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Adaptive Fuzzy Control: Experiments
and Comparative Analyses

Rall Ordbéiiez, Jon Zumberge, Jeffrey T. Spooner, and Kevin M. PasS&dor Member, IEEE

Abstract—Advances in nonlinear control theory have provided fuzzy control there is no proof that these methods will result
the mathematical foundations necessary to establish conditions jn a stable closed-loop system (verification of stability is
for stability of several types of adaptive fuzzy controllers. How- important, especially for safety-critical systems). Recently,

ever, very few, if any, of these techniques have been comparedh wever veral r rchers have explored id from con
to conventional adaptive or nonadaptive nonlinear controllers or owever, several researchers have explore €as irom con-

tested beyond simu|ation; [hereforel many of them remain as Ventional adaptive and neural Contl’Ol to eStabliSh Stab|l|ty
purely theoretical developments whose practical value is difficult conditions for a variety of adaptive fuzzy control techniques
to ascertain. In this paper we will develop three case studies where [1]—[4], [19]-[23] and neural control methods [3], [24]-[29].
we perform a comparative analysis between the adaptive fuzzy Ganerglly, these techniques can be split into two categories:
techniques in [1]-[3] and some conventional adaptive and non- . L k - .
adaptive nonlinear control technigues. In each case, the analysis direct and indirect a_daptl\_/e fu;;y control. I.n indirect adaptive
will be performed both in simulation and in implementationin ~ fuzzy control, there is an identifier mechanism that produces a
order to show practical examples of how the performance of these model of the plant which is then used to specify the controller
controllers compares to conventional controllers in real systems. (j.e., we update the controller parameters indirectly by first

Index Terms—Adaptive fuzzy control, fuzzy control, intelligent ~ €stimating the model parameters). In direct adaptive control,
control. a model of the plant is not estimated; instead, we directly
tune the controller parameters using plant data. Regardless of
the method chosen or whose approach one takes, the practical
value of these adaptive controllers is questionable since

1) there have been very few comparative analyses with

in some applications, itis sometimes difficult to specify * ¢4nyentional adaptive or nonadaptive nonlinear control
the rule base for some plants, or the need could arise to tune | athods:

the rule-base parameters if the plant changes. This provides thg) there seem to be no experimental studies to determine
motivation for adaptive fuzzy control, where the focus is on how well these techniques perform in implementation

the automatlc? on-line synthesis gnd tuning of fu;zy controller especially relative to conventional adaptive or nonadap-
parameters (i.e., the use of on-line data to continually “learn” e nonlinear control techniques.

the fuzzy controller, which will ensure that the performance :
o . . A complete assessment that would clarify how the above
objectives are met). The first adaptive fuzzy controller called

MR o . adaptive controllers would perform relative to all conventional
the linguistic self-organizing controller (SOC) was introduce : . . . .
methods and a wide variety of experimental settings is clearly

in [7]; several applications of this method have been studi% ond the scope of this or anv sinale paper. Here. we use
(see the references in [8]). More recently, the “fuzzy mod £y P y singe paper. ’

Hree case studies to compare the adaptive fuzzy controllers

reference learning controller” (FMRLC) was introduced "E)both direct and indirect) in [1]-[3], to some of the more

[8]-[10], its extensions in [11], and both simulation [10]-[16 . ) i
. . X . opular conventional linear and nonlinear methdd$ie case
and implementation studies [17], [f8]ave shown this method ; ; .
s}udles we focus on are a rotational inverted pendulum, a

to be quite successful. Many other adaptive fuzzy contrg . )
: . . rocess control experiment, and a ball-beam experiment. In the
techniques exist and the reader is referred to [9] and [10] for . .
. case of the pendulum, we provide a model of the dynamics of
a more complete overview.

The problem with the SOC and FMRLC is that Whilethe plant, e_xplaln the experimental setup, o_levelop cor_wentl(_)nal
they appear to be practical heuristic approaches to adapt'?lvned gdapnve fuz; y controllers, and provide both S|mg|at|on
and implementation results. For the other case studies, we

Manuscript received November 29, 1995; revised August 2, 1996. Tﬁ%mply give .a brIEf.deSC”ptlon of t_he experiment ?‘nd proylde
work was supported in part by the National Science Foundation, Grants EBGI results in the interest of brevity. The paper is organized
9315257 and IRI 921332. as follows.
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State University. Columbus, OH 43210 USA. In Section Il, we present the rotational inverted pendulum

|. INTRODUCTION
HILE nonadaptive fuzzy contrblhas proven its value

Publisher Item Identifier S 1063-6706(97)00593-6. case study. After explaining the experimental setup and model,
1The authors assume that the reader has a good understanding of nonadpdevelop a linear quadratic regulator (LQR), a (nonadaptive)
tive fuzzy control. For an introduction, see [4]-{6]. feedback linearizing controller, and an adaptive feedback

2The FMRLC has also been successfully implemented on a rotational
inverted pendulum, a single-link flexible robot, and an induction machine. It 3The authors must assume that the reader has some familiarity with the
has also been applied to the multiple-input multiple-output (MIMO) problertechniques in [1]-[3]; these works provide all the necessary background
of a two-link rigid robot. details.
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Fig. 1. Hardware setup of the inverted pendulum system.

linearizing controller (AFL). Next, we design two indirectthat presents considerable control-design challenges, and is,
adaptive fuzzy controllers, one that does not as@riori therefore, appropriate for testing the performance of different
information about the plant, and one that does. Followirgpntrol techniques. The experimental setup used in this paper
this, we specify two direct adaptive fuzzy controllers, onwas developed in [31] and [32], where a nonlinear mathe-
that uses a feedback linearizing controller as the “knownatical model of the system was obtained via identification
part” of the controller and another that uses an LQR faechniques, and four different control methods were applied:
initialization. Simulation and implementation results are showproportional derivative control, linear quadratic regulation,
in all cases. Finally, we summarize and discuss the results atidct fuzzy control, and autotuned fuzzy control.
the performance of each controller. The hardware setup of the system is shown in Fig. 1 (taken
In Section lll, we present the process control case studyom [31]). It consists of three principal parts: the pendulum
After providing the experimental setup and model we sunitself (controlled object), interface circuits, and the controller,
marize our results using a feedback linearizing controller amiplemented by means of@ program in a digital computer.
an indirect adaptive fuzzy controller. In Section IV, we firsThe controller can actuate the pendulum by turning the dc
describe the ball-beam experiment and its mathematical modabtor to which it is attached. The motor has an optical encoder
Then we develop a (honadaptive) fuzzy controller and a diremt its shaft that allows the measurement of its angle (with
adaptive fuzzy controller and compare their performance iaspect to the starting position) which we will refer to &s
simulation and implementation. In Section V, the concludinghe shaft of the motor has a rotating base fixed to it. The
remarks, we summarize the overall results, provide a bropdndulum can rotate freely around the base, and its afgle,
assessment of the apparent advantages and disadvantagesroflso be measured with an optical encoder with respect to
the adaptive fuzzy control techniques, and provide some futihe pendulum’s stable equilibrium point, where it is assumed
research directions which help to identify limitations of théo have a value of radians. The input voltage to the dc motor
scope and content of this paper. This paper is a significandlynplifier is constrained to a range &b V.
expanded version of the one in [30]. As detailed in [31], the rotational pendulum system presents
two somewhat separate problems: first, a controller needs
to be designed that is able to balance the pendulum, and
second, an adequate algorithm has to be used to swing up

In our first case Study for indirect and direct adaptive fUZZﬂ‘]e pendu'um so that when it reaches an upnght position
control, we will focus on a rotational inverted pendulum tegf e where¢; ~ 0) its angular velocity §;) is close to

~

bed. Since adaptive control is being studied, special emphagiso. This facilitates the job of the controller which “catches”
will be put on robustness by investigating the ability ofhe pendulum and tries to balance it. In this paper, we will
the controllers to compensate for significant plant parameigst be concerned with swing-up details, and will concentrate

Il. ROTATIONAL INVERTED PENDULUM

variations. only on the balancing control of the pendulum. The so-called
“simple energy pumping” swing-up algorithm developed in
A. Experiment Setup [31]* will be used without changes in all the experiments and

The rotational inverted pendulum is an underactuated (i.e.,
it has fewer inputs than degrees of freedom), unstable systertPlease consult this reference for details on the swing-up algorithm.
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simulations, only with minor tunings depending on the natustep size of 0.001 s. The controllers are assumed to be
of the test. This algorithm is just a proportional controllecontinuous; therefore, the sampling time of the controller was
which takes as input the error between a maximum swisgt equal to the integration step size. Also, the initial conditions
angle (the tuning parameter) and the base afigle were kept identical in all simulations; these ax€0) = 0 rad,

In implementation, a sampling time of 0.01 s was useay(0) = 0 rad/s, z3(0) = = rad, andz4(0) = Orad/s. Under
All the simulation and experimental plots include the swinghese conditions, the pendulum is in the downward position.
up phase and show the first 6 s only, since this time w&ghen the simulations start, the pendulum is first swung up
considered enough to show the representative aspects of lith the same swing-up algorithm used for implementation,

results. and then “caught” by the balancing controller currently being
tested to resemble experimental conditions as accurately as
B. Modeling and Simulation possible. The balancing controller begins to act wheyj <

The rotational inverted pendulum can be represented wittf's rad; at the same time, the swing-up controller is shut down.
four-state nonlinear model. The states@sefo, 6, andd,. Of  or the swing-up algorithm, we have one design parameter,

them, onlyé, and§, are directly available for measurementthe anglel’, with values typically between 1.1 and 1.4 radians;

the other two states have to be estimated. To do this, WHS angle determines the maximum amplitude of each swing.
use a first-order backward difference approximation of thg'® 92iNfs. is fixed at 0.75 for all tests. Then, taking as _
derivative. As tested in [31], this estimation method turn§€ SWing-up control input, the algorithm works as follows:
out to be very reliable and accurate. Thus, for the rest of
the discussion, it will be assumed that all states are directly It 6o — 7 <0 then foer = —I'
available for the controllers without need of further estimation. elseforer = I

The differential equations that describe the dynamics of the sw = Oorer — 00, V = KyuwCow.
pendulum system (note thét = 0 is the unstable equilibrium
point) are given by

b0 = — apbo + Kpu (1) In this section, two nonadaptive controllers for the inverted
b, = — G 0, + mi gh sin 0 + K1 bo ) pendulum will be introduced, and these will serve as a baseline
J1 J1 1 for comparison to the results to follow. First, a linear quadratic
wherem; = 8.6184 x 102 Kg is the mass of the pendulum,egulator from [31] (which provided the best experimental re-
l, = 0.113 m is the distance from the center of mass ctults for nominal conditions) will be used. Second, a feedback
the pendulumg = 9.8066m/s? is the acceleration due tolinearizing control law will be used; as shown later, there is no
gravity, J; = 1.301 x 103N — m — s? is the inertia of guarantee of boundedness uging this t'echnique', a}nd the results
the pendulumC; = 2.979 x 10=3 (N — m — s)/rad is the obtalngd here corrot_)orate this theoret|c_al prediction.
frictional constant between the pendulum and the rotating basel) Linear Quadratic Regulator:To design an LQR for the
K, = £1.9 x 103 is a proportionality constant, and is Pendulum, the approach taken in [31] was to linearize the
the control input (voltage applied to the motor). A first-ordefyStem model by using the approximatign 3 ~ 3, which
model of the dc motor is given b§(s)/U(s) = K,/s+a, IS valid for small angles, in (3). The resulting system can be
with @, = 33.04 and K, = 74.89. The numerical values shown to be_controllable; thus, an LQR can be _constructed.
of the constants were determined experimentally in [31]. Nof@r the design, the greatest penalty was assigned fo the
that the sign of; depends on whether the pendulum is in th@TOr in statesz; and 4, since the primary objective of the
inverted or the noninverted position, i.e., fof2 < 6; < 37/2 controller is to balance the pendulum, and not to keep the base
we haveK; = 1.9 x 1073, andK; = —1.9 x 103 otherwise from moving. The state-feedback gain obtained was tested
(recall thaté; = = is the stable equilibrium point). WheneXperimentally and, after some fine tuning, the gain vector
simulating the system, a conditional statement is used 4§ed WasK = [-0.7, 1, 10.8, 0.7]", where the state error
determine the sign ak; according to the relation above. € = Xr — X (% iS & reference-state trajectory, typically set
Let &, = 8o, 29 = o, 73 = 6;, andz, = 6,. Then a state identically equal to zero) is used, and= [z1, 2, 23, z4]T.

C. Two Nonadaptive Controllers

variable representation of the plant is given by As shown in Fig. 2(a) and (b), the LQR performs very
] well in both simulation and implementation; it successfully
T1 =22 balances the pendulum and drives all the system states to zero.
T2 =a172 +biu The control input ideally goes to zero when equilibrium is
i3 =14 reached [Fig. 2(a)], although in practice it does not [Fig. 2(b)],

since the unmodeled aspects of the system (e.g., sensor noise,
sampling time, nonlinear characteristics, etc.) prevent the
where a; = —ap, ax = —(Kyap/J1), a3 = mugli/J1, controller from behaving perfectly. The results obtained here
ay = —(C1/J1), b = K, andb, = K, K,/J;. Since we closely match those in [31].
are only interested in balancing the pendulum, we take the2) Feedback Linearizing ControllerWe find that the in-
output of the system ag = xs. verted pendulum has strong relative degred33], [34] of

For simulation of the system, a fourth-order Runge—Kuttavo because after differentiating the output twice, we obtain
numerical method was used in all cases, with an integratiin= as z2+as sin x3+aq x4+bou. Then, as described in [35]

T4 =aoxo + a3 sin 3 + agxs + bou 3)
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Simulation results using the LQR Laboratory results using the LQR.
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Fig. 2. (a) LQR simulation. (b) LQR implementation. (c) Feedback linearization simulation. (d) Feedback linearization implementation.

and [36], we can define a feedback linearizing control law agro dynamicf the pendulum are given by, = 29 and
1 292 = (a1 — agby/b2)z0e. For the system to be minimum
up = ™ [—(a2 z2 + a3 sin x3 + ag x4) + V] (4) phase, its zero dynamics have to bsymptotically stable
2 [33], [34], i.e., a1 — azby /by > 0O for this choice ofT(x).
where v is a signal that we will define later. By applyingHowever, a simple computation shows that this is not the
this control law, the plant state space is mapped to anothé®se; indeed, the zero dynamics of the pendulum are only
linear space. Since the plant has a strong relative degréw@rginally stablebecause:y — az b1 /b = 0. This causes two
it is possible to find this mappin@ such thatT(x) is a states of the systenx{ andz», sincexs andz4 are bounded
diffeomorphism. Thenz = T(x) is a new linear state variablewhen the output is bounded because we assume thexstate
representation of the system if we use the control law (4). The uniformly continuous) to be potentially unbounded under
system has two unobservable states that form the so-caliegdback linearization. As will be seen later, this prediction is
internal dynamicg33] of the system. Such a mappifi(x) corroborated, both in simulation and experimentation.
can be found to bey; = T1(x) = z3, 212 = Ta(X) = w4, The marginal stability of the zero dynamics implies that
201 = T3(X) = o1 + 3, and za0 = Ty(x) = 22 — (b1 /b2)x4. although the control law (4) will yield a stable input—output
Given this new set of states, the output of the plant is givdrehavior under the right choice of If the initial conditions
by v = 211. of the system are distinct from zero, then a subset of the states
If we restrict the outputy to be identically zero for all will be unbounded; in particular, by solving the zero dynamics
time, and given thatxk = 0 is an (unstable) equilibrium differential equations for some nonzero initial conditions, we
point of the undriven system (see [35] and [36]), then thiind that the stater; (which represents the base andlg of
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the rotational pendulum) will be given by (¢) = ct in steady water container, a “sloshing liquid” effect is created, which
state, where represents time andis an integration constant. strongly affects the dynamics of the system. As will be seen
It is worth noting that the unboundedness :of can be from the results below, the bolts have a different type of effect
tolerated in this experiment, since all it means is that thbat is caused by their “rattling” during balancing.
pendulum base keeps rotating while the pendulum is beingWe note that the adaptive controllers in this subsection and
balanced. Of course, in practice, a limit is imposed on thbe remainder of this section are based on the assumption that
rate and amount of this rotation to protect the machinery, bilie plant is minimum-phase (see [3], [36]). Since this assump-
in principle, the marginal stability of the zero dynamics cation does not hold for the pendulum, some consequences of the
effectively be dealt with. techniques are no longer guaranteed; specifically, we should
To simulate and implement the feedback linearizing closemt expect the state; (and possibly the control input) to
loop, it is necessary to specify the signal Let y,,(¢) be be bounded, because its behavior will depend on the initial
a prespecified reference trajectory (set equal to zero for atinditions of the system. However, the study of the adaptive
cases in this work), at least twice differentiable, and takechniques on such a system is of theoretical and practical rel-
co = y — ym (following the notation in [35] and [36]). evance because, in the first place, it provides a good example
Then, lety = 4, — 2é, — 8¢, with which we obtain a of practical results very well predicted by theoretical analysis
stable (in the input—-output sense) closed-loop system with nonlinear systems, and in the second place, it can give
poles ats = —1+2.655. This choice of the closed-loop polesinsight into how to overcome the limitations of the adaptive
was made because of practical considerations: experience withtrollers inherited by their underlying assumptions. As will
feedback linearization on the pendulum experiment indicates shown, it is indeed possible to obtain not only stability and
that attempting to bring the output error to zero too fastoundedness, but also good robustness to unmodeled plant
can sometimes result in failure or a degraded performanobanges.
therefore, these somewhat slow poles were chosen. The adaptive fuzzy techniques illustrated in this paper are
The simulation results in Fig. 2(c) are as expected—thmsed on feedback linearization; therefore, adaptive feedback
pendulum is balanced, and the base keeps rotating at an alnfiostarization (AFL) seemed the most natural choice for refer-
constant velocity. Note that this controller settles the contrehce and comparison to conventional adaptive control. For the
input at a nonzero value, which in turn introduces energy inttesign of this controller, the technique described in [35] and
the system and causes its base to rotate; this is easily explaifg&] was used as we discuss next.
by the theoretical analysis of the zero dynamics. A comparisonWe first rewrite (3) as a linear combination of known, fixed,
with the experimental results in Fig. 2(d) shows significamtonlinear functions
similarities: after the swing-up phase, the statesandzs, as .
well as the control input, behave as in the simulation. Observe x = f(x) +9(x)u
that in simulation the feedback linearizing controller reaches y =h(x) (5)
a peak value of-6 V to balance the pendulum; although
in implementation the control input is limited t&5 vV as Where

explained above, no such bound was used for simulation since 9 0 0
we desired to preserve ideal circumstances regarding control 4|0 |22 wm |0
action. flx) =6; 4 +0; o| T O3 0
0 0 T2

. . N 0 0

D. Adaptive Feedback Linearization N o 0 N 40 0

Both the feedback linearizing controller and the LQR, as 4 0 ° 0

well as almost any other nonadaptive technique used on the sin 3 T4

pendulum fail (or in the case of direct fuzzy control have 0 0
degraded performance [31]) when the nominal system (i.e., the (%) _ g 1 e 0
pendulum without any mass changes or added disturbances) g =0 g 2 oy’
is altered in anunknown way It is in such a situation that 0 1

adaptive control plays a central role since it is, at least in h(x) = 3. (6)
principle, able to deal with significant plant changes. In this
investigation, two types of plant alterations were used—e shallestimatef(x) andg(x) by searching for the optimum
container half filled with metal bolts fixed at the tip of thevectorsg™®" = [¢{V ... 6V |T ando@" = [, (2.
pendulum, and a container half filled with water fixed at the/e use #V)(¢) and #?)(¢) to denote the estimates of the
tip of the pendulum. optimum parameter vectors at time Then, the adaptive
The added weight (not accounted for in the design of tlwntrol law is given byue; = 1/(Ly Lsh)e[—(Ly2 h)e + V]
controllers) not only shifts the pendulum’s center of mass awashere(L ;1 ). stands for the estimated Lie derivativefoivith
from the pivot point (which, in turn, decreases the natura¢spect tof, as defined in [34] and [36], and the variabte
frequency of the pendulum) and makes the effects of frictidras been dropped for convenience. To allow for tracking, we
less dominant, but also introduces random disturbances ttete v = i, + a2(Um — ) + @1 (ym — ), With a3 = 8 and
vary in nature with the bolts and the water. In the case of the = 2 to have the same poles as in the nonadaptive feedback
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linearization. Notice thaj does not need to be estimated, sincthis and the next section result in stable operation, the reader
1 = &3 = x4 has already been approximated by a backwasthould consult [1]-[3].
difference, as explained above. 1) Design without Use of Plant Dynamics Knowleddes

Following [35], define® € %32 as a vector contain- previously shown, the pendulum model has a relative degree
ing all the combinationsé)gl)(t), 952)(t), 951)(t)9§1)(t), and of two. The input—output differential equation of the pendulum
61 (1)6%) (). For adaptation, define an error signal of th§'0del can thus be rewritten as
form e; = P26, + Pre, with e, = y — y,,,, where the transfer i = [og(t) + a(x)] + [Br(t) + B(X)]u (8)

. 5 g o

flfjr?c'“?jn (/f2f_+/3})/(8 .+O‘2‘B+O‘1) IS strll_ctl):jposg_ve :eal [33]. (Where, for now, we takey,(f) = 0 and f4(#) = 0 (o, and

€ adaptation faw given by a normalized gradient approac /E are known, measurable parts of the dynamics [3]), and

& — erw Ko substituting the numerical values of the parameters we obtain
o ltwlw a(x) 2 48.2521 9 + 73.4085 sin 3 — 2.2898 x4  (9)
where w is the regressorvector obtained by computing the B(x) ~—109.3705. (10)

output error equatioft, + a2 ¢, + a1 ¢, (see [36]). To start In these equations, we use “approximately equal” signs be-
the search for the optimum vecto!)” and 62" at the cause the numerical parameters of the equations are not
best known point in the search space, their estimétes§t) expected to represent the pendulum’s input-output dynamics
and §(?(t) were initialized using the parameters obtainegxactly rather, the right-hand side of (9) and (10) are simply
from the system modeH)(0) = [, ay, a2, a3, as] ", and  ourbest known approximatiorie a(x) and3(x), respectively.

6 (0) = [by, bo] . For simulation and implementation weNote that3(x) < 0, so there exists &, < 0 (take, for instance,
usedf, = 0.08 and 8, = 0.1. These values fop; and 3> 3, = —100, which gives us a safe margin of error) such that
were determined via manual tuning; after several simulatiqj(x) < f for all t > 0; thus, 3(x) is bounded away from
and experimentation trials, they were the choices that, as &0, a condition we will need to ensure stability.

as we could determine, made the controller work at its best|t js possible to represent (9) and (10) using a special

and still maintain the strictly positive real condition. form of Takagi—Sugeno fuzzy systems [37]. To briefly present

Flg 3 contains the results obtained with AFL. Flg 3(&) hqﬁe notation, take a fuzzy system denoted fﬁx) Then,
characteristics similar to those of the nonadaptive feedbagky) — P e/ P, . Here, singleton fuzzification
linearization in Fig. 2(a), although the required control inpuf the inputx = [£1, -+, 2] is assumed; the fuzzy system
stays within implementation bounds. For the nominal plant, thgys , rules, andy; is the value of the membership function
controller exhibits very good behavior, as seen in Fig. 3(bfr the antecedent of théth rule given the inputx. It is

the pendulum is perfectly balanced and the control inpyksumed that the fuzzy system is constructed in such a way

settles at a value close to zero so the base rotates slovwst SP_ p # 0 for all x € ®". The parameter; is
. =
In Fig. 3(c) we observe that the controller manages to balangg consequent of théth rule which, in this paper, will be

the pendulum with bolts, but only for a short time; the base {§ken as a linear combination of Lipschitz continuous functions
turning rapidly and, at about the fifth second, the control INPY (x) e R, k=1, -, m—1,s0that; = a; o+a; 1 21 (x)+

reaches the its limit of 5 V. The controller had the greatest. + @i o1 Zm_1(X), i = 1, -+, p. Define
problems with water and was not able to maintain equilibrium, ’
as seen in Fig. 3(d). In the next section, we will show how the

adaptive fuzzy control techniques can significantly outperform v = Z1 (_x) c fpm
this conventional adaptive controller. :

Zrn—l(x)
E. Indirect Adaptive Fuzzy Control (T (1 - 1]
Here, an indirect adaptive fuzzy controller (IAFC) will be EP:M‘
developed for the inverted pendulum; two possible configu- ~ !
rations will be presented and used for experiments. First, a aLo GL1 e L1
controller that does not make an explicit use of the known ’ ’ ’
. . . . azo @21 - G2 m-—1
plant dynamics to estimate the “certainty equivalence control AT = 7 ? o
term” [1], [3] will be used on the pendulum. Second, it will : : : :
be illustrated how to incorporate the knowledge of the model Gp,0 Ap,1 *** Gp m—1

(3) in the design. It will be shown experimentally that sucithen, the nonlinear equation that describes the fuzzy system
an enhanced controller has, in the case of the pendulum, a can be written agf(x) = =T A¢ (notice that standard fuzzy
ticeable advantage over the previous techniques, and providgstems may be treated as special cases of this more general
an increased robustness against the induced disturbances.representation [3]).

For what follows in this section and the next, the notation Given this notation, we can write

from [1]-[3] will be used. Moreover, in the interest of being — Ty d 11
brief, we do not repeat the theoretical development of the con- (x) =25 Aaa + da(x) (11)

: : i iofi B(x) =25 A3Cs + da(x) (12)
trollers in [1]-[3], and simply provide a complete description B Lese T g

of each controller. To fully understand why the controllers iwhere d,(x), ds(x) are the approximation errors that arise
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Simulation results using AFL Laboratory results using adaptive feedback linearization: no weight.
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Laboratory results using adaptive feedback finearization: metal boits. Laboratory results using adaptive feedback linearization: sloshing water.
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Fig. 3. (a) AFL simulation. (b) Experimental results of AFL with nominal plant. (c) Experimental results of AFL with disturbance: metal bolts. (d)
Experimental results of AFL with disturbance: sloshing water.

whena(x) andg(x) are represented with finite fuzzy systems, We approximate the unknown fuzzy system representation
and Ay, Aj represent the optimum and unknown fuzzy systemsing
parameters that minimize the approximation errors. We assume
that D,(x) > |da(x)| and Dg(x) > |dg(x)|, where D, (x)
and Dg(x) are known bounds of the approximation errors

, _ . B(x) =2T Az(t)¢s (14)
between the actual system and its fuzzy system representation. j j
In simulation, these functions were taken Bs(x) = 0.5

and Dg(x) = 1.1, since the optimum representation errofyhere the matricesi,(t) and As(t) will be adaptively up-
was expected to be small. In the laboratory, however, dhted, as shown below in (18). Based on the general form of
was necessary to increase these bound®4¢x) = 5 and the system model (3), we take the following set of equations
Ds(x) = 8, because apparently the complexities of the refdr botha(x) and3(x) (also used for the direct adaptive fuzzy
plant were much harder to represent than the model. Note thahtroller in the next sectiony = [1, zy, =2, sin x3, 74] .
these values were chosen as the result of a tuning procedse fuzzy systems use five rules each of the form

where rough intuitive estimates of the values were used to
start with and then tuned to improve the performance of the
controller. The functional effect of increasing the error bounds
D.(x) and Ds(x) is to increase the magnitude of the sliding
mode control term (see below). where eachf;(z) is, respectively, a row of the matrices

&(x) =2 Aq(t)Ca (13)

If x5 is F; then ¢; = fi(2), i=1,---,5 (15)
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Fy F, Fy Fs if it provides no advantage in a particular design. However,
it gives the designer the flexibility of choosing a hard bound
for the tracking error, which in the case of the pendulum is
a useful feature.

To define the adaptation equations, fetbe a5 x 5 identity
matrix, and let(Q = 0.05 15 for simulation, and@} = 0.1 I;

-1 -0.5 0 0.5 1

Fig. 4. Input membership functions. for implementation, and take
i -1, T
2T A, (t) and 2T As(t), and we initialize the system with Aalt) = =@ 2G4 €5
’ A,@(t) = _Q_l z C,L—li— Cs Uce- (18)
ro 0 0 0 O
0 0 0 0 0 A projection algorithm is used to ensure that(¢) and As(t)
Ax(0)=|az a2 a2 ax a2 remain within reasonable limits; specifically, it is sufficient to
a3 a3z az az as ensure thatB(x) is bounded away from zero Witﬁ(x) <
LGy Qs G4 Q4 G4 Bo < 0.
fbe by ba b bo Note that the IAFC adaptation algorithm guarantees that the
0 0 0 0 O parameter error matriceB,(t) = A,(¢t) — A% and @3(t) =
Ap(0)=10 0 0 0 O0]. (16)  Ap(t) — A% will at least stay bounded. Note also that (9) and
0 0 0 0 O (10) are themselves only approximations, based on our best
L0 0 0 0 O knowledge of the plant. Thus, it is possible that the fuzzy

Note that this fuzzy system design is overspecified, mainly
the case ofj(x) because, from the system model, this functio
is not expected to depend on the state vegtddowever, this
choice was made to allow for a greater adaptation flexibilit%
The initialization (16) gives the system the best-known startiq
point in the search space. The input fuzzy séisare as
described in Fig. 4 (the normalizing gain for the input to th
fuzzy systemrs was set to one for simplicity).

x) does not converge to (9) and (10), but perhaps to a better
or worse) model of the system.
In this way, the IAFC from [1] and [3] is completely
ecified. One of its assumptions is not satisfied, namely, that
e zero-dynamics of the plant are exponentially attractive;
thus, as happened with the adaptive and nonadaptive feed-
Back linearizing controllers, boundedness of the stateand
. X _ . T possibly of the control input;, is not expected. However,
pefme the signals, = rg ¢, + ¢, andva(t) = fim +ne; + in principle, the controller should be able to achieve output
Ko €, Where now we take, = u,, — v and we letn = 1, .
. . convergence (i.e., keep the pendulum balanced).
ko = 8 (with these choices, the poles of the error transfer : . L
. ; We see in Fig. 5(a) that this is indeed the case. The
function are ats = —1 ands = —9, which produce a small . N
) X L . endulum is successfully balanced, and the settling time of the
error settling time). Then, the indirect adaptive control la) : . :
[1], [3] is given by controller is smaller than in the case of any of the previous
' controllers since here,(t) = é, + 9é, + 8¢,, which has

?/stem representation of the input—output equati¢r) and
(

Uy = Uee + Usi + Up; (17) poles ats = —1 and s = —9; the reason why this signal
was not used for the (adaptive and nonadaptive) feedback
where thecertainty equivalence control teria taken as... = linearizing controllers is that with it they performed worse,

[1/8(x)][-&(x) + va(t)]. The sliding-mode control ternis  both in simulation and experimentation, in terms of error
given by u,; = (1/80)[Da (X) + Ds(x)|ucc|]sgn(es). To convergence and robustness.

define thebounding control term,;, we first need to determine  For implementation, we see in Fig. 5(b) that the pendulum
bounding functionsy; (x) and 1 (x) for |«a(x)| and |3(x)|, is balanced using the nominal plant, although the output
respectively. Based on the numerical values of (9) and (1@)ror is not exactly zero. When the bolts disturbance is used
the bounding functions were empirically determined to Wig. 5(c)], the controller has trouble similar to AFL [see
a1(x) = 70z2 + 7523 + 10z4, Si(x) = 140. Then, let Fig. 3(c)] because the control input reaches its lower limit
up = {(1/B0)(J&(x)] + a1 (x) + [|BX)] + S1(x)] |uee|) + of =5 V. We see in Fig. 5(d) that with sloshing water,
|usi| } sgn(es) wheneverles| > M., andw,; = 0 otherwise. the controller performs better, although it is apparent that
The parameterM, defines a bounded, closed subset of thae control input limit is about to be reached. Thus, the
es error-state space within which the error is guaranteed performance of this IAFC design is roughly similar to that
stay. For simulation, we tooldd. = 0.4; again, a larger of adaptive feedback linearization.

margin had to be used in implementation, and the smallest2) Incorporation of Plant Dynamics Knowledge in Design:
acceptable value wa. = 3. Note that although it is possible, To improve the robustness characteristics of the IAFC, we
in principle, to take an arbitrarily smallZ., in practice it is will now take a slightly different design approach and will
often the case that the bounding control acts “too much” withake explicit and direct use of the knowledge we have of
a small M., and the unavoidable limits in the control-inputhe plant, i.e., the nonlinear model (3). By comparing the
signal cause the system to become unstable. Also note thiatulation and experimental results so far, we see that although
from the stability analysis in [1] and [3], the bounding controlery useful for theoretical analysis and design, the model is
term is not required for stability and may, thus, beset to zen@vertheless a relatively poor approximation of the rotational
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Simulation resuits using JAFC: no known alpha and beta.

Indirect adaptive fuzzy controf laboratory results: no known functions, no weight.
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Fig. 5. No plant dynamics knowledge used: (a) IAFC simulation. (b) Experimental results of IAFC with nominal plant. (c) Experimental results of IAFC
with disturbance—metal bolts. (d) Experimental results of IAFC with disturbance—sloshing water.

inverted pendulum. In spite of this fact, it can effectivelywhere we use the same vector of functienge used above.

be incorporated into the indirect adaptive scheme, and th@imice we know nothing about(x) and 3(x), the most logical

provide it with an improved disturbance rejection ability.  way to initialize their fuzzy system approximation is by letting
We are now assuming that the pendulum input—outpgta(o) = 0 and A3(0) = 0. In this way, the adaptation

equation can be represented by some known nonzero fixgdchanism will attempt to identify the plant by introducing

functions a.(¢) and fi.(#), and unknown functions(x) and yariations to the functions defined by (19) and (20). Notice

p(x), which are to be identified on-line by the IAFC adaptatioge fngamental difference that this design has with respect

mechanism. Since the model (3) represents all our knOWqu%ethe previous one: above, the input—output dynamics of the

:gout the pendulum, we use it to specify the known funCt'0g§/stem were represented entirely byx) and 3(x), which

were estimated by the adaptation mechanism. Here, we let the
ar(t) = aszs + as sin 23 + a474 (19) |AFC estimateperturbationsoff «,.(¢) and 5 (¢) [recall that
B() = bo. (20) ock.(t) and x(¢) contain all our knowledge abou? the plant]
usingé(x) and3(x). As we will see, the characteristics of the
Note thata; and 3, are known functions of time since weadaptive process change based on how we define and initialize
can measure the entire state of the plant. the system.
The unknown functionsy(x) and 3(x) can be represented The approximation bound®,(x) and Ds(x) need not be
using fuzzy systems as in (11) and (12), and this optimuraset with this configuration, because the representation errors
representation can then be approximated using (13) and (#4)x) and ds(x), using (19) and (20), are expected to be
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Simulation results using IAFC: using known alpha and beta. Indirect adaptive fuzzy controi laboratory results: known functions, no weight.
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Fig. 6. Plant dynamics knowledge used: (a) IAFC simulation. (b) Experimental results of IAFC with nominal plant. (c) Experimental results of PAFC wit
disturbance—metal bolts. (d) Experimental results of IAFC with disturbance—sloshing water.

of the same order of magnitude as in the previous case, ahd controller on the nominal plant, as seen in Fig. 6(b), shows
possibly less, or at most, equal; therefore, they are takenaaslightly faster error convergence to zero. The most notable
defined before, with their respective values for simulation amtifferences arise when the plant is disturbed; in Fig. 6(c) we
implementation. Following a similar reasoning, the functionsee that the controller is able to handle the bolts disturbance
a(x) and g(x) are expected to be less than or equal ieffectively and without saturation of the control input. The
magnitude to (9) and (10), respectively; thus, although veame good behavior is observed in Fig. 6(d), where the plant
could redefine the bounds, (x) and3;(x), we chose to keep is under the effects of sloshing water dynamics; initially, the
them as in the previous subsection for simplicity. pendulum is not perfectly balanced, but eventually the error
To completely determine the controller it is necessary wpnverges to zero.
redefine the certainty equivalence control term,as = ) _
1/ [Bu(®) A0 = [ (£) + &(x)] + va(£)}. The sliding mode F- Direct Adaptive Fuzzy Control
and bounding control terms as well as the adaptation law (18)Now we turn our attention to the direct adaptive fuzzy
are taken without change, and the indirect adaptive containtrol (DAFC) method of [2] and [3] for the inverted pen-
law is given by (17). dulum. Using IAFC, a controller is constructed that seeks to
Observation of the simulation results in Fig. 6(a) usinglentify the plant dynamics and use its best estimate to produce
this modified IAFC shows little difference with Fig. 5(a);an approximation to a feedback linearizing law. Here, the
apparently, the basic characteristics of the controller remain tigproach is rather to search for an unknown control law that
same, i.e., the state is still unbounded, and the pendulum igrovides (at least) asymptotically stable tracking and is able to
balanced with a very similar control input. Implementation cdompensate for disturbances and maintain stability. As was the
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case with IAFC, the DAFC methodology allows the designer to We are going to search far* using
use previous knowledge or experience with the plant in various . -
ways. Here, we will illustrate two representative possibilities, =z Au(t)Cu+ur (21)

and we will see that is possmle to obtain significantly dlﬁere%here@ € % is as defined for the IAFC, with the fuzzy sets
control results depending on the approach taken.

i i SXD i -
In IAFC, it was possible to use a known part of the pla (%f Fig. 4. The matrixd, (#) € R°*" is adaptively updated on

dvnamics represented and 5. in the control desian r]me, and the function vector is taken as in the previous
Y P by, Pr 9. Section. The fuzzy system again uses only five rules, as

We saw that for the pendulum application it was beneficis‘ven by (15), and now eaclfi(x) is a row of the matrix
to include the known dynamics because it increased tie A,(t). To approximate a feedback linearizing controller
robustness of the design. DAFC provides the designer WUVPE will ‘define u;, as in law (4), and we will take’ as in

a method to incorporate a best guess of what the controligp teedhack linearization design. Further, following the same

should be (below we will call this the “known controller,”ine of thought as in Section II-E.2, we initialize the fuzzy
denoted byu;). The algorithm then adaptively tunes a fuzz%ystem with A, (0) = 0.

controller to compensate for inaccuracies in our choice of thiSthe DAFC control law is given by = @ + wsq + g
= s :

known controller. R It is formed by three terms: the fuzzy approximation to the
1) Design Using Feedback Linearization as a Known Coryptimum controller (21), and sliding and bounding control

troller: As described in [2] and [3], DAFC is a somewhaterms, Take the signals andu,(t) as defined for the IAFC

more restrictive technique than its indirect counterpart sincgse. Since (as noted abovB(x) = 0, the sliding-mode

in addition to the assumption that the plant is minimum-phasgim is given byu,; = —D,(x)sgn(e,). Note the minus

it is also required that the system input-output (8) is such thggn which is a result of the fact that(x) < 0.

Br(t) = 0fort > 0; further, itis assumed thak(x) is bounded  The bounding-control term needs the assumption dtfat)

by two finite constantsg, and 3;. For the pendulum, this is bounded, with|a(x)| < ayi(x). We take o (x) as de-

assumption holds sincecc < 1 < B(x) < fo < 0, where, fined before; then, ife, > M., wpg = {|@| + |usa| +

for instance, we take, as beforgy = —100 and 31 = —140.  [ay (x)+|ra(t)]]/Bo} sgn(es) anduyy = 0 otherwise.

The last plant assumption needed in [2] and [3] is that for For simulation, we used/. = 0.6 and increased it to

someB(x) > 0, |8(x)| £ B(x). Sincef(x) is expected to be M, = 2.5 in implementation. Please refer to the discussion on

a constant, we can safely sBi{x) = 0, and the assumption IAFC for an explanation on how we determined these values.

holds. The last part of the DAFC mechanism is the adaptation law,
Note that the control equations derived in [2] and [3lvhich is chosen in such a way that the output error converges

are based on the premise thétx) is positive, but it is asymptotically to zero, and the parameter error remains at least

stated there that the laws can be modified to allow for th®unded. This law is given, in general, by

negative case. Thus, the equations used here will be slightly . T

modified versions of those in [2] and [3], as required by the Au(t) = Q" 2 [=es —a(®))- (22)

characteristics of the pendulum; specifically, the adaptati%rbain’ note the minus sign for,. The parameten(#) can

dlffer:er?tlal equatulalnbatnd thg Ishdmg-rf:mde control term wi E)e chosen nonzero to potentially improve adaptation [2], [3],
each have a small but crucial sign change. but here we tookg(t) = 0 for ¢ > 0. For simulation, we

Let «* be an unknown ideal controller that we will try to ap'usedQ — 0915, and in experimentation we decreased the

proximate. In [2] and [3], this ideal controller is assumed to b&ain slightly toQ, = 0.5 I;. With these choices the algorithm

a feedback linearizing law of the forat = 1/3(x)[-a(xX)+ a5 aple to adapt and estimate the control fafast enough
va(t)] In general, it is possible to ex$res$ in terms of & 4 nerform well and compensate for disturbances, but without
Takagi-Sugeno fuzzy system, @S = z, A}Cu +ux + du(X)  jnducing oscillations typical of a too high adaptation rate.
wherew;, is some known controller term, which we will use £ 7(a) shows the simulation results with this controller.
in this section and set equal to zero in the next, @) |t has a behavior typical of feedback linearizing controllers
is the error between the fuzzy representation and It is o this plant: the control input settles and oscillates around
assumed thatD, (x) > |du(x)|, where D,(x) is @ known g nonzero value, thus keeping the pendulum base rotating.
bound for the error. In practice, it is often hard to have @pserve in Fig. 7(b) the performance of the DAFC design
concrete idea about the magnitude bf.(x), because the on the nominal plant: the error is effectively decreased to
relation betweenu* and its fuzzy representation might bezero, and the behavior of the base is similar to the previous
difficult to characterize; however, it is much easier to begifases. Again, the advantages given by the adaptive capability
with a rough, intuitive idea about this bound, and then iterai this algorithm appear most distinctively in the presence of
the design process and adjust it, until the performance of t§gong disturbances: the controller is quite successful with both
controller indicates that one is close to the right value. Fefie metal bolts [Fig. 7(c)] and the sloshing water [Fig. 7(d)].
simulation, we found thab, (x) = 0.01 gave us good results, The pendulum is kept balanced, and the control input remains
and in the laboratory, we increased it£9,(x) = 0.1. These within small bounds around zero. Thus, this design proved to
bounds are both relatively small, which indicates that the fuzibe robust and reliable although it still has the weakness that
system we used, although a simple one, could represent #fiethe other adaptive controllers presented in this work (until
ideal controller with sufficient accuracy. now) share—it is not able to deal with the marginal stability
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Simulation results using DAFC: using feedback lin. as known controller. Laboratory results using DAFC: using FL as known control, no weight
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Fig. 7. DAFC using feedback linearizing.. (a) DAFC simulation. (b) Experimental results of DAFC with nominal plant. (c) Experimental results of DAFC
with disturbance—metal bolts. (d) Experimental results of DAFC with disturbance—sloshing water.

condition of the system’s zero dynamics. Therefore, as a lagitimum does not necessarily have to be a feedback linearizing
and, in our opinion, best fuzzy adaptive design example, wentroller.
will now describe a DAFC that cannot only compensate for This finding is of special importance when the control
the induced disturbances (and, in fact, it does it with greatéesign task involves dealing with a nonminimum phase plant
ease than all the previous controllers), but is also able to kd# the pendulum, for which feedback linearization-based
state boundedness, even though the theoretical analysis ofd@ptive techniques have the limitation of being unable to
and [3] does not predict it (recall that such analysis does nogintain complete state boundedness. As stated before, the
preclude it). unboundedness of the state is admissible for the pendulum,

2) Using the LQR to Obtain Boundednesalthough the but it might not be for other systems.
theoretical analysis in [2] and [3] uses the assumption that theConsider, for instance, that a nonadaptive controller is
unknown control lawu*, which the DAFC tries to identify as available that can control the nonminimum phase plant with
a feedback linearizing law, it was found experimentally that tate boundedness. Then, it is possible that the desirable
is not necessarily the case. If the right known controller is usédundedness characteristics of this controller can be incorpo-
and/or the adaptation mechanism is initialized appropriatelyted into the DAFC design, and enhanced by the robustness
then the adaptation algorithm will converge to a controllehat the adaptive method provides. It is not yet known how
that might behave in a very different manner because this characterize, in general, the controllers that can be used in
mechanism seems to try to find the (local) optimum controlleuch a way; however, for our present study, a most natural and
closest to its starting point in the search space, and tliiguitive choice for this purpose is the LQR. This controller
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implements a linear function of the plant states, and is, thetéat the stater; is not going to grow without bound), and the
fore, able to drive the state error to zero for the nominal plaperformance is similar to that of the LQR in Fig. 2(b), although
while maintaining state boundedness. Observe in Fig. 2(a) ahé output error is not exactly zero. The most interesting results
(b) that all the plant states are indeed kept bounded. The L@R found in Fig. 8(c) and (d). We note that under both the
was shown to have a very good performance on the nominaletal bolts and the sloshing water disturbances the controller is
undisturbed system. Nevertheless, it fails immediately whaible to maintain convergence and, in addition, it has a behavior
significant disturbances are introduced. much like that of an LQR retuned for the disturbed system:
A DAFC will be designed based on the LQR, so that itthe pendulum base does not keep rotating, but lightly oscillates
good behavior in terms of state boundedness can be keptund a constant position, and the pendulum is balanced with
and its weakness regarding plant disturbances eliminatedcontrol input that has an average value close to zero. We
Two different, and functionally equivalent ways were foundbserve in both cases, and most distinctly in the case of the
to accomplish this. The first makes use of the term as water, how the controller adapts to the system with random
illustrated above. The second uses an appropriate initializatidisturbances; the control-input oscillations are relatively large
of the matrixA,,. Since the use af;, has already been shown,at first, and after a couple of seconds decrease in amplitude as
only the second approach will be described here. the DAFC approximates the ideal controller more and more.
Again, take the control law, defined above. The boundingAt the same time, the error converges to zero, and the base
and sliding-mode control terms are taken without changamsovement decreases.
Also, the adaptation law (22) is used, now with a smaller gain
(i.e., we slow adaptation dowr)), = 0.005 I3, for simulation
and implementation purposes. This adaptation gain was cho§&nSummary of Pendulum Results

via tuning of the controller. We found that higher gains tended we have studied several control approaches for the ro-
to produce a more oscillatory behavior. tational inverted pendulum. The first two are nonadaptive,
The fundamental difference between this and the previoggnventional controllers—an LQR and a feedback linearizing
design lies in the ideal* that we aim to identify. Before, controller. We saw that these methods present an adequate
the adaptive search was configured in such a way that #ighavior on the nominal plant in terms of our basic control
mechanism converged to a feedback linearizing law; now, wgjective, which is to balance the pendulum. We saw that
want it to identify a control input that behaves basically like afpedback linearization has the disadvantage of making the
LQR, i.e., we want to implement aadaptive LQRTo do this, state z; unbounded, due to the nonminimum phase nature
itis necessary to start the adaptation algorithm at a point in the the pendulum. From a practical point of view, this is an
search space in the proximity of the ideal LQR controllér undesirable feature also shared by several of the adaptive
The closest approximation we have to this ideais the state schemes we analyzed.
feedback gain vectak™ of the LQR controller. Therefore, we  we then applied adaptive feedback linearization and indirect
will use it to initialize the fuzzy approximation of the desire(hnd direct adaptive fuzzy control to the pendu|um_ We found
control 4. Take the fuzzy system described by (21), with thghat AFL and IAFC without plant knowledge had similar
same functions vector as before, and let;, = 0. Then we troubles when working under disturbances. We were able to

initialize the matrix A, (¢) as increase robustness using our plant knowledge in IAFC and
0 0 0 0 0 by specifying the known controller in DAFC as a feedback
07 07 07 07 07 !in_e.ar.izin.g controller. Finally, 'Fhe DAI_:C design wjth LQR
Au0) = | 1 1 1 1 1| 23) initialization presenteq a very interesting feature—it retained
108 108 108 108 108 the “good” characteristics of the LQR (state boundedness,
07 07 07 07 07 error convergence) and at the same time added the benefits

of adaptation (apparent robustness to disturbances).

Notice that the sign of the gains has been reversed since in thi©ne must be careful in trying to evaluate these results. It is
case we do not use the state exprx, but rather the vector, probably not fair to say that AFL and IAFC “failed” and DAFC
which consists of functions of the states themselves. It is wortsucceeded;” recall that the pendulum does not satisfy the
mentioning that an alternative similar way of implementingero-dynamics assumption of all these methods. However, our
this design consists of using the control temn= K "x (i.e., experience indicates that at least in some cases, the adaptive
we setuy, equal to the LQR state feedback law) and lettinfuzzy methods we investigated have an advantage with respect
A.(0) = 0. We have tested this approach and it also worls the conventional methods—they allow for more design flex-
very well. ibility. This is clearly illustrated by our two IAFC designs. The

In this way, the design is complete, and the obtained resulésd=C without plant knowledge performed poorly under distur-
corroborate our expectations about it. We see in Fig. 8(a) thances, similar to adaptive feedback linearization. However,
behavior of the controller in simulation. Observe that it closelyhe IAFC method allowed us to improve performance by using
resembles the performance of the LQR in Fig. 2(a), both our plant knowledge more effectively in the control design. In
terms of the states and the control input it produces. a similar way, DAFC using a feedback linearizing law as the

Fig. 8(b) shows the experimental results of the modifickhown part of the controller displayed an improved behavior in
DAFC on the nominal plant. The pendulum is balanced wittomparison with the first two adaptive techniques. Apparently,
a control input that approaches zero in average (which medhs explicit use of our knowledge of the plant in one case,
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Fig. 8. DAFC initialized as LQR. (a) DAFC simulation. (b) Experimental results of DAFC with nominal plant. (c) Experimental results of DAFC with
disturbance—metal bolts. (d) Experimental results of DAFC with disturbance—sloshing water.

and of what the control law should be in the other, increas#us tank experiment, but with a slightly different setup can
the robustness of the algorithms. Furthermore, we managed&found in [38]. In this section, we develop a conventional
obtain an even greater improvement by heuristically turnirfgedback linearizing controller and an indirect adaptive fuzzy
the DAFC technique into an “adaptive LQR.” Although wecontroller, and we compare their performance for a variety of
provide no theoretical justification for this result, it seemexperimental conditions.

reasonable to think that direct adaptive techniques, in general,

are fundamentally different from indirect adaptive methodg#. Experimental Setup

direct adaptive controllers might be regarded as generalized”le process control experiment consists of two tanks, as

search mechanisms that are able to approximate different loggl,,n in Fig. 9. The “fill" tank contains a liquid whose vol-

optimum points in their search space (the controller seargh,q we wish to control (note that this volume is proportional
space). to the liquid level). We denote the liquid volume ty; and
measure it using gallons. When full, the fill tank contains ten
gallons of liquid. The reference input, which is a desired level,
The process control experiment in our laboratory has bemndenoted byl,;. The second, a “reservoir” tank, contains the
designed to emulate systems found in chemical processesligyid that will be pumped into and out of the fill tank and is
providing the ability to study liquid level control with variousthe same size as the fill tank. There are two controlled pumps
disturbances and plant variations. Other research on intelligantd another pump that is used for creating a disturbance. The
control for this system can be found in [17]. Work similar tdirst pump is a variable rate dc pump (which we denote by

Ill. PROCESSCONTROL EXPERIMENT
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Fig. 9. Process control experiment.

P,) which pumps liquid from the reservoir tank into the fill The disturbance was chosend{s. ;) = 15.0/7 tan=! (L)
tank. The next pump is an ac pump (which we denoté’py for two reasons. First, we wanted a disturbance which took on
which can only be turned off and on. This pump will be usedalues between 5.0-9.0 V since this fact would help ensure the
to control the amount of liquid leaving the fill tank. The lastodel will operate in a “continuous” region (we wanted to stay
pump, another variable rate dc pump (which we denot&)y away from the dead zones of the pumps). Second, we wanted
is used to create a disturbance by removing liquid from tteedisturbance which was dependent on the volume of liquid
fill tank. The control input to the system is a single voltage since we actually view the disturbance as an effect from a
where a positive value of sufficient magnitude will cause tHeuman operator or other subsystem that will generally remove
dc pump P, to pump liquid into the fill tank and a negativemore liquid from the tank when there is more liquid available.
u of sufficient magnitude will cause the ac purfp to pump The chosen disturbance meets both of these requirements.
liquid out of the fill tank. Each controller was allowed to control the process for two
The pumps have dead zones of different magnitudes adifferent experimental conditions. Each test run constituted
saturation nonlinearities that make the control problem tfacking a desired liquid volume reference inply that
regulating the liquid level a challenging one. Also, the pumpsas of the formLy; = 6 — 1.0¢7%%% for + < 250 and
introduce electrical noise and delays into the system. Finallffy; = 5 + 1.0¢=%9%* for 250 < ¢ < 500. For simulation
sensing problems are caused by the Styrofdanall used to and implementation, we used a 0.25 s sampling period since
measure the liquid level when the liquid surface oscillates. Wee plant is a slow one. We investigated the nominal plant

will more carefully quantify some of these effects by providindi.e., a;(L;) = 0] and the plant with disturbance [i.e.,
a mathematical model of the plaht. ar(Ly) = 0.87d(L )] that represents a degraded pump.
B. Model C. Feedback Linearizing Control

Using some basic modeling ideas, we have found that The first controller we study makes use of feedback lin-

reasonably aood model of the experiment is given b e3rization. This controller was designed assuming that we
Y9 P 9 y have complete knowledge of the disturbance since if this

Ly =an(u)—ap(Ls) — p(Ly) (24) termisignored, the feedback linearization procedure produces
a simple proportional controller. For the indirect adaptive
where as(Ly) is a liquid dependent disturbance caused kuzzy controller and feedback linearizing controller, the small
pump Py, u is a voltage input (with values betweerB.5 to leaking disturbancg(L ;) has been ignored in the design stage
10.0 V) which controls pump$’s and P,., «,.(u) represents since it is considered to be an unknown effect. For brevity we
the combined effects of the pumpd; and P, and p(L;) omit the control equation development and proceed to report
is some unknown but relatively small disturbance which isn our results with this controller, which assumB¢z) =
always positive (e.g., a small leak). Experimentally we hav®0058z — 0.0092, so u = 0.2062 + 4.1539 tan=' (L) +
determined thatv,(u) = R(u) with ay(Ly) = 0.87R[d(Ls)] 1/0.0058 (Ly + Lg — Ly).
if d(L;) > 0 and zero otherwise, where Simulation and implementation plots are shown in Fig. 10
_0.0333, if z<—70 where we see that While_o_ur model repre_sents the gross
0.0000, if —7.0<z<43 characteristics of the plant it is certainly not highly accufate.

- .
0.0058 z—0.0092, !f 43 <z <100 6t is important to note that it is very difficult to come up with a highly
0.0488, if 10.0 < z. accurate model of this process, partly for the reasons given where we described
the experimental process, and due to the fact that over time, the experiment
SFor further reference on the process control experiment please conglianges in a variety of ways (e.g., the filters in the pumps become dirty, which
[17]. has a significant impact on the plant’'s behavior).

R(a) = (25)
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Fig. 10. (a) Feedback linearization simulation with disturbance. (b) Feedback linearization implementation with disturbance. (c) Feedimatiotinea
simulation with nominal plant. (d) Feedback linearization implementation with nominal plant.

As seen in these figures, the feedback linearizing controliandard fuzzy systems (recall that a standard fuzzy system
did well in the presence of the disturbance in both simulationay be expressed as a special case of our Takagi—Sugeno
and implementation (the measure of performance for thgrm).
controllers was based on their ability to track the referenceThe results of the simulation and implementation are shown
input, their ability to minimize control energy, and their abilityin Fig. 11. The IAFC performs about the same as the feed-
to minimize control oscillations). The slight oscillation of theback linearizing controller for the experimental setup with a
control voltage at about 250 s in the simulation was causgfturbance, but seems to outperform the feedback linearizing
in part by the fact that the controller entered into one @ontroller in tracking the reference input for the nominal plant
the dead zones of the dc punip. The feedback linearizing setup. It tends to produce a more oscillating control output
controller did not perform as well in the case where thekfian the feedback linearizing controller, but both appear to
was no disturbance in both simulation and implementatiofise about the same amount of control energy.
This result was expected since the controller was specificallygyrther work was done on examining whether the fuzzy
designed for the disturbance, and it shows that this feedbasg}gtems actually estimated the plant parameters. According
linearization design is not particularly robust to plant changeg; ine theory of the IAFC technique we are only guaranteed
to have boundedness of parameter errors. There are two
D. Indirect Adaptive Fuzzy Control reasons why the estimates do no necessarily converge to
The next controller we studied was the IAFC. Since thideir true values. First, the identifiers simply seek a model
design procedure for this method was already illustrated @f the plant that will allow the adaptive controller to achieve
Section Il, we will not show the mathematical details and wilts objective (i.e., stability of the closed-loop system and
concentrate on our results. asymptotic convergence of the tracking error). Second, we
For this design we set the function;(t) to zero and would need to have “persistence of excitation” [36], and our
only used (), since this configuration gave us the bestimulations and implementations show this fact not to be true.
performance. For the estimator functiofisand /9, we used Interestingly enough, parts of the fuzzy control surfaces were
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Fig. 11. (a) IAFC simulation with disturbance. (b) IAFC implementation with disturbance. (c) IAFC simulation with nominal plant. (d) IAFC implsmnent
with nominal plant.

IV. BALL AND BEAM

Here we will use the well-known ball and beam experiment
as an application example for the direct adaptive fuzzy control
technique in [2] and [3]. We first introduce a mathematical
model of the system which has a strong well-defined relative
degree (as opposed to the ball-beam model in [39]). Then
' ! we develop a fuzzy controller for the experiment and its

[t simulation and implementation results will be shown as a basis
T ‘ for comparison. Finally, we use this same fuzzy controller to

‘ design a direct adaptive fuzzy controller, as defined in [2]

Fig. 12. Ball and beam system. and [3], and the performance of the adaptive controller will

be evaluated. Details about the theory behind the controllers

roughly tuned to represent the plant model. However, this fadll be omitted, and emphasis will be put on the results. For
did not hold for the entire surface, so there was probably dodetailed presentation of the adaptive fuzzy control theory
convergence ofy and /3 to their true values. please see Section Il and refer to [2] and [3].

Overall, we suggest the IAFC technique tends to outperform
the feedback linearizing control technique. Although the IAFC ] ) ] )
technique is an adaptive technique and the feedback linearizfixgEXperiment Setup, Modeling, and Simulation
controller is not; the feedback linearizing controller performs Consider the ball and beam system in Fig. 12. The ball
as well as or better than other adaptive techniques whisnallowed to roll (without sliding) along the beam, and its
performing comparisons in the presence of a disturbance [1@dsition relative to the left edge of the beam is denoted.as
This fact shows that the IAFC technique is a viable contrdlhe beam tilts about its center point, thus causing the ball to
technique for this experiment. roll from one position to another. The control problem consists
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Ball position Pos Ball position
reference y Current

+ error Ball position O +m9 e PID motor Motor and

S( control - position control ball-beam 0

Fig. 13. Motor-Ball-Beam Control Scheme?,. is the angle reference inpug). is the angle error, an€ is the beam angle.

in designing a controller that tilts the beam in such a way thet ¥ = z4. The numerical values take into account the
the ball is brought from its initial position to another desiredcceleration due to gravity and the friction constant between
position. The beam is driven by a dc motor whose shaft ise ball and the beam (determined experimentally), and are
attached to the center of the beam through a 50: 1-turn rasicaled in such a way that the outppis in units of 0.75 in,
gear box. A ten-turn precision potentiometer is attached to thvrich corresponds to the distance between the photodiodes.
motor shaft to measure the angle of the beam. There are B functiontan™ (100x;)(¢~10"#5 — 1) is an approximation
photodiodes mounted along the bottom of the beam, spad¢edhe acceleration due to friction that the ball experiences on
at 0.75-in intervals along the slot over which the ball rolighe beam.
Two lamps are positioned above the experiment so that theylf the outputy is repeatedly differentiated, we find that the
iluminate the whole beam area. The photodiodes detect $ystem has a well-definestrong relative degre¢33], [34] of
shadow cast by the ball to ascertain its position. Notice that titgir. Furthermore, it is possible to determine that #exo
position sensing mechanism provides a discrete approximatidynamics[34] of the system are exponentially stable (the
to the actual position of the ball, and thus complicates tigietails of the calculations involved are very tedious and are,
control task. A resistive strip could have been used to provitierefore, omitted).
continuous position sensing, but this experiment was designedor our simulations below, we use a fourth-order
to be more challenging using the photodiodes (please see [BoInge-Kutta numerical method with an integration step
for a detailed description of the setup). size of 0.001 s. In implementation, a sampling time of 0.01
Consider Fig. 13 for a block-diagram description of th& is used.
system. Let, be the input armature current to the motbthe
angle of the beam, andthe position of the ball on the beam.B. A Fuzzy Controller for the Ball and Beam

A simple proportional-integral-derivative (PID) controller is \We now describe our results for the ball and beam using a
used to drive the motor and to position the beam at any desiéndard fuzzy system for ball position control (details on the
angle. This controller takes as an input the esforbetween controller are omitted for brevity). The fuzzy controller has
an angle referenc®, and the beam anglé. The signal two inputs: the position error (defined as= r.; — 7, where
©, is produced by the ball-position controller (which seeks,_; is the desired ball position) and the error derivatiye
to achieve our primary objective). By means of appropriaife use singleton fuzzification for both inputs. Fgrwe take
tuning of the PID controller, it is possible to achieve veryive triangular membership functions; féy we use three, and
good angle tracking, and since the inner loop has much fasi@g make a standard choice for the rule base. In the inference
dynamics than the outer loop, it can be considered virtualigechanism we use minimum to represent the premise and
invisible to the ball-position controller. product for the implication, and centroid defuzzification is
Let z; = § andw = i,. Then, a linear state-space modehpplied to obtain the output of the fuzzy systém.
of the motor is given byi; = x2, 42 = 23 + byu, &3 = For all simulations and laboratory experiments, the ball was
ay T2 + a x3 + bou, Whereaq; = —87885.84, ap = —1416.4, initially on position five on the beam (that is, it was set on
by = 280.12, and b, = —18577.14 (the numerical values top of the photodiode number five, where the photodiodes are
come from the motor specifications and the beam dimensionsimbered from O to 31 beginning at the left); the desired
If we now letz4 = » we can obtain two more equations whiclposition is twelve during the first ten seconds, and then changes
represent the ball and beam dynamics when the beam artgleeight for another 10 s. The discrete ball position sensing
is taken as the input, using Newton’s second law. Here, wigechanism of the real system is also used in simulation—the
are using the approximatiosin z; ~ z; (valid because the ball position controller receives not the exact value dfut its
beam angle varies within a small range around zero) to hgwesition index (as represented by the number of photodiodes
the input enter linearly. We have found that a reasonably goatbng the beam).
model of our ball-beam system is given by Fig. 14(a) shows the simulation results using the standard
. fuzzy controller. It has very good performance, with no
Ty =T5 . .
. 1 10%.2 overshoot, small settling time, and small steady-state error. The
@5 =agwy + ag tan” (100x5)(e -1 (26) performance is, however, somewhat degraded in implementa-
whereas = —514.96 and a4, = 9.84, and the system outputtion, as shown in Fig. 14(b). There is overshoot and the error
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15 __ Ballposion{-) andreference position (-—) case in Fig. 14: the motor shaft anglfollows the reference
g | ; 8, closely), so we may use the approximation= ©,.. In this
%,0, SR , 1.\ : o1 way, we only have to deal with the two-state system in (26).
g ‘ : : ?‘““f e If we differentiate the outpuy = x4 twice and taker; = ©,,
5 ; i : ; i i . ; i we find that
0 2 4 6 8 Desire‘(?anglem 14 16 18 20 4 o
5 T T ; T § = ayg tan™! (100z5)(e™10 % — 1) +a30,.  (27)
%’, of o MU ’ j That is, the relative degree of the system that the ball position
e ,J"““‘] 1 : : : : j : controller “sees” is two, and it has no zero dynamics; therefore,
-5 . . L L 1-?”‘ s |t iS minimum phase (note that the much more complicated
s i i . _ Beam angle ' analysis that does not discard the motor dynamics leads to
5 : numerically similar results, with the system having a relative
.l 5 M L degree of four and asymptotically stable zero dynamics).
g M : : § The second plant assumption of [2] and [3] can also be
" S R SRS U S SR verified from (27). Using the notation from these references
o F 488 R T B 2 et B(x) = a3 = —514.96. Then there exist constant and

1 such that-co < 1 < B(x) < fy < 0. Take, for instance,

f1 = —600 and 3, = —480. It is also required that for some

position (~.-.) B(x) > 0, |#(x)| < B(x). The assumption holds if we let
' : ’ B(x) = 0, sincef3(x) is a constant.

We will not show the development of the DAFC since
it was already illustrated in Section Il. However, there is
; . v one issue to notice: in our DAFC design we used the fuzzy
2 14 16 18 20 gsystem described abovathout any modificationfor the term
! i (recall that a standard fuzzy system is a special case of
the more general Takagi—Sugeno form we consider), and the
adaptation laws adopted a simplified form.

Fig. 15(a) shows the performance of DAFC insimulation.
We observe a behavior similar to that of the standard fuzzy
controller in Fig. 14, with a slight overshoot in the output
and roughly the same error and settling time characteristics.
The real advantage of the adaptive method becomes plain in
: : , ; , 5 : implementation, as shown in Fig. 15(b), where the settling
-4 : L i . i : 1 i ; time is significantly reduced, as well as the overshoot and the

Ball position (-) and reference

T

0 2 4 6 8 10 12 14 16 18 20 .
Time (s) steady-state error. We have studied plots of how the output
() centers change over time while the DAFC tunes them and

Fig. 14. Direct fuzzy controller. (a) Simulation results. (b) Implementatiott1hey. are mOdlfled S|gn|f|cantly more in mplementatlon t.hqn
results. In simulation due to the unmodeled nonlinear characteristics
of the plant and to sensing noise. We omit the plots of

. . " ) _ these centers in the interest of brevity and since they are not
is larger. Notice the ball-position measurement noise [spik Srticularly instructive.

between seventh and eighth seconds in Fig. 14(b)], which addg, [40], a direct fuzzy controller was implemented for the

to the complexity of the control task. ball and beam system, with experimental results apparently
better than the ones in the present study; it is, however,
hard to establish a comparison, because the experiment has

i , . broken several times since its construction, and a few of its
We will now use the fuzzy controller of the previous SeCt'OEomponents have been replaced.

to design a DAFC following the methodology of [2] and [3].

It is expected that the adaptive controller will achieve an
improved performance and have a greater robustness against
noise. Two assumptions about the plant have to be verifiedin this work, we have presented three case studies on
to apply this technique. First, the system has to be minimutime use of direct and indirect adaptive fuzzy control tech-
phase; this condition may be easily verified for our proposedques developed in [1]-[3]. We have illustrated how the
model. As we mentioned above, the ball-beam model hdweory behind these controllers can be brought to practice
a relative degree of four. However, to simplify the desighy means of a design methodology, and have shown that
we ignore the motor dynamics (notice that this assumptitine adaptive fuzzy controllers are able to work with complex
requires the motor control to be efficient enough, i.e., it shoufdants under significant disturbances. Furthermore, a close
provide good tracking with little lag; we can see that this is theorrespondence between the theoretical predictions and the

C. Direct Adaptive Fuzzy Control

V. CONCLUDING REMARKS
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the pendulum. Generally speaking, disturbances of this type
present a great challenge for adaptive schemes, especially
if there is a sloshing liquid at the endpoint. The inverted
pendulum is an example of a system with marginally stable
zero dynamics that because of its nature, provides insight into
the way the adaptive controllers work. And, as we saw, it was
possible to design a DAFC that gave us bounded states in spite
of the marginal stability of the zero dynamics. However, we
provided no theoretical justification of the fact that this design
worked as it did. In the cases of the process control tank and
the ball-beam system, the adaptive fuzzy controllers were able

;
Bean} gngle 1

to compensate for some disturbances and sensing noise, but it
still seems possible that their performance could be improved
(perhaps by further tuning of the techniques).

The results of our case studies suggest that investigating an
extension of the adaptive schemes in [1]-[3] to certain types of
nonminimum phase systems might be fruitful; if accomplished,
(@) such an extension would broaden the application spectrum
of adaptive techniques in general. In addition, the IAFC and
DAFC are single-input single-output schemes, and an exten-
: : : : sion to multi-input multi-output systems is currently under
; : : : way; the indirect case has already been introduced in [41]. Itis
iyt 1 also important to notice that the adaptive fuzzy controllers in
L ‘8 L ;6 ;8 2 [1]-[3] are continuous timéechniques; to implement them we
_ Desiredangle used a digital computer, and thus were forced to implicitly
’ use a discrete time approximation of the controllers. It is
reasonable to think that a proof of stability is still applicable
when a continuous time technique is discretized, but such
a study is outside the scope of the present work. Recently,
(in [42]) the authors have introduced a stable discrete-time
adaptive control scheme for a class of nonlinear systems.

5 ; ; i ; ; i \ i i
1] 2 4 6 8 10 12 14 16 18 20
Time (s)

Ball position (-) and reference position (-.—.)
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