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Abstract—Advances in nonlinear control theory have provided
the mathematical foundations necessary to establish conditions
for stability of several types of adaptive fuzzy controllers. How-
ever, very few, if any, of these techniques have been compared
to conventional adaptive or nonadaptive nonlinear controllers or
tested beyond simulation; therefore, many of them remain as
purely theoretical developments whose practical value is difficult
to ascertain. In this paper we will develop three case studies where
we perform a comparative analysis between the adaptive fuzzy
techniques in [1]–[3] and some conventional adaptive and non-
adaptive nonlinear control techniques. In each case, the analysis
will be performed both in simulation and in implementation, in
order to show practical examples of how the performance of these
controllers compares to conventional controllers in real systems.

Index Terms—Adaptive fuzzy control, fuzzy control, intelligent
control.

I. INTRODUCTION

W HILE nonadaptive fuzzy control1 has proven its value
in some applications, it is sometimes difficult to specify

the rule base for some plants, or the need could arise to tune
the rule-base parameters if the plant changes. This provides the
motivation for adaptive fuzzy control, where the focus is on
the automatic on-line synthesis and tuning of fuzzy controller
parameters (i.e., the use of on-line data to continually “learn”
the fuzzy controller, which will ensure that the performance
objectives are met). The first adaptive fuzzy controller called
the linguistic self-organizing controller (SOC) was introduced
in [7]; several applications of this method have been studied
(see the references in [8]). More recently, the “fuzzy model
reference learning controller” (FMRLC) was introduced in
[8]–[10], its extensions in [11], and both simulation [10]–[16]
and implementation studies [17], [18]2 have shown this method
to be quite successful. Many other adaptive fuzzy control
techniques exist and the reader is referred to [9] and [10] for
a more complete overview.

The problem with the SOC and FMRLC is that while
they appear to be practical heuristic approaches to adaptive
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fuzzy control there is no proof that these methods will result
in a stable closed-loop system (verification of stability is
important, especially for safety-critical systems). Recently,
however, several researchers have explored ideas from con-
ventional adaptive and neural control to establish stability
conditions for a variety of adaptive fuzzy control techniques
[1]–[4], [19]–[23] and neural control methods [3], [24]–[29].
Generally, these techniques can be split into two categories:
direct and indirect adaptive fuzzy control. In indirect adaptive
fuzzy control, there is an identifier mechanism that produces a
model of the plant which is then used to specify the controller
(i.e., we update the controller parameters indirectly by first
estimating the model parameters). In direct adaptive control,
a model of the plant is not estimated; instead, we directly
tune the controller parameters using plant data. Regardless of
the method chosen or whose approach one takes, the practical
value of these adaptive controllers is questionable since

1) there have been very few comparative analyses with
conventional adaptive or nonadaptive nonlinear control
methods;

2) there seem to be no experimental studies to determine
how well these techniques perform in implementation,
especially relative to conventional adaptive or nonadap-
tive nonlinear control techniques.

A complete assessment that would clarify how the above
adaptive controllers would perform relative to all conventional
methods and a wide variety of experimental settings is clearly
beyond the scope of this or any single paper. Here, we use
three case studies to compare the adaptive fuzzy controllers
(both direct and indirect) in [1]–[3], to some of the more
popular conventional linear and nonlinear methods.3 The case
studies we focus on are a rotational inverted pendulum, a
process control experiment, and a ball-beam experiment. In the
case of the pendulum, we provide a model of the dynamics of
the plant, explain the experimental setup, develop conventional
and adaptive fuzzy controllers, and provide both simulation
and implementation results. For the other case studies, we
simply give a brief description of the experiment and provide
our results in the interest of brevity. The paper is organized
as follows.

In Section II, we present the rotational inverted pendulum
case study. After explaining the experimental setup and model,
we develop a linear quadratic regulator (LQR), a (nonadaptive)
feedback linearizing controller, and an adaptive feedback

3The authors must assume that the reader has some familiarity with the
techniques in [1]–[3]; these works provide all the necessary background
details.
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Fig. 1. Hardware setup of the inverted pendulum system.

linearizing controller (AFL). Next, we design two indirect
adaptive fuzzy controllers, one that does not usea priori
information about the plant, and one that does. Following
this, we specify two direct adaptive fuzzy controllers, one
that uses a feedback linearizing controller as the “known
part” of the controller and another that uses an LQR for
initialization. Simulation and implementation results are shown
in all cases. Finally, we summarize and discuss the results and
the performance of each controller.

In Section III, we present the process control case study.
After providing the experimental setup and model we sum-
marize our results using a feedback linearizing controller and
an indirect adaptive fuzzy controller. In Section IV, we first
describe the ball-beam experiment and its mathematical model.
Then we develop a (nonadaptive) fuzzy controller and a direct
adaptive fuzzy controller and compare their performance in
simulation and implementation. In Section V, the concluding
remarks, we summarize the overall results, provide a broad
assessment of the apparent advantages and disadvantages of
the adaptive fuzzy control techniques, and provide some future
research directions which help to identify limitations of the
scope and content of this paper. This paper is a significantly
expanded version of the one in [30].

II. ROTATIONAL INVERTED PENDULUM

In our first case study for indirect and direct adaptive fuzzy
control, we will focus on a rotational inverted pendulum test
bed. Since adaptive control is being studied, special emphasis
will be put on robustness by investigating the ability of
the controllers to compensate for significant plant parameter
variations.

A. Experiment Setup

The rotational inverted pendulum is an underactuated (i.e.,
it has fewer inputs than degrees of freedom), unstable system

that presents considerable control-design challenges, and is,
therefore, appropriate for testing the performance of different
control techniques. The experimental setup used in this paper
was developed in [31] and [32], where a nonlinear mathe-
matical model of the system was obtained via identification
techniques, and four different control methods were applied:
proportional derivative control, linear quadratic regulation,
direct fuzzy control, and autotuned fuzzy control.

The hardware setup of the system is shown in Fig. 1 (taken
from [31]). It consists of three principal parts: the pendulum
itself (controlled object), interface circuits, and the controller,
implemented by means of a program in a digital computer.
The controller can actuate the pendulum by turning the dc
motor to which it is attached. The motor has an optical encoder
on its shaft that allows the measurement of its angle (with
respect to the starting position) which we will refer to as.
The shaft of the motor has a rotating base fixed to it. The
pendulum can rotate freely around the base, and its angle,,
can also be measured with an optical encoder with respect to
the pendulum’s stable equilibrium point, where it is assumed
to have a value of radians. The input voltage to the dc motor
amplifier is constrained to a range of5 V.

As detailed in [31], the rotational pendulum system presents
two somewhat separate problems: first, a controller needs
to be designed that is able to balance the pendulum, and
second, an adequate algorithm has to be used to swing up
the pendulum so that when it reaches an upright position
(i.e., where ) its angular velocity ( ) is close to
zero. This facilitates the job of the controller which “catches”
the pendulum and tries to balance it. In this paper, we will
not be concerned with swing-up details, and will concentrate
only on the balancing control of the pendulum. The so-called
“simple energy pumping” swing-up algorithm developed in
[31]4 will be used without changes in all the experiments and

4Please consult this reference for details on the swing-up algorithm.
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simulations, only with minor tunings depending on the nature
of the test. This algorithm is just a proportional controller
which takes as input the error between a maximum swing
angle (the tuning parameter) and the base angle.

In implementation, a sampling time of 0.01 s was used.
All the simulation and experimental plots include the swing-
up phase and show the first 6 s only, since this time was
considered enough to show the representative aspects of the
results.

B. Modeling and Simulation

The rotational inverted pendulum can be represented with a
four-state nonlinear model. The states are, , , and . Of
them, only and are directly available for measurement;
the other two states have to be estimated. To do this, we
use a first-order backward difference approximation of the
derivative. As tested in [31], this estimation method turns
out to be very reliable and accurate. Thus, for the rest of
the discussion, it will be assumed that all states are directly
available for the controllers without need of further estimation.

The differential equations that describe the dynamics of the
pendulum system (note that is the unstable equilibrium
point) are given by

(1)

(2)

where Kg is the mass of the pendulum,
m is the distance from the center of mass of

the pendulum, is the acceleration due to
gravity, is the inertia of
the pendulum, rad is the
frictional constant between the pendulum and the rotating base,

is a proportionality constant, and is
the control input (voltage applied to the motor). A first-order
model of the dc motor is given by
with and . The numerical values
of the constants were determined experimentally in [31]. Note
that the sign of depends on whether the pendulum is in the
inverted or the noninverted position, i.e., for
we have , and otherwise
(recall that is the stable equilibrium point). When
simulating the system, a conditional statement is used to
determine the sign of according to the relation above.

Let , , , and . Then a state
variable representation of the plant is given by

(3)

where , , ,
, , and . Since we

are only interested in balancing the pendulum, we take the
output of the system as .

For simulation of the system, a fourth-order Runge–Kutta
numerical method was used in all cases, with an integration

step size of 0.001 s. The controllers are assumed to be
continuous; therefore, the sampling time of the controller was
set equal to the integration step size. Also, the initial conditions
were kept identical in all simulations; these are rad,

rad , rad, and rad . Under
these conditions, the pendulum is in the downward position.
When the simulations start, the pendulum is first swung up
with the same swing-up algorithm used for implementation,
and then “caught” by the balancing controller currently being
tested to resemble experimental conditions as accurately as
possible. The balancing controller begins to act when

rad; at the same time, the swing-up controller is shut down.
For the swing-up algorithm, we have one design parameter,

the angle , with values typically between 1.1 and 1.4 radians;
this angle determines the maximum amplitude of each swing.
The gain is fixed at 0.75 for all tests. Then, taking as
the swing-up control input, the algorithm works as follows:

If then

else

C. Two Nonadaptive Controllers

In this section, two nonadaptive controllers for the inverted
pendulum will be introduced, and these will serve as a baseline
for comparison to the results to follow. First, a linear quadratic
regulator from [31] (which provided the best experimental re-
sults for nominal conditions) will be used. Second, a feedback
linearizing control law will be used; as shown later, there is no
guarantee of boundedness using this technique, and the results
obtained here corroborate this theoretical prediction.

1) Linear Quadratic Regulator:To design an LQR for the
pendulum, the approach taken in [31] was to linearize the
system model by using the approximation , which
is valid for small angles, in (3). The resulting system can be
shown to be controllable; thus, an LQR can be constructed.
For the design, the greatest penalty was assigned to the
error in states and , since the primary objective of the
controller is to balance the pendulum, and not to keep the base
from moving. The state-feedback gain obtained was tested
experimentally and, after some fine tuning, the gain vector
used was , where the state error

( is a reference-state trajectory, typically set
identically equal to zero) is used, and .

As shown in Fig. 2(a) and (b), the LQR performs very
well in both simulation and implementation; it successfully
balances the pendulum and drives all the system states to zero.
The control input ideally goes to zero when equilibrium is
reached [Fig. 2(a)], although in practice it does not [Fig. 2(b)],
since the unmodeled aspects of the system (e.g., sensor noise,
sampling time, nonlinear characteristics, etc.) prevent the
controller from behaving perfectly. The results obtained here
closely match those in [31].

2) Feedback Linearizing Controller:We find that the in-
verted pendulum has astrong relative degree[33], [34] of
two because after differentiating the output twice, we obtain

. Then, as described in [35]
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(a) (b)

(c) (d)

Fig. 2. (a) LQR simulation. (b) LQR implementation. (c) Feedback linearization simulation. (d) Feedback linearization implementation.

and [36], we can define a feedback linearizing control law as

(4)

where is a signal that we will define later. By applying
this control law, the plant state space is mapped to another,
linear space. Since the plant has a strong relative degree,
it is possible to find this mapping such that is a
diffeomorphism. Then, is a new linear state variable
representation of the system if we use the control law (4). The
system has two unobservable states that form the so-called
internal dynamics[33] of the system. Such a mapping
can be found to be

and .
Given this new set of states, the output of the plant is given
by .

If we restrict the output to be identically zero for all
time, and given that 0 is an (unstable) equilibrium
point of the undriven system (see [35] and [36]), then the

zero dynamicsof the pendulum are given by and
. For the system to be minimum

phase, its zero dynamics have to beasymptotically stable
[33], [34], i.e., for this choice of .
However, a simple computation shows that this is not the
case; indeed, the zero dynamics of the pendulum are only
marginally stablebecause . This causes two
states of the system ( and , since and are bounded
when the output is bounded because we assume the stateto
be uniformly continuous) to be potentially unbounded under
feedback linearization. As will be seen later, this prediction is
corroborated, both in simulation and experimentation.

The marginal stability of the zero dynamics implies that
although the control law (4) will yield a stable input–output
behavior under the right choice of. If the initial conditions
of the system are distinct from zero, then a subset of the states
will be unbounded; in particular, by solving the zero dynamics
differential equations for some nonzero initial conditions, we
find that the state (which represents the base angleof
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the rotational pendulum) will be given by in steady
state, where represents time andis an integration constant.

It is worth noting that the unboundedness of can be
tolerated in this experiment, since all it means is that the
pendulum base keeps rotating while the pendulum is being
balanced. Of course, in practice, a limit is imposed on the
rate and amount of this rotation to protect the machinery, but
in principle, the marginal stability of the zero dynamics can
effectively be dealt with.

To simulate and implement the feedback linearizing closed
loop, it is necessary to specify the signal. Let be
a prespecified reference trajectory (set equal to zero for all
cases in this work), at least twice differentiable, and take

(following the notation in [35] and [36]).
Then, let with which we obtain a
stable (in the input–output sense) closed-loop system with
poles at . This choice of the closed-loop poles
was made because of practical considerations: experience with
feedback linearization on the pendulum experiment indicates
that attempting to bring the output error to zero too fast
can sometimes result in failure or a degraded performance;
therefore, these somewhat slow poles were chosen.

The simulation results in Fig. 2(c) are as expected—the
pendulum is balanced, and the base keeps rotating at an almost
constant velocity. Note that this controller settles the control
input at a nonzero value, which in turn introduces energy into
the system and causes its base to rotate; this is easily explained
by the theoretical analysis of the zero dynamics. A comparison
with the experimental results in Fig. 2(d) shows significant
similarities: after the swing-up phase, the statesand , as
well as the control input, behave as in the simulation. Observe
that in simulation the feedback linearizing controller reaches
a peak value of 6 V to balance the pendulum; although
in implementation the control input is limited to 5 V as
explained above, no such bound was used for simulation since
we desired to preserve ideal circumstances regarding control
action.

D. Adaptive Feedback Linearization

Both the feedback linearizing controller and the LQR, as
well as almost any other nonadaptive technique used on the
pendulum fail (or in the case of direct fuzzy control have
degraded performance [31]) when the nominal system (i.e., the
pendulum without any mass changes or added disturbances)
is altered in anunknown way. It is in such a situation that
adaptive control plays a central role since it is, at least in
principle, able to deal with significant plant changes. In this
investigation, two types of plant alterations were used—a
container half filled with metal bolts fixed at the tip of the
pendulum, and a container half filled with water fixed at the
tip of the pendulum.

The added weight (not accounted for in the design of the
controllers) not only shifts the pendulum’s center of mass away
from the pivot point (which, in turn, decreases the natural
frequency of the pendulum) and makes the effects of friction
less dominant, but also introduces random disturbances that
vary in nature with the bolts and the water. In the case of the

water container, a “sloshing liquid” effect is created, which
strongly affects the dynamics of the system. As will be seen
from the results below, the bolts have a different type of effect
that is caused by their “rattling” during balancing.

We note that the adaptive controllers in this subsection and
the remainder of this section are based on the assumption that
the plant is minimum-phase (see [3], [36]). Since this assump-
tion does not hold for the pendulum, some consequences of the
techniques are no longer guaranteed; specifically, we should
not expect the state (and possibly the control input) to
be bounded, because its behavior will depend on the initial
conditions of the system. However, the study of the adaptive
techniques on such a system is of theoretical and practical rel-
evance because, in the first place, it provides a good example
of practical results very well predicted by theoretical analysis
of nonlinear systems, and in the second place, it can give
insight into how to overcome the limitations of the adaptive
controllers inherited by their underlying assumptions. As will
be shown, it is indeed possible to obtain not only stability and
boundedness, but also good robustness to unmodeled plant
changes.

The adaptive fuzzy techniques illustrated in this paper are
based on feedback linearization; therefore, adaptive feedback
linearization (AFL) seemed the most natural choice for refer-
ence and comparison to conventional adaptive control. For the
design of this controller, the technique described in [35] and
[36] was used as we discuss next.

We first rewrite (3) as a linear combination of known, fixed,
nonlinear functions

(5)

where

(6)

We shallestimate and by searching for the optimum
vectors and .
We use and to denote the estimates of the
optimum parameter vectors at time. Then, the adaptive
control law is given by
where stands for the estimated Lie derivative ofwith
respect to , as defined in [34] and [36], and the variable
has been dropped for convenience. To allow for tracking, we
take , with and

to have the same poles as in the nonadaptive feedback
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linearization. Notice that does not need to be estimated, since
has already been approximated by a backward

difference, as explained above.
Following [35], define as a vector contain-

ing all the combinations , , , and

. For adaptation, define an error signal of the
form with , where the transfer
function is strictly positive real [33].
The adaptation law given by a normalized gradient approach is

(7)

where is the regressorvector obtained by computing the
output error equation (see [36]). To start
the search for the optimum vectors and at the
best known point in the search space, their estimates
and were initialized using the parameters obtained
from the system model, and

. For simulation and implementation we
used and . These values for and
were determined via manual tuning; after several simulation
and experimentation trials, they were the choices that, as far
as we could determine, made the controller work at its best
and still maintain the strictly positive real condition.

Fig. 3 contains the results obtained with AFL. Fig. 3(a) has
characteristics similar to those of the nonadaptive feedback
linearization in Fig. 2(a), although the required control input
stays within implementation bounds. For the nominal plant, the
controller exhibits very good behavior, as seen in Fig. 3(b):
the pendulum is perfectly balanced and the control input
settles at a value close to zero so the base rotates slowly.
In Fig. 3(c) we observe that the controller manages to balance
the pendulum with bolts, but only for a short time; the base is
turning rapidly and, at about the fifth second, the control input
reaches the its limit of 5 V. The controller had the greatest
problems with water and was not able to maintain equilibrium,
as seen in Fig. 3(d). In the next section, we will show how the
adaptive fuzzy control techniques can significantly outperform
this conventional adaptive controller.

E. Indirect Adaptive Fuzzy Control

Here, an indirect adaptive fuzzy controller (IAFC) will be
developed for the inverted pendulum; two possible configu-
rations will be presented and used for experiments. First, a
controller that does not make an explicit use of the known
plant dynamics to estimate the “certainty equivalence control
term” [1], [3] will be used on the pendulum. Second, it will
be illustrated how to incorporate the knowledge of the model
(3) in the design. It will be shown experimentally that such
an enhanced controller has, in the case of the pendulum, a no-
ticeable advantage over the previous techniques, and provides
an increased robustness against the induced disturbances.

For what follows in this section and the next, the notation
from [1]–[3] will be used. Moreover, in the interest of being
brief, we do not repeat the theoretical development of the con-
trollers in [1]–[3], and simply provide a complete description
of each controller. To fully understand why the controllers in

this and the next section result in stable operation, the reader
should consult [1]–[3].

1) Design without Use of Plant Dynamics Knowledge:As
previously shown, the pendulum model has a relative degree
of two. The input–output differential equation of the pendulum
model can thus be rewritten as

(8)

where, for now, we take and ( and
are known, measurable parts of the dynamics [3]), and

substituting the numerical values of the parameters we obtain

(9)

(10)

In these equations, we use “approximately equal” signs be-
cause the numerical parameters of the equations are not
expected to represent the pendulum’s input–output dynamics
exactly; rather, the right-hand side of (9) and (10) are simply
ourbest known approximationsto and , respectively.
Note that , so there exists a (take, for instance,

, which gives us a safe margin of error) such that
for all ; thus, is bounded away from

zero, a condition we will need to ensure stability.
It is possible to represent (9) and (10) using a special

form of Takagi–Sugeno fuzzy systems [37]. To briefly present
the notation, take a fuzzy system denoted by . Then,

. Here, singleton fuzzification
of the input is assumed; the fuzzy system
has rules, and is the value of the membership function
for the antecedent of theth rule given the input . It is
assumed that the fuzzy system is constructed in such a way
that for all . The parameter is
the consequent of theth rule which, in this paper, will be
taken as a linear combination of Lipschitz continuous functions

, , so that
, . Define

...

...
...

...
...

Then, the nonlinear equation that describes the fuzzy system
can be written as (notice that standard fuzzy
systems may be treated as special cases of this more general
representation [3]).

Given this notation, we can write

(11)

(12)

where , are the approximation errors that arise
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(a) (b)

(c) (d)

Fig. 3. (a) AFL simulation. (b) Experimental results of AFL with nominal plant. (c) Experimental results of AFL with disturbance: metal bolts. (d)
Experimental results of AFL with disturbance: sloshing water.

when and are represented with finite fuzzy systems,
and , represent the optimum and unknown fuzzy system
parameters that minimize the approximation errors. We assume
that and , where
and are known bounds of the approximation errors
between the actual system and its fuzzy system representation.
In simulation, these functions were taken as
and , since the optimum representation error
was expected to be small. In the laboratory, however, it
was necessary to increase these bounds to and

, because apparently the complexities of the real
plant were much harder to represent than the model. Note that
these values were chosen as the result of a tuning process,
where rough intuitive estimates of the values were used to
start with and then tuned to improve the performance of the
controller. The functional effect of increasing the error bounds

and is to increase the magnitude of the sliding
mode control term (see below).

We approximate the unknown fuzzy system representation
using

(13)

(14)

where the matrices and will be adaptively up-
dated, as shown below in (18). Based on the general form of
the system model (3), we take the following set of equations
for both and (also used for the direct adaptive fuzzy
controller in the next section): .
The fuzzy systems use five rules each of the form

If is then (15)

where each is, respectively, a row of the matrices
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Fig. 4. Input membership functions.

and , and we initialize the system with

(16)

Note that this fuzzy system design is overspecified, mainly in
the case of because, from the system model, this function
is not expected to depend on the state vector. However, this
choice was made to allow for a greater adaptation flexibility.
The initialization (16) gives the system the best-known starting
point in the search space. The input fuzzy setsare as
described in Fig. 4 (the normalizing gain for the input to the
fuzzy system was set to one for simplicity).

Define the signals and
, where now we take and we let ,

(with these choices, the poles of the error transfer
function are at and , which produce a small
error settling time). Then, the indirect adaptive control law
[1], [3] is given by

(17)

where thecertainty equivalence control termis taken as
. The sliding-mode control termis

given by sgn . To
define thebounding control term , we first need to determine
bounding functions and for and ,
respectively. Based on the numerical values of (9) and (10),
the bounding functions were empirically determined to be

, . Then, let

sgn whenever , and otherwise.
The parameter defines a bounded, closed subset of the

error-state space within which the error is guaranteed to
stay. For simulation, we took ; again, a larger
margin had to be used in implementation, and the smallest
acceptable value was . Note that although it is possible,
in principle, to take an arbitrarily small , in practice it is
often the case that the bounding control acts “too much” with
a small , and the unavoidable limits in the control-input
signal cause the system to become unstable. Also note that
from the stability analysis in [1] and [3], the bounding control
term is not required for stability and may, thus, beset to zero

if it provides no advantage in a particular design. However,
it gives the designer the flexibility of choosing a hard bound
for the tracking error, which in the case of the pendulum is
a useful feature.

To define the adaptation equations, letbe a identity
matrix, and let for simulation, and
for implementation, and take

(18)

A projection algorithm is used to ensure that and
remain within reasonable limits; specifically, it is sufficient to
ensure that is bounded away from zero with

.
Note that the IAFC adaptation algorithm guarantees that the

parameter error matrices and
will at least stay bounded. Note also that (9) and

(10) are themselves only approximations, based on our best
knowledge of the plant. Thus, it is possible that the fuzzy
system representation of the input–output equation and

does not converge to (9) and (10), but perhaps to a better
(or worse) model of the system.

In this way, the IAFC from [1] and [3] is completely
specified. One of its assumptions is not satisfied, namely, that
the zero-dynamics of the plant are exponentially attractive;
thus, as happened with the adaptive and nonadaptive feed-
back linearizing controllers, boundedness of the state, and
possibly of the control input , is not expected. However,
in principle, the controller should be able to achieve output
convergence (i.e., keep the pendulum balanced).

We see in Fig. 5(a) that this is indeed the case. The
pendulum is successfully balanced, and the settling time of the
controller is smaller than in the case of any of the previous
controllers since here , which has
poles at and ; the reason why this signal
was not used for the (adaptive and nonadaptive) feedback
linearizing controllers is that with it they performed worse,
both in simulation and experimentation, in terms of error
convergence and robustness.

For implementation, we see in Fig. 5(b) that the pendulum
is balanced using the nominal plant, although the output
error is not exactly zero. When the bolts disturbance is used
[Fig. 5(c)], the controller has trouble similar to AFL [see
Fig. 3(c)] because the control input reaches its lower limit
of 5 V. We see in Fig. 5(d) that with sloshing water,
the controller performs better, although it is apparent that
the control input limit is about to be reached. Thus, the
performance of this IAFC design is roughly similar to that
of adaptive feedback linearization.

2) Incorporation of Plant Dynamics Knowledge in Design:
To improve the robustness characteristics of the IAFC, we
will now take a slightly different design approach and will
make explicit and direct use of the knowledge we have of
the plant, i.e., the nonlinear model (3). By comparing the
simulation and experimental results so far, we see that although
very useful for theoretical analysis and design, the model is
nevertheless a relatively poor approximation of the rotational
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(a) (b)

(c) (d)

Fig. 5. No plant dynamics knowledge used: (a) IAFC simulation. (b) Experimental results of IAFC with nominal plant. (c) Experimental results of IAFC
with disturbance—metal bolts. (d) Experimental results of IAFC with disturbance—sloshing water.

inverted pendulum. In spite of this fact, it can effectively
be incorporated into the indirect adaptive scheme, and thus
provide it with an improved disturbance rejection ability.

We are now assuming that the pendulum input–output
equation can be represented by some known nonzero fixed
functions and , and unknown functions and

, which are to be identified on-line by the IAFC adaptation
mechanism. Since the model (3) represents all our knowledge
about the pendulum, we use it to specify the known functions
as

(19)

(20)

Note that and are known functions of time since we
can measure the entire state of the plant.

The unknown functions and can be represented
using fuzzy systems as in (11) and (12), and this optimum
representation can then be approximated using (13) and (14)

where we use the same vector of functionswe used above.
Since we know nothing about and , the most logical
way to initialize their fuzzy system approximation is by letting

and . In this way, the adaptation
mechanism will attempt to identify the plant by introducing
variations to the functions defined by (19) and (20). Notice
the fundamental difference that this design has with respect
to the previous one: above, the input–output dynamics of the
system were represented entirely by and , which
were estimated by the adaptation mechanism. Here, we let the
IAFC estimateperturbationsoff and [recall that

and contain all our knowledge about the plant]
using and . As we will see, the characteristics of the
adaptive process change based on how we define and initialize
the system.

The approximation bounds and need not be
reset with this configuration, because the representation errors

and , using (19) and (20), are expected to be



176 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997

(a) (b)

(c) (d)

Fig. 6. Plant dynamics knowledge used: (a) IAFC simulation. (b) Experimental results of IAFC with nominal plant. (c) Experimental results of IAFC with
disturbance—metal bolts. (d) Experimental results of IAFC with disturbance—sloshing water.

of the same order of magnitude as in the previous case, and
possibly less, or at most, equal; therefore, they are taken as
defined before, with their respective values for simulation and
implementation. Following a similar reasoning, the functions

and are expected to be less than or equal in
magnitude to (9) and (10), respectively; thus, although we
could redefine the bounds and , we chose to keep
them as in the previous subsection for simplicity.

To completely determine the controller it is necessary to
redefine the certainty equivalence control term, as

. The sliding mode
and bounding control terms as well as the adaptation law (18)
are taken without change, and the indirect adaptive control
law is given by (17).

Observation of the simulation results in Fig. 6(a) using
this modified IAFC shows little difference with Fig. 5(a);
apparently, the basic characteristics of the controller remain the
same, i.e., the state is still unbounded, and the pendulum is
balanced with a very similar control input. Implementation of

the controller on the nominal plant, as seen in Fig. 6(b), shows
a slightly faster error convergence to zero. The most notable
differences arise when the plant is disturbed; in Fig. 6(c) we
see that the controller is able to handle the bolts disturbance
effectively and without saturation of the control input. The
same good behavior is observed in Fig. 6(d), where the plant
is under the effects of sloshing water dynamics; initially, the
pendulum is not perfectly balanced, but eventually the error
converges to zero.

F. Direct Adaptive Fuzzy Control

Now we turn our attention to the direct adaptive fuzzy
control (DAFC) method of [2] and [3] for the inverted pen-
dulum. Using IAFC, a controller is constructed that seeks to
identify the plant dynamics and use its best estimate to produce
an approximation to a feedback linearizing law. Here, the
approach is rather to search for an unknown control law that
provides (at least) asymptotically stable tracking and is able to
compensate for disturbances and maintain stability. As was the
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case with IAFC, the DAFC methodology allows the designer to
use previous knowledge or experience with the plant in various
ways. Here, we will illustrate two representative possibilities,
and we will see that is possible to obtain significantly different
control results depending on the approach taken.

In IAFC, it was possible to use a known part of the plant
dynamics represented by and in the control design.
We saw that for the pendulum application it was beneficial
to include the known dynamics because it increased the
robustness of the design. DAFC provides the designer with
a method to incorporate a best guess of what the controller
should be (below we will call this the “known controller,”
denoted by ). The algorithm then adaptively tunes a fuzzy
controller to compensate for inaccuracies in our choice of this
known controller.

1) Design Using Feedback Linearization as a Known Con-
troller: As described in [2] and [3], DAFC is a somewhat
more restrictive technique than its indirect counterpart since,
in addition to the assumption that the plant is minimum-phase,
it is also required that the system input–output (8) is such that

for ; further, it is assumed that is bounded
by two finite constants, and . For the pendulum, this
assumption holds since , where,
for instance, we take, as before, and .
The last plant assumption needed in [2] and [3] is that for
some , . Since is expected to be
a constant, we can safely set , and the assumption
holds.

Note that the control equations derived in [2] and [3]
are based on the premise that is positive, but it is
stated there that the laws can be modified to allow for the
negative case. Thus, the equations used here will be slightly
modified versions of those in [2] and [3], as required by the
characteristics of the pendulum; specifically, the adaptation
differential equation and the sliding-mode control term will
each have a small but crucial sign change.

Let be an unknown ideal controller that we will try to ap-
proximate. In [2] and [3], this ideal controller is assumed to be
a feedback linearizing law of the form

In general, it is possible to express in terms of a
Takagi–Sugeno fuzzy system, as
where is some known controller term, which we will use
in this section and set equal to zero in the next, and
is the error between the fuzzy representation and. It is
assumed that , where is a known
bound for the error. In practice, it is often hard to have a
concrete idea about the magnitude of , because the
relation between and its fuzzy representation might be
difficult to characterize; however, it is much easier to begin
with a rough, intuitive idea about this bound, and then iterate
the design process and adjust it, until the performance of the
controller indicates that one is close to the right value. For
simulation, we found that gave us good results,
and in the laboratory, we increased it to . These
bounds are both relatively small, which indicates that the fuzzy
system we used, although a simple one, could represent the
ideal controller with sufficient accuracy.

We are going to search for using

(21)

where is as defined for the IAFC, with the fuzzy sets
of Fig. 4. The matrix is adaptively updated on-
line, and the function vector is taken as in the previous
Section. The fuzzy system again uses only five rules, as
given by (15), and now each is a row of the matrix

. To approximate a feedback linearizing controller
we will define as in law (4), and we will take as in
the feedback linearization design. Further, following the same
line of thought as in Section II-E.2, we initialize the fuzzy
system with .

The DAFC control law is given by .
It is formed by three terms: the fuzzy approximation to the
optimum controller (21), and sliding and bounding control
terms. Take the signals and as defined for the IAFC
case. Since (as noted above) , the sliding-mode
term is given by sgn . Note the minus
sign which is a result of the fact that .

The bounding-control term needs the assumption that
is bounded, with . We take as de-
fined before; then, if ,

sgn and otherwise.
For simulation, we used and increased it to

in implementation. Please refer to the discussion on
IAFC for an explanation on how we determined these values.

The last part of the DAFC mechanism is the adaptation law,
which is chosen in such a way that the output error converges
asymptotically to zero, and the parameter error remains at least
bounded. This law is given, in general, by

(22)

Again, note the minus sign for . The parameter can
be chosen nonzero to potentially improve adaptation [2], [3],
but here we took for . For simulation, we
used , and in experimentation we decreased the
gain slightly to . With these choices the algorithm
was able to adapt and estimate the control lawfast enough
to perform well and compensate for disturbances, but without
inducing oscillations typical of a too high adaptation rate.

Fig. 7(a) shows the simulation results with this controller.
It has a behavior typical of feedback linearizing controllers
on this plant: the control input settles and oscillates around
a nonzero value, thus keeping the pendulum base rotating.
Observe in Fig. 7(b) the performance of the DAFC design
on the nominal plant: the error is effectively decreased to
zero, and the behavior of the base is similar to the previous
cases. Again, the advantages given by the adaptive capability
of this algorithm appear most distinctively in the presence of
strong disturbances: the controller is quite successful with both
the metal bolts [Fig. 7(c)] and the sloshing water [Fig. 7(d)].
The pendulum is kept balanced, and the control input remains
within small bounds around zero. Thus, this design proved to
be robust and reliable although it still has the weakness that
all the other adaptive controllers presented in this work (until
now) share—it is not able to deal with the marginal stability
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(a) (b)

(c) (d)

Fig. 7. DAFC using feedback linearizinguk. (a) DAFC simulation. (b) Experimental results of DAFC with nominal plant. (c) Experimental results of DAFC
with disturbance—metal bolts. (d) Experimental results of DAFC with disturbance—sloshing water.

condition of the system’s zero dynamics. Therefore, as a last
and, in our opinion, best fuzzy adaptive design example, we
will now describe a DAFC that cannot only compensate for
the induced disturbances (and, in fact, it does it with greater
ease than all the previous controllers), but is also able to keep
state boundedness, even though the theoretical analysis of [2]
and [3] does not predict it (recall that such analysis does not
preclude it).

2) Using the LQR to Obtain Boundedness:Although the
theoretical analysis in [2] and [3] uses the assumption that the
unknown control law , which the DAFC tries to identify as
a feedback linearizing law, it was found experimentally that it
is not necessarily the case. If the right known controller is used
and/or the adaptation mechanism is initialized appropriately,
then the adaptation algorithm will converge to a controller
that might behave in a very different manner because this
mechanism seems to try to find the (local) optimum controller
closest to its starting point in the search space, and this

optimum does not necessarily have to be a feedback linearizing
controller.

This finding is of special importance when the control
design task involves dealing with a nonminimum phase plant
like the pendulum, for which feedback linearization-based
adaptive techniques have the limitation of being unable to
maintain complete state boundedness. As stated before, the
unboundedness of the state is admissible for the pendulum,
but it might not be for other systems.

Consider, for instance, that a nonadaptive controller is
available that can control the nonminimum phase plant with
state boundedness. Then, it is possible that the desirable
boundedness characteristics of this controller can be incorpo-
rated into the DAFC design, and enhanced by the robustness
that the adaptive method provides. It is not yet known how
to characterize, in general, the controllers that can be used in
such a way; however, for our present study, a most natural and
intuitive choice for this purpose is the LQR. This controller
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implements a linear function of the plant states, and is, there-
fore, able to drive the state error to zero for the nominal plant
while maintaining state boundedness. Observe in Fig. 2(a) and
(b) that all the plant states are indeed kept bounded. The LQR
was shown to have a very good performance on the nominal,
undisturbed system. Nevertheless, it fails immediately when
significant disturbances are introduced.

A DAFC will be designed based on the LQR, so that its
good behavior in terms of state boundedness can be kept,
and its weakness regarding plant disturbances eliminated.
Two different, and functionally equivalent ways were found
to accomplish this. The first makes use of the term, as
illustrated above. The second uses an appropriate initialization
of the matrix . Since the use of has already been shown,
only the second approach will be described here.

Again, take the control law defined above. The bounding
and sliding-mode control terms are taken without changes.
Also, the adaptation law (22) is used, now with a smaller gain
(i.e., we slow adaptation down), , for simulation
and implementation purposes. This adaptation gain was chosen
via tuning of the controller. We found that higher gains tended
to produce a more oscillatory behavior.

The fundamental difference between this and the previous
design lies in the ideal that we aim to identify. Before,
the adaptive search was configured in such a way that the
mechanism converged to a feedback linearizing law; now, we
want it to identify a control input that behaves basically like an
LQR, i.e., we want to implement anadaptive LQR. To do this,
it is necessary to start the adaptation algorithm at a point in the
search space in the proximity of the ideal LQR controller.
The closest approximation we have to this idealis the state
feedback gain vector of the LQR controller. Therefore, we
will use it to initialize the fuzzy approximation of the desired
control . Take the fuzzy system described by (21), with the
same functions vector as before, and let . Then we
initialize the matrix as

(23)

Notice that the sign of the gains has been reversed since in this
case we do not use the state error , but rather the vector,
which consists of functions of the states themselves. It is worth
mentioning that an alternative similar way of implementing
this design consists of using the control term (i.e.,
we set equal to the LQR state feedback law) and letting

. We have tested this approach and it also works
very well.

In this way, the design is complete, and the obtained results
corroborate our expectations about it. We see in Fig. 8(a) the
behavior of the controller in simulation. Observe that it closely
resembles the performance of the LQR in Fig. 2(a), both in
terms of the states and the control input it produces.

Fig. 8(b) shows the experimental results of the modified
DAFC on the nominal plant. The pendulum is balanced with
a control input that approaches zero in average (which means

that the state is not going to grow without bound), and the
performance is similar to that of the LQR in Fig. 2(b), although
the output error is not exactly zero. The most interesting results
are found in Fig. 8(c) and (d). We note that under both the
metal bolts and the sloshing water disturbances the controller is
able to maintain convergence and, in addition, it has a behavior
much like that of an LQR retuned for the disturbed system:
the pendulum base does not keep rotating, but lightly oscillates
around a constant position, and the pendulum is balanced with
a control input that has an average value close to zero. We
observe in both cases, and most distinctly in the case of the
water, how the controller adapts to the system with random
disturbances; the control-input oscillations are relatively large
at first, and after a couple of seconds decrease in amplitude as
the DAFC approximates the ideal controller more and more.
At the same time, the error converges to zero, and the base
movement decreases.

G. Summary of Pendulum Results

We have studied several control approaches for the ro-
tational inverted pendulum. The first two are nonadaptive,
conventional controllers—an LQR and a feedback linearizing
controller. We saw that these methods present an adequate
behavior on the nominal plant in terms of our basic control
objective, which is to balance the pendulum. We saw that
feedback linearization has the disadvantage of making the
state unbounded, due to the nonminimum phase nature
of the pendulum. From a practical point of view, this is an
undesirable feature also shared by several of the adaptive
schemes we analyzed.

We then applied adaptive feedback linearization and indirect
and direct adaptive fuzzy control to the pendulum. We found
that AFL and IAFC without plant knowledge had similar
troubles when working under disturbances. We were able to
increase robustness using our plant knowledge in IAFC and
by specifying the known controller in DAFC as a feedback
linearizing controller. Finally, the DAFC design with LQR
initialization presented a very interesting feature—it retained
the “good” characteristics of the LQR (state boundedness,
error convergence) and at the same time added the benefits
of adaptation (apparent robustness to disturbances).

One must be careful in trying to evaluate these results. It is
probably not fair to say that AFL and IAFC “failed” and DAFC
“succeeded;” recall that the pendulum does not satisfy the
zero-dynamics assumption of all these methods. However, our
experience indicates that at least in some cases, the adaptive
fuzzy methods we investigated have an advantage with respect
to the conventional methods—they allow for more design flex-
ibility. This is clearly illustrated by our two IAFC designs. The
IAFC without plant knowledge performed poorly under distur-
bances, similar to adaptive feedback linearization. However,
the IAFC method allowed us to improve performance by using
our plant knowledge more effectively in the control design. In
a similar way, DAFC using a feedback linearizing law as the
known part of the controller displayed an improved behavior in
comparison with the first two adaptive techniques. Apparently,
the explicit use of our knowledge of the plant in one case,
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(a) (b)

(c) (d)

Fig. 8. DAFC initialized as LQR. (a) DAFC simulation. (b) Experimental results of DAFC with nominal plant. (c) Experimental results of DAFC with
disturbance—metal bolts. (d) Experimental results of DAFC with disturbance—sloshing water.

and of what the control law should be in the other, increased
the robustness of the algorithms. Furthermore, we managed to
obtain an even greater improvement by heuristically turning
the DAFC technique into an “adaptive LQR.” Although we
provide no theoretical justification for this result, it seems
reasonable to think that direct adaptive techniques, in general,
are fundamentally different from indirect adaptive methods;
direct adaptive controllers might be regarded as generalized
search mechanisms that are able to approximate different local
optimum points in their search space (the controller search
space).

III. PROCESSCONTROL EXPERIMENT

The process control experiment in our laboratory has been
designed to emulate systems found in chemical processes by
providing the ability to study liquid level control with various
disturbances and plant variations. Other research on intelligent
control for this system can be found in [17]. Work similar to

this tank experiment, but with a slightly different setup can
be found in [38]. In this section, we develop a conventional
feedback linearizing controller and an indirect adaptive fuzzy
controller, and we compare their performance for a variety of
experimental conditions.

A. Experimental Setup

The process control experiment consists of two tanks, as
shown in Fig. 9. The “fill” tank contains a liquid whose vol-
ume we wish to control (note that this volume is proportional
to the liquid level). We denote the liquid volume by and
measure it using gallons. When full, the fill tank contains ten
gallons of liquid. The reference input, which is a desired level,
is denoted by . The second, a “reservoir” tank, contains the
liquid that will be pumped into and out of the fill tank and is
the same size as the fill tank. There are two controlled pumps
and another pump that is used for creating a disturbance. The
first pump is a variable rate dc pump (which we denote by



ORDÓÑEZ et al.: ADAPTIVE FUZZY CONTROL: EXPERIMENTS AND COMPARATIVE ANALYSES 181

Fig. 9. Process control experiment.

) which pumps liquid from the reservoir tank into the fill
tank. The next pump is an ac pump (which we denote by)
which can only be turned off and on. This pump will be used
to control the amount of liquid leaving the fill tank. The last
pump, another variable rate dc pump (which we denote by),
is used to create a disturbance by removing liquid from the
fill tank. The control input to the system is a single voltage
where a positive value of sufficient magnitude will cause the
dc pump to pump liquid into the fill tank and a negative

of sufficient magnitude will cause the ac pump to pump
liquid out of the fill tank.

The pumps have dead zones of different magnitudes and
saturation nonlinearities that make the control problem of
regulating the liquid level a challenging one. Also, the pumps
introduce electrical noise and delays into the system. Finally,
sensing problems are caused by the Styrofoam ball used to
measure the liquid level when the liquid surface oscillates. We
will more carefully quantify some of these effects by providing
a mathematical model of the plant.5

B. Model

Using some basic modeling ideas, we have found that a
reasonably good model of the experiment is given by

(24)

where is a liquid dependent disturbance caused by
pump , is a voltage input (with values between8.5 to
10.0 V) which controls pumps and , represents
the combined effects of the pumps and , and
is some unknown but relatively small disturbance which is
always positive (e.g., a small leak). Experimentally we have
determined that with
if and zero otherwise, where

if
if
if
if

(25)

5For further reference on the process control experiment please consult
[17].

The disturbance was chosen as
for two reasons. First, we wanted a disturbance which took on
values between 5.0–9.0 V since this fact would help ensure the
model will operate in a “continuous” region (we wanted to stay
away from the dead zones of the pumps). Second, we wanted
a disturbance which was dependent on the volume of liquid
since we actually view the disturbance as an effect from a
human operator or other subsystem that will generally remove
more liquid from the tank when there is more liquid available.
The chosen disturbance meets both of these requirements.

Each controller was allowed to control the process for two
different experimental conditions. Each test run constituted
tracking a desired liquid volume reference input that
was of the form for and

for . For simulation
and implementation, we used a 0.25 s sampling period since
the plant is a slow one. We investigated the nominal plant
[i.e., ] and the plant with disturbance [i.e.,

] that represents a degraded pump.

C. Feedback Linearizing Control

The first controller we study makes use of feedback lin-
earization. This controller was designed assuming that we
have complete knowledge of the disturbance since if this
term is ignored, the feedback linearization procedure produces
a simple proportional controller. For the indirect adaptive
fuzzy controller and feedback linearizing controller, the small
leaking disturbance has been ignored in the design stage
since it is considered to be an unknown effect. For brevity we
omit the control equation development and proceed to report
on our results with this controller, which assumes

, so
.

Simulation and implementation plots are shown in Fig. 10
where we see that while our model represents the gross
characteristics of the plant it is certainly not highly accurate.6

6It is important to note that it is very difficult to come up with a highly
accurate model of this process, partly for the reasons given where we described
the experimental process, and due to the fact that over time, the experiment
changes in a variety of ways (e.g., the filters in the pumps become dirty, which
has a significant impact on the plant’s behavior).
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(a) (b)

(c) (d)

Fig. 10. (a) Feedback linearization simulation with disturbance. (b) Feedback linearization implementation with disturbance. (c) Feedback linearization
simulation with nominal plant. (d) Feedback linearization implementation with nominal plant.

As seen in these figures, the feedback linearizing controller
did well in the presence of the disturbance in both simulation
and implementation (the measure of performance for the
controllers was based on their ability to track the reference
input, their ability to minimize control energy, and their ability
to minimize control oscillations). The slight oscillation of the
control voltage at about 250 s in the simulation was caused
in part by the fact that the controller entered into one of
the dead zones of the dc pump. The feedback linearizing
controller did not perform as well in the case where there
was no disturbance in both simulation and implementation.
This result was expected since the controller was specifically
designed for the disturbance, and it shows that this feedback
linearization design is not particularly robust to plant changes.

D. Indirect Adaptive Fuzzy Control

The next controller we studied was the IAFC. Since the
design procedure for this method was already illustrated in
Section II, we will not show the mathematical details and will
concentrate on our results.

For this design we set the function to zero and
only used , since this configuration gave us the best
performance. For the estimator functionsand , we used

standard fuzzy systems (recall that a standard fuzzy system
may be expressed as a special case of our Takagi–Sugeno
form).

The results of the simulation and implementation are shown
in Fig. 11. The IAFC performs about the same as the feed-
back linearizing controller for the experimental setup with a
disturbance, but seems to outperform the feedback linearizing
controller in tracking the reference input for the nominal plant
setup. It tends to produce a more oscillating control output
than the feedback linearizing controller, but both appear to
use about the same amount of control energy.

Further work was done on examining whether the fuzzy
systems actually estimated the plant parameters. According
to the theory of the IAFC technique we are only guaranteed
to have boundedness of parameter errors. There are two
reasons why the estimates do no necessarily converge to
their true values. First, the identifiers simply seek a model
of the plant that will allow the adaptive controller to achieve
its objective (i.e., stability of the closed-loop system and
asymptotic convergence of the tracking error). Second, we
would need to have “persistence of excitation” [36], and our
simulations and implementations show this fact not to be true.
Interestingly enough, parts of the fuzzy control surfaces were
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(a) (b)

(c) (d)

Fig. 11. (a) IAFC simulation with disturbance. (b) IAFC implementation with disturbance. (c) IAFC simulation with nominal plant. (d) IAFC implementation
with nominal plant.

Fig. 12. Ball and beam system.

roughly tuned to represent the plant model. However, this fact
did not hold for the entire surface, so there was probably no
convergence of and to their true values.

Overall, we suggest the IAFC technique tends to outperform
the feedback linearizing control technique. Although the IAFC
technique is an adaptive technique and the feedback linearizing
controller is not; the feedback linearizing controller performs
as well as or better than other adaptive techniques when
performing comparisons in the presence of a disturbance [17].
This fact shows that the IAFC technique is a viable control
technique for this experiment.

IV. BALL AND BEAM

Here we will use the well-known ball and beam experiment
as an application example for the direct adaptive fuzzy control
technique in [2] and [3]. We first introduce a mathematical
model of the system which has a strong well-defined relative
degree (as opposed to the ball-beam model in [39]). Then
we develop a fuzzy controller for the experiment and its
simulation and implementation results will be shown as a basis
for comparison. Finally, we use this same fuzzy controller to
design a direct adaptive fuzzy controller, as defined in [2]
and [3], and the performance of the adaptive controller will
be evaluated. Details about the theory behind the controllers
will be omitted, and emphasis will be put on the results. For
a detailed presentation of the adaptive fuzzy control theory
please see Section II and refer to [2] and [3].

A. Experiment Setup, Modeling, and Simulation

Consider the ball and beam system in Fig. 12. The ball
is allowed to roll (without sliding) along the beam, and its
position relative to the left edge of the beam is denoted as.
The beam tilts about its center point, thus causing the ball to
roll from one position to another. The control problem consists
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Fig. 13. Motor-Ball-Beam Control Scheme:�r is the angle reference input,�e is the angle error, and� is the beam angle.

in designing a controller that tilts the beam in such a way that
the ball is brought from its initial position to another desired
position. The beam is driven by a dc motor whose shaft is
attached to the center of the beam through a 50 : 1-turn ratio
gear box. A ten-turn precision potentiometer is attached to the
motor shaft to measure the angle of the beam. There are 32
photodiodes mounted along the bottom of the beam, spaced
at 0.75-in intervals along the slot over which the ball rolls.
Two lamps are positioned above the experiment so that they
illuminate the whole beam area. The photodiodes detect the
shadow cast by the ball to ascertain its position. Notice that this
position sensing mechanism provides a discrete approximation
to the actual position of the ball, and thus complicates the
control task. A resistive strip could have been used to provide
continuous position sensing, but this experiment was designed
to be more challenging using the photodiodes (please see [40]
for a detailed description of the setup).

Consider Fig. 13 for a block-diagram description of the
system. Let be the input armature current to the motor,the
angle of the beam, andthe position of the ball on the beam.
A simple proportional-integral-derivative (PID) controller is
used to drive the motor and to position the beam at any desired
angle. This controller takes as an input the errorbetween
an angle reference and the beam angle. The signal

is produced by the ball-position controller (which seeks
to achieve our primary objective). By means of appropriate
tuning of the PID controller, it is possible to achieve very
good angle tracking, and since the inner loop has much faster
dynamics than the outer loop, it can be considered virtually
invisible to the ball-position controller.

Let and . Then, a linear state-space model
of the motor is given by

, where , ,
, and (the numerical values

come from the motor specifications and the beam dimensions).
If we now let we can obtain two more equations which
represent the ball and beam dynamics when the beam angle
is taken as the input, using Newton’s second law. Here, we
are using the approximation (valid because the
beam angle varies within a small range around zero) to have
the input enter linearly. We have found that a reasonably good
model of our ball-beam system is given by

(26)

where and , and the system output

is . The numerical values take into account the
acceleration due to gravity and the friction constant between
the ball and the beam (determined experimentally), and are
scaled in such a way that the outputis in units of 0.75 in,
which corresponds to the distance between the photodiodes.
The function is an approximation
to the acceleration due to friction that the ball experiences on
the beam.

If the output is repeatedly differentiated, we find that the
system has a well-definedstrong relative degree[33], [34] of
four. Furthermore, it is possible to determine that thezero
dynamics [34] of the system are exponentially stable (the
details of the calculations involved are very tedious and are,
therefore, omitted).

For our simulations below, we use a fourth-order
Runge–Kutta numerical method with an integration step
size of 0.001 s. In implementation, a sampling time of 0.01
s is used.

B. A Fuzzy Controller for the Ball and Beam

We now describe our results for the ball and beam using a
standard fuzzy system for ball position control (details on the
controller are omitted for brevity). The fuzzy controller has
two inputs: the position error (defined as , where

is the desired ball position) and the error derivative.
We use singleton fuzzification for both inputs. Forwe take
five triangular membership functions; for we use three, and
we make a standard choice for the rule base. In the inference
mechanism we use minimum to represent the premise and
product for the implication, and centroid defuzzification is
applied to obtain the output of the fuzzy system.

For all simulations and laboratory experiments, the ball was
initially on position five on the beam (that is, it was set on
top of the photodiode number five, where the photodiodes are
numbered from 0 to 31 beginning at the left); the desired
position is twelve during the first ten seconds, and then changes
to eight for another 10 s. The discrete ball position sensing
mechanism of the real system is also used in simulation—the
ball position controller receives not the exact value of, but its
position index (as represented by the number of photodiodes
along the beam).

Fig. 14(a) shows the simulation results using the standard
fuzzy controller. It has very good performance, with no
overshoot, small settling time, and small steady-state error. The
performance is, however, somewhat degraded in implementa-
tion, as shown in Fig. 14(b). There is overshoot and the error
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(a)

(b)

Fig. 14. Direct fuzzy controller. (a) Simulation results. (b) Implementation
results.

is larger. Notice the ball-position measurement noise [spikes
between seventh and eighth seconds in Fig. 14(b)], which adds
to the complexity of the control task.

C. Direct Adaptive Fuzzy Control

We will now use the fuzzy controller of the previous section
to design a DAFC following the methodology of [2] and [3].
It is expected that the adaptive controller will achieve an
improved performance and have a greater robustness against
noise. Two assumptions about the plant have to be verified
to apply this technique. First, the system has to be minimum
phase; this condition may be easily verified for our proposed
model. As we mentioned above, the ball-beam model has
a relative degree of four. However, to simplify the design
we ignore the motor dynamics (notice that this assumption
requires the motor control to be efficient enough, i.e., it should
provide good tracking with little lag; we can see that this is the

case in Fig. 14: the motor shaft anglefollows the reference
closely), so we may use the approximation . In this

way, we only have to deal with the two-state system in (26).
If we differentiate the output twice and take ,
we find that

(27)

That is, the relative degree of the system that the ball position
controller “sees” is two, and it has no zero dynamics; therefore,
it is minimum phase (note that the much more complicated
analysis that does not discard the motor dynamics leads to
numerically similar results, with the system having a relative
degree of four and asymptotically stable zero dynamics).

The second plant assumption of [2] and [3] can also be
verified from (27). Using the notation from these references
let . Then there exist constants and

such that . Take, for instance,
and . It is also required that for some

, . The assumption holds if we let
, since is a constant.

We will not show the development of the DAFC since
it was already illustrated in Section II. However, there is
one issue to notice: in our DAFC design we used the fuzzy
system described abovewithout any modificationsfor the term

(recall that a standard fuzzy system is a special case of
the more general Takagi–Sugeno form we consider), and the
adaptation laws adopted a simplified form.

Fig. 15(a) shows the performance of DAFC insimulation.
We observe a behavior similar to that of the standard fuzzy
controller in Fig. 14, with a slight overshoot in the output
and roughly the same error and settling time characteristics.
The real advantage of the adaptive method becomes plain in
implementation, as shown in Fig. 15(b), where the settling
time is significantly reduced, as well as the overshoot and the
steady-state error. We have studied plots of how the output
centers change over time while the DAFC tunes them and
they are modified significantly more in implementation than
in simulation due to the unmodeled nonlinear characteristics
of the plant and to sensing noise. We omit the plots of
these centers in the interest of brevity and since they are not
particularly instructive.

In [40], a direct fuzzy controller was implemented for the
ball and beam system, with experimental results apparently
better than the ones in the present study; it is, however,
hard to establish a comparison, because the experiment has
broken several times since its construction, and a few of its
components have been replaced.

V. CONCLUDING REMARKS

In this work, we have presented three case studies on
the use of direct and indirect adaptive fuzzy control tech-
niques developed in [1]–[3]. We have illustrated how the
theory behind these controllers can be brought to practice
by means of a design methodology, and have shown that
the adaptive fuzzy controllers are able to work with complex
plants under significant disturbances. Furthermore, a close
correspondence between the theoretical predictions and the
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(a)

(b)

Fig. 15. Direct adaptive fuzzy controller. (a) Simulation results. (b) Imple-
mentation results.

experimental results has been found. The performance of the
adaptive fuzzy controllers has been compared with that of
several other techniques which, according to our experience,
present a good behavior for the plants we used. In the
case of the rotational inverted pendulum, a comparison was
made with a linear quadratic regulator and adaptive and
nonadaptive feedback linearizing controllers. For the process
control problem, the comparison was made with nonadaptive
feedback linearization, and for the ball and beam we compared
with a standard (nonadaptive) fuzzy controller.

Although the results we obtained seem to indicate that the
DAFC and IAFC have comparable performance or are able to
outperform the techniques they were compared with, it is still
necessary to evaluate the performance of the controllers under
a greater variety of conditions. It remains to be investigated
how robust the controllers are against many different types
of disturbances; for instance, we did not study how the
adaptive fuzzy controllers react to “impact disturbances” on

the pendulum. Generally speaking, disturbances of this type
present a great challenge for adaptive schemes, especially
if there is a sloshing liquid at the endpoint. The inverted
pendulum is an example of a system with marginally stable
zero dynamics that because of its nature, provides insight into
the way the adaptive controllers work. And, as we saw, it was
possible to design a DAFC that gave us bounded states in spite
of the marginal stability of the zero dynamics. However, we
provided no theoretical justification of the fact that this design
worked as it did. In the cases of the process control tank and
the ball-beam system, the adaptive fuzzy controllers were able
to compensate for some disturbances and sensing noise, but it
still seems possible that their performance could be improved
(perhaps by further tuning of the techniques).

The results of our case studies suggest that investigating an
extension of the adaptive schemes in [1]–[3] to certain types of
nonminimum phase systems might be fruitful; if accomplished,
such an extension would broaden the application spectrum
of adaptive techniques in general. In addition, the IAFC and
DAFC are single-input single-output schemes, and an exten-
sion to multi-input multi-output systems is currently under
way; the indirect case has already been introduced in [41]. It is
also important to notice that the adaptive fuzzy controllers in
[1]–[3] arecontinuous timetechniques; to implement them we
used a digital computer, and thus were forced to implicitly
use a discrete time approximation of the controllers. It is
reasonable to think that a proof of stability is still applicable
when a continuous time technique is discretized, but such
a study is outside the scope of the present work. Recently,
(in [42]) the authors have introduced a stable discrete-time
adaptive control scheme for a class of nonlinear systems.
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México, in 1994, and the M.S. degree from The
Ohio State University, Columbus, OH, in 1996, both
in electrical engineering. He is currently working
toward the Ph.D. at The Ohio State University.

In 1994, he received a Litton Fellowship and
has since worked as a Teaching and a Research
Assistant. His research interests include fuzzy and

neural control, adaptive control, and stability analysis for nonlinear systems.

Jon Zumberge was born in Dayton, OH, in 1971.
He received the B.S.E.E. degree, in 1994, and the
M.S.E.E. degree, in 1996, both from The Ohio State
University, Columbus.

He is currently working for Delphi Chassis Sys-
tems, Dayton as a Project Engineer. His research
interests include adaptive fuzzy control, supervisory
fuzzy control, and nonlinear identification via fuzzy
systems.

Jeffrey T. Spooner received the B.A. degree in
physics from Wittenberg University, Springfield,
OH, in 1991, the B.S. degree in electrical engineer-
ing from The Ohio State University, Columbus, in
1993, and the M.S. degree in electrical engineering
(with a specialization in control systems), in 1995,
from The Ohio State University, Columbus.

Since 1995, he has been with the Control Subsys-
tems Department at Sandia National Laboratories,
Albuquerque, NM. His areas of interest include
adaptive control, fuzzy systems, neural networks,
and modeling.



188 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997

Kevin M. Passino (S’79–M’90–SM’96) received
the B.S.E.E. degree from Tri-State University, An-
gola, IN, in 1983, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Notre
Dame, IN, in 1989.

He has worked in the control systems group at
Magnavox Electronic Systems Co., Ft. Wayne, IN,
on research in missile control, and at McDonnell
Aircraft Co., St. Louis, MI, on research in flight
control. He spent a year at Notre Dame as a Visiting
Assistant Professor, and is currently an Associate

Professor in the Department of Electrical Engineering at The Ohio State
University, Columbus. He is an Associate Editor for the IEEE TRANSACTIONS

ON AUTOMATIC CONTROL, served as the Guest Editor for the 1993IEEE Control
Systems Magazine Special Issue on Intelligent Controland Guest Editor for
a special track of papers on intelligent control forIEEE Expert Magazine
in 1996, and is on the Editorial Board of theInternational Journal for
Engineering Applications of Artificial Intelligence. He is co-editor (with P. J.
Antsaklis) of the bookAn Introduction to Intelligent and Autonomous Control
(Norwell, MA: Kluwer, 1993). His research interests include intelligent
and autonomous control techniques, nonlinear analysis of intelligent control
systems, failure detection and identification systems, and genetic algorithms
for control.

Dr. Passino is a member of the IEEE Control Systems Society Board of
Governors. He was the Publicity co-chair for the IEEE Conference on Decision
and Control in Japan in 1996 and is the Workshops Chair for the 1997 IEEE
Conference on Decision and Control. He was a Program Chairman for the
8th IEEE International Symposium on Intelligent Control in 1993, served as
the Finance Chair for the 9th IEEE International Symposium on Intelligent
Control, and is serving as the General Chair for the 11th IEEE International
Symposium on Intelligent Control.


