre-
vious equation gives

So far we have proven the set is exponentially stable, which
means as ,

(36)

for all , , and . From (35) and (36),
for all . Since (36) holds for all , we have

(componentwise) for all and as
. Thus, as ,

.

D. Discussion: Parameters, Sensing Topology, and Extensions

1) Effects of Parameters: Before we proceed, it should be
noted that the uniform ultimate bound we obtain in (30) can be
quite conservative since we have to take overbounds of many
terms during the deduction. Therefore, one has to be careful not
to be too ambitious in interpreting the results. Nevertheless, as
we discuss next, the above results are still useful for providing
insights into the effects of system parameters on dynamics and
cohesiveness.

If Assumption 1 holds, we have or alternatively,
, meaning that when is fixed, the sampling

time can be neither too large nor too small. Also,
gives . Recall that is the “velocity attraction
gain” and is the “velocity damping gain;” hence, this means
that if the damping term dominates the velocity attraction effect
this could help to achieve uniform ultimate boundedness.

The parameters , and do not affect the boundedness
(i.e., Lagrange stability) of the system trajectories. Neither do
the noise bounds , and and the magnitude of resource
profile gradient . However, all these parameters do affect the
size of the ultimate bound on the system trajectories (if it is
bounded at all). In fact, increasing these parameters could in-
crease the uniform ultimate bound since is in-
creased.

Note that with a repulsion term of the form defined in (2), col-
lision avoidance is not guaranteed. But large and , meaning
strong repulsion effects, may help reduce collisions between the
agents. Moreover, as in [10], [29], and [30] it is possible to ex-
tend the results of this paper to consider a “hard repel” case by
using a different form for the repel term. Also, note that each
agent can only sense its neighbors’ positions, and thus the re-
pulsion term only takes effect in this “neighborhood.” In other
words, if agent , then agent will not “repel” agent
even if they are close to each other.

The parameters and do not affect the boundedness of
the system trajectories. However, they may affect the ultimate
bound on the system trajectories in that they affect . To see
this, first note that

with as defined in Theorem 1. When increases,
increases and thus, increases. Recall that

, so increases as increases. As a re-
sult, increases. This means that a large could lead to large
ultimate bound on the system trajectories.

Note that although affects in a similar way as does,
one should not jump too quickly to the conclusion that a large

increases the bound. This is because, as discussed earlier,
we overbound many terms and this leads to conservativeness.
Specifically, recall that by definition, large may mean that
there are fewer neighbors (small ) for an agent , which fur-
ther means that the repulsion effect, quantified by , on agent

could be small since from
(5). In other words, although large could increase the trajec-
tory bound by increasing , it could also decrease the trajec-
tory bound by decreasing the upper bound of the repulsion term.
Thus, without knowing the specific topology, we cannot say too
much about the effect of on the uniform ultimate bound.

The values of and also affect the convergence speed of
the system. To see this, we assume for simplicity that is so
small that is negligible. Then, (26) can be written as

Note that when and are fixed, both and
decrease as and increase, meaning the

system trajectory convergence speed decreases.
Theorem 2 indicates that for the multiagent system described

by (35) a certain set is exponentially stable in the error co-
ordinate system despite the existence of sensing delays and
topology. In particular, all agents will converge to one point
and ultimately stop. The effects of and on convergence
speed are the same as stated before.

Note that in Assumption 1, and are equivalent
to and . Inspecting

, , and shows that all and appear with “ ,” which
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means by choosing and , Assumption 1
can be made free of . In other words, consider Assumption 3.

Assumption 3: Let ,
, , and . The parameters

, , , and are such that , , and
.

If Assumption 3 holds and if and are free to change by
design, then Assumption 1 holds for any ( ). This is
because we can choose and such that the effect of is
counteracted and thus, satisfaction of Assumption 1 holds inde-
pendent of . Accordingly, the uniform ultimate boundedness
of the system is independent of the number of agents , pre-
suming Assumption 2 still holds.

2) Effects of Sensing Topology and Relations to a Switching
Topology: It should be noted that some types of classical net-
work topologies can easily fit into our model. For example,
when their graphs are directed, i) a line topology can be charac-
terized by (recall ) for all , ,
and , presuming agent 1 is one end of the topology, ii)
a ring topology can be characterized by for all ,

, and , and iii) a completely connected
topology can be characterized by for all , ,
and .

As defined in Section II-A, the sensing topology in our model
is a fixed (time-invariant) topology coupled with sensing delays
and sensing errors. Next, we relate our sensing topology to a
switching topology by comparing it with that in [19], where the
authors define a switching topology to study Vicsek’s model [3].

First, there are similarities between both topologies. Specifi-
cally, in [19] the authors use some switching signal to char-
acterize the switching topology and, for any agents and , agent

cannot obtain the latest information (“heading angle”) of agent
when the interconnection is broken. In our sensing topology,

the inclusion of time-varying sensing delays and sensing errors
represents that for any agents and , but and , there
is no guarantee that agent obtains the latest information (posi-
tion and velocity) of agent accurately. So, this captures some
features observed in a switching topology. Also, to achieve con-
vergence, it is assumed in [19] that the switching signal is
such that the agents are “linked together” across contiguous time
intervals of arbitrary but finite length. Basically this means the
information (“heading angle”) of any agent can affect, through
certain path, any agent in a finite-length time interval. In other
words, can affect sufficiently frequently, although and
possibly are not directly connected. Our results in earlier parts
of Section III indicate that when some assumptions are satisfied,
convergence can be achieved for arbitrary but finite , which
quantifies the largest amount of information outdate. Basically,
this means it must take a finite-length time for the information
(position and velocity) of to affect (suppose there exists a
positive path from to ) or, in other words, can affect suf-
ficiently frequently, although and possibly are not directly
connected.

There are also significant differences between our sensing
topology and the one in [19]. First, the authors in [19] restrict
to the topology to one characterized by some undirected graph,
which means at any instant, if agent can sense , then must be
able to sense . In our sensing topology, we allow the topology

characterized by some directed graph, which means it is pos-
sible that agent can sense while cannot sense . Obviously,
one can regard undirected graph as a special case of directed
graph. However, to achieve this, we require the existence of a
set of “distinguished” agents, i.e., some special type of agent.
Next, for the switching topology in [19], at any time instant,
agent either senses the latest information of agent or senses
nothing about . Our topology is different in that the sensing
topology is a fixed topology, where at any time instant, agent

always has the potential to sense some position and velocity
information about agent , but such information could be
always outdated (but the outdate amount is bounded). That is, it
is possible that never senses the latest information of . Finally,
by our definition of , or more explicitly, , it is possible
that for , . (Of course, a necessary
condition to have this happen is since is bounded
by .) That is, suppose the position and velocity information
about agent are data indexed by , then these data could ar-
rive at agent (suppose ) in a “shuffled” order. From
our deduction, clearly this “order shuffling” phenomenon, with
the constraint of , does not affect the uniform ulti-
mate boundedness of the system. In comparison, the topology in
[19] does not include a time delay, so it is not immediately clear
whether “order shuffling” could be allowed in that framework.

3) Extensions: Here, we discuss some possible generaliza-
tions of our results. It is possible to generalize the form of con-
trol input, as given in (3), to accommodate a class of attrac-
tion functions that include a nonlinearity and obtain some re-
sults similar to those in [29]. In particular, consider the func-
tion , for

. Suppose for all , the component function
is odd, continuous, and satisfies

for all , , with and some known positive con-
stants, and . Then, the generalized control input can
have the following form:

Obviously, when , the previous equation changes
into (3).

Also, it is possible to cope with gradient following and tra-
jectory following with our model. For gradient following, the
agents only try to have the gradient of their position trajecto-
ries be the same as that of the desired trajectory, , and to
achieve this, we just need to change (where for sim-
plicity, we ignore the noise effect) in (3) into . For
trajectory following, the agents try to have their position tra-
jectories track the desired trajectory, and to achieve this, one
possible way is to replace in (3) with .
As one can imagine, generally, the agent position trajectories
generated by gradient following and trajectory following will
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both have the same shape as , though possibly are scaled
by some factor. However, gradient following also allows some
offset (or translation) on the agent position trajectories with re-
spect to , i.e., in location the position trajectories of all
the agents can be quite different from , though they have
the same orientation. In comparison, trajectory following guar-
antees that the agent position trajectories and are at the
same location. It is clear that gradient following can be accom-
modated in our model without any change, and all our previous
proofs hold. While for trajectory following, some changes in
the control input (3) and thus, system (10), are required, and the
proofs would need to change. Nevertheless, it should be noted
that with either gradient following or trajectory following, the
resultant multiagent model is closely related to models of cou-
pled synchronization, a phenomenon ubiquitous in nature and
one that is attracting increasing research interest [31]–[33]. In
Section IV-B, we will show some simulation results which will
help to make connections between multiagent system cohesion
and synchronization.

IV. APPLICATIONS

The swarm models given in [12], [21] and this paper can have
different applications. Some candidates, as indicated in [12] and
[21], include groups of robots designed to coordinate their ac-
tivities, networked cooperative UAVs developed for commercial
and military purposes, platooning of vehicles in IVHS, and so
on. Also, from the theory in this paper, we can see that the idea
of the agreement problem [23] is also reflected in the models.
Moreover, as we stated in Section III-D3, the models are also
related to models of synchronization. Next, we will show in
Section IV-A some simulations where each agent is regarded
as a vehicle with second-order dynamics. The simulation re-
sults verify some of our earlier observations in Section III. Then,
in Section IV-B, we will give some simulation results on syn-
chronization, with gradient/trajectory following included in the
model, which we hope will motivate future research in under-
standing the relations between multiagent systems and coupled
oscillators.

A. Multivehicle Cohesion

In this section, we will show some simulation results where
we view the agents as vehicles. First, we show some plots related
to the parameter triplet in Assumption 3. It can be
shown that such a parameter set is nonempty for any . For
comparison, we arbitrarily pick and . The cor-
responding parameter surfaces are shown in Fig. 2, with each
point on the surface corresponding to a triplet. For a triplet, if
none of the three components is zero, then it satisfies Assump-
tion 3. Consider the case in Fig. 2(a). Obviously, has
its valid range in (10, 20), which reflects our earlier observation
of . Similarly, since

, and since .
Before we proceed, we will specify how to construct a

sensing topology with a given since different will be used
in the following simulations. Recall that for agent , is the
set of its neighbors, and . Suppose each agent has
(including itself) neighbors in a “circulant” manner, that
is, , , and

Fig. 2. Parameter surface qualified for Assumption 3. (a) T = 0:1. (b) T =

0:5.

. Obviously, we have in this
case. Choose , then the resultant sensing topology
has the desired . Of course, other approaches, including
some that allow randomly assigned connections, to construct a
sensing topology such that it has the desired , are possible.

In all the following simulations, unless otherwise stated, the
system parameters are , , , ,

, , , and . The noise bounds are
, assuming that the noise , and

are uniformly distributed and zero-mean for all . Also,
the profile gradient

, , and sensing delay . All the
simulations in this section are run for 350 time steps. All the
agents are assigned initial positions randomly. For simplicity,
their positions are kept constant for and correspondingly,
all agents have zero velocities for .

Fig. 3 shows the position and velocity trajectories of the
system. From Fig. 3(a), we can see that at the beginning of
the simulation, the agents appear to move around erratically.
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Fig. 3. Position trajectories ((x; y; z) denotes the three dimensions). (a) Posi-
tion trajectories in (x; y; z). (b) Position trajectories versus time.

Soon, they get close to each other and move cohesively in
spite of the existence of noise, sensing delays, and topology
characterized by an incompletely connected graph. Fig. 3(b)
shows the position trajectories in three dimensions versus time.

Next, we illustrate the effects of and . Fig. 4(a) is for the
case of no sensing delay ( ), and Fig. 4(b) is for the case
where we further have a completely connected sensing topology,
i.e., and . As expected, comparing Fig. 3(b) with
Fig. 4(a) and (b), we can see that decreasing and helps
increase convergence speed. Effects of other parameters are also
as expected.

B. Synchronization of Coupled Oscillators

In this part, we show an example where the agents achieve
a type of synchronization through gradient following or
trajectory following, as discussed in Section III-D3, and
slide down a spiral line in a cohesive manner. The three-di-
mensional spiral line, which is the desired trajectory, is
defined as ,

Fig. 4. Position trajectories with parameter changes. (a) No sensing delay case
(B = 0). (b) Complete sensing graph (B = 0 and P = 1).

with , and some known positive constant.
Projected onto the plane, this is a unit circle, with the
origin its center, and we think of each agent’s position in
as representing the phase of an oscillator. To illustrate the
key idea of synchronization of coupled oscillators, we remove
sensing errors and interagent repulsion from the model. So,

. Also, we let , ,
and for gradient following, and for trajectory
following. Other parameters, and the sensing topology, are as
defined in Section IV-A. Simulations in this section are run
for 1000 steps. The simulation results for gradient following
are shown in the following figures, where the initial and final
positions of an agent are represented by a cross sign and a black
dot, respectively. (Note that only one black dot is shown in
the figures since the agents are all on top of one another.) For
comparison, the plot of is superimposed in the figures as
a dashed line with square markers.
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Fig. 5. Position trajectories with gradient following ((x; y; z) denotes the three
dimensions). (a) Position trajectories in (x; y; z). (b) Position trajectories pro-
jection to (x; y).

Fig. 5(a) shows that, although their initial positions and ve-
locities are assigned randomly, the agents soon move together,
achieve synchronization, and slide down along a spiral line as
a group. Since gradient following does not enforce alignment
of the agent trajectories and the desired trajectory, the projec-
tion of the agent position trajectories on plane has an
offset on its center with respect to the one formed by ,
as shown in Fig. 5(b). The results for trajectory following (not
shown here) is similar to those for gradient following, except
that, as expected, the agent position trajectories and are
aligned with each other, i.e., their projections onto plane
are concentric circles. Overall, the simulations clearly illustrate
the complicated nature of the dynamics of the distributed sys-
tems we are studying.

It should be noted that the synchronization shown by the
above simulations is different from that found in [31], [33] since
i) the agent trajectories here initially do not have to stay on a

circle in the plane, even though ultimately they must, in
order to be synchronized, and ii) the underlying dynamics are
different. Still, there are interesting analogies between the at-
traction terms and the sinusoidal terms in the Kuramoto model
[31], and the velocity damping term along with the desired tra-
jectory profile and the natural frequencies of the oscillators in
[31].

V. CONCLUDING REMARKS

In this paper, we focused on an asynchronous discrete-time
formulation and, using a Lyapunov approach, derived stability
conditions under which a multiagent system achieves cohesive-
ness even in the presence of sensing delays, sensing errors, and
sensing topology, though collision avoidance is not guaranteed
in this scheme. An agent sensing topology characterized by a
completely connected undirected graph might be easy to an-
alyze, but may rarely be found in nature. By defining a di-
rected graph as in Section II-A, we remove the requirement
(as in [12]) that each agent has to be able to detect all other
agents. Although Assumption 2 requires the existence of some
special set , but it is not a strong assumption. Thus, the re-
sults in this paper represent our progress in studying multiagent
systems that demonstrate certain global “emergent” behaviors
through local interactions. As discussed in Section III-D, our
sensing topology with time-varying sensing delays and sensing
errors captures some features observed in a switching (or time-
varying) topology. Thus, we view the results in this paper as rep-
resenting some progress toward establishment of stability prop-
erties of multiagent systems with a switching topology.

Finally, as explained in Section III-D3, our approach may also
help make progress in studying the problem of synchronization
of coupled oscillators with a sensing topology, time delays, and
asynchronism. In fact, we hope that the ideas there will motivate
the future study of relationships between multiagent system sta-
bility and synchronization.
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