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Adaptive Control for a Class of Nonlinear Systems several advantages with respect to indirect-adaptive methods, including
with a Time-Varying Structure the fact that it needs less plant information to be implemented.

Raul Ordéiiez and Kevin M. Passino Il. DIRECT ADAPTIVE CONTROL

Consider the class of continuous time nonlinear systems given by
Abstract—In this note, we present a direct adaptive control method for a .
class of uncertain nonlinear systems with a time-varying structure. We view ) - . .
the nonlinear systems as composed of a finite number of “pieces,” which are ri= Z pi(v) (Q (Xi) + 97 (‘\i)'f’i-r-l)
interpolated by functions that depend on a possibly exogenous scheduling Jj=1
variable. We assume that each piece is in strict-feedback form, and show R
that the method yields stability of all signals in the closed-loop, as well as p— Z p;(v) (% (Xn) + uf,(X,Ju) (@)
convergence of the state vector to a residual set around the equilibrium, —
whose size can be set by the choice of several design parameters. The class !
of systems considered here is a generalization of the class of strict-feed-\yhere; = L2 ...on=1,X;=[r1, ..., L’]T andX, € R" is
back systems traditionally considered in the backstepping literature. We 7 ! i ’ ’

also provide design guidelines based aff, bounds on the transient. the state vector, which we assume measurablegahd is the control

input. The variables € R? may be an additional input or a possibly
Index Terms—Backstepping, direct adaptive control, interpolation of exogenous “scheduling variable.” We assume thand its derivatives
strict feedback systems, nonlinear systems, time-varying structure. up to and including thén — 1)th one are bounded and available for
measurement, which may imply thais given by an external dynam-
|. INTRODUCTION ical system. The functiong;, j = 1, ..., R may be considered to
be “interpolating functions” that produce the time-varying structural

The field of nonlinear adaptive control developed rapidly in the 'aﬁtature of system (1), since they combifesystems in strict-feed-
decade. The work of Polycarpou and loannou[1], as well as that t?éck form (given by thes! and«? functions,i = 1, ..., n, j =

others gave birth to an important branch of adaptive control theory, ., R) and the combination depends on time through the variable

the nonlinear on-line function approximation-based control, which i':\’rrereby, the dynamics of the plant may be different at each time point

cludes neural (e.g., [2]) and fuzzy (.., [3]) approaches (note that th§e,ending on the scheduling variable. Here, we assume that the func-

are several other relevant works on neural and fuzzy control, manyypfs , - aren times continuously differentiable, and that they satisfy,
them cited in the references within the above papers). The neural a9y, < R, Y27 pi(v) < oo and|9p; (v)/8v] < ~o. Denote
fuzzy approaches are most of the time equivalent, differing betwe%r} Convenienceﬁ‘?](_;(' ‘v) _ ZR p (v)dﬂX) andvs(X;, v) =
each other only for the structure of the approximator chosen [4]. Mast Lo =L T T
of the papers on this subject deal with indirect adaptive control tryi(r)%(fftl pi(v)9; (X:). We will assume thap; andy; are sufficiently
first to identify the dynamics of the systems and eventually generatiig'°0th in their arguments, and that they satisfy, forialle R* and
a control input according to the certainty equivalence principle (with © RY,i = 1} ceer T 95?(0; v) =0 ar.‘d”/’f(Xiv v) # 0.
some modification to add robustness to the control law), whereas very€re. we will develop adirect-adaptive control method for the class of
few authors (e.g., [4], [5]) use the direct approach, in which the copYStems _(1).Weassgmethr:ltthe|nte_rpolat|onfuncpppse known, but
troller directly generates the control input to guarantee stability, 1€ functionss] andv’; (which constitute the underlying time-varying
Plants whose dynamics can be expressed in the so called “strict fedg?@mics of the system) are unknown. In an indirect-adaptive method-
back form” have been considered, and techniques like backsteppfiggy: ©ne would attempt to identify the unknown functions and then
and adaptive backstepping [6] have emerged for their control. The Fgg_nstruct a gtablllzmg control law bersed on the apprquaﬂons tq the
pers [2] and [7] present an extension of the tuning functions approd@ﬁntdynamlcs. Here, however, wr_awrllpostulatetheexrstence ofanideal
in which the nonlinearities of the strict-feedback system are not &2n0llaw[based onthe assumption thatthe plantbelongs to the class of
sumed to be parametric uncertainties, but rather completely unknowfpt€™Ms (1)l which possesses some desired stabilizing properties, and we
nonlinearities to be approximated on-line with nonlinearly parametdfien devise adaptation laws that attempt to approximate the ideal control
ized function approximators. Both the adaptive methods in [6], as wefiuation. This approximation will be performed within a compact set

as in [2] and [7], attempt to approximate the dynamics of the p|a?S'F” C R ofarbitrary size which contains the origin. Inthismanner, the
on-line, so they may be classified as indirect-adaptive schemes. results obtained are semi-global, inthe sense thatthey are valid aslong as

In this paper, we have combined an extension of the class of strifit€ Stateremainswith, , butthis setcanbe madeaslarge asdesiredby
feedback systems considered in [2] and [7] with the concept of a Ot)r)_e designer. In particular, with enoqgh plgntlnformgtlon itcan be made
namic structure that depends on time, so as to propose a class of e €nough thatthe state never exitsit, since, as will be shown, abound
linear systems with a time-varying structure, for which we develop %" be placed_c_)n the state transient. Furthermore, as will be indicated
direct adaptive control approach. This class of systems is a genef3floW: the stability can be made global by usingbounding control terms.
ization of the class of strict-feedback systems traditionally considered©" €ach VectoR'; we will assume the existence of a compact set
in the literature. Moreover, the direct-adaptive control developed hére: C R* specified by the designer. We will consider trajectories

is, to our knowledge, the first of its kind in this context, and it presentithin the compact sets..,, i = 1, ..., n, where the sets are con-
structed such thaf., C S.,,,,fori =1, ..., n — 1. We assume the
existence of bounds?, ¢; € R,andyf, € R,i =1, ..., n (notnec-
essarily knowj such thatforalb € R? andX; € S,,,i =1, ..., n,
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This assumption implies that the affine terms in the plant dynamicentrol lawu = &, + «;, guarantees boundedness of all signals and

have a bounded gain and a bounded rate of change. Since the functammvergence of the states to the residual set

)7 are assumed continuous, they are therefore bounded within

Similarly, note that even though the temiii| may not necessarily be no 20 Wy

globally bounded, it will have a constant bound wittfip, due to the Dy = {Xn € Re": Z 2 < _J—} 4)

continuity assumptions we make. Therefore, assumption (2) will al- ol

ways be satisfied withib,., . Moreover, in the simplest of cases, the .

first part of assumption (2) is satisfied globally when the functions Wherey: — = mini<,<, ¥;, f4 is a constant, antl’; measures ap-

are constant or sector-bounded for &l € R". proximation errors and ideal parameter sizes, and its magnitude can be
The class of plants (1) is, to our knowledge, the most general class@guced through the choice of the design constants, ;, ando ;.

systems considered so far within the context of adaptive control based Proof: The proof requires. steps, and is performed inductively.

on backstepping. In particular, in [6], as well as in [2] and [7], whiclfirst, letz; = z, andzz = z2 — &1 — «of, wherea, is the ap-

are indirect adaptive approaches, the input functichsre assumed proximation to an ideal signal} (“ideal” in the sense that if we had

to be constant for = 1, ..., n. This assumption allows the authorsii = a7 we would have a globally asymptotically stable closed loop

of those works to perform a simpler stability analysis, which becomegthout need for the stabilizing terma; ), anday will be given below.

more complex in the general case [8]. Also, the addition of the intdretc: > 0 be a constant such that > (U‘fd/Qﬁf), andaj (1, v) =

polation functions;, j = 1, ..., R, extends the class of strict-feed-(1/¢7)(—¢7 — ¢121). Since the ideal contral] is smooth, it may be

back systems to one including systems with a time-varying structuapproximated with arbitrary accuracy felandz; within the compact

[9], as well as systems falling in the domain of gain scheduling (whesetsS,, C R? andS., C R, respectively, as long as the size of the

the plant dynamics are identified at different operating points and thepproximator can be made arbitrarily large.

=1

interpolated between using a scheduling variable). Note that if we letFor approximators of finite size, let
R =1landpi(v) = 1forallv, together withyy = 1,i =1, ....n, af(z;,v) = Z;; pj(@)gzjcaj (v, £1) + b6ay (v, ©1), Where
we have the particular case considered in [2] and [7]. ‘ ot

The direct approach presented here has several advantages witfh@-parameter vectos ; € R " N, € Nare optimum in the
spect to indirect approaches such as in [2], [6], and [7]. In particulagnse that they minimize the representation ey over the
bounds on the input functiong/ are only assumed to exist, but needset S, x S,, and suitable compact parameter spates, and
neither to be known nor to be estimatdthis is because the ideal Iawcaj (x1, v) are defined via the choice of the approximatolr structure
is formulated so that there is not an explicit need to include inform@sée [10] for an example of a choice for;). The parameter sef? _;
tion about the bounds in the actual control law. Moreover, although gimply mathematical artifacts. As a result of the stability proof the
assumption (2) appears to be more restrictive than what is needed, i, imator parameters are bounded using the adaptation laws in
the indirect adaptive case, it is in fact not so due to the fact that ﬂ?ﬂeorem 1500 ; does not need to be defined explicitly, and no
stability results are semiglobal [i.e., since we are operating within ﬂﬁ%rameter projegfion (or any other “artificial” means of keeping the
compa_ct set§$n, continuity of the affine terms_automatically imp”esparameters bounded) is required. The representation &rfoarises
the satisfaction of the second part of assumption (2)] because the sized’ ; are finite, but it may be made arbitrarily
small within S, x S,;l by increasingNV_; (i.e., we assume the
chosen approximator structures possess the “universal approximation

Next, we state our main result and then show its pfoBbr con- property”). In this way, there exists a constant bodng > 0 such
venience, we use the notation = [v, o, .... v“"Y] € R',i = that|s,,| < d., < oo. To make the proof logically consistent,
L.ooom. however, we need to assume that some knowledge about this bound

Theorem 1: Consider system (1) with the state veciof measur- and a bound orf*; are available (since in this case it becomes
able and the scheduling matrix_; measurable and bounded,togethef_r,ossime to guar;ﬁtea priori that S,, x S., is large enough).
with the above stated assumptions«jn ¢’ andp,, and (2). Assume pyowever, in practice some amount of redesign may be required, since

also thaw; (0) € S., C R™, Xi(0) € 8 C R, :_1’ -+ " these bounds are typically guessed by the designer.
whereS,,; andS.,., are compact sets specified by the designer, and large i

A. Direct Adaptive Control Theorem

. . ; ) Let ® ;, = 6 ; — 6", denote the parameter error, and
enough that; andX; do not exit them. Consider the diffeomorphism I of T P
=21, 2 =2 — Qi —al_q,i =2, ..., n,withé;(X;, »;) = approximate ai with &q(z1, v, 9031'1,] = 1,....R) =
S ()8 15¢ (X, vi) andaj (zi, zim1) = —kizi — zim1, With S pi(@)8],¢, s (21, v). Hence, we have a linear in the pa-
ay ay -

ki > 0 andzo = 0. Assume the functions, ; (Xi, v;) to be at least ameters approximator with parameter vectérs. Note that the

n—itimescontinuouslydifferentiable,andtésatisfy,zf@f L..on,  structural dependence on time of system (1)1 is reflected in the
J=L.... R controller, becausé; can be viewed as using the functiongv) to
interpolate between “local” controllers of the forérjfj ¢ iz, v),
respectively. Notice that since the functignsare assumed continuous
andv bounded, the signal; is well defined for all € S.., .

Consider the dynamics of the transformed states ¢7 + v f(z2 +

_ ) . N, Gdal)+yi(al —al) = —ciz Tz Y (G —al) +yYfal =

Consider the adaptation laws for the parameter vetﬁtcg_fse R " ez + 952 + 'Yl’f(Zle p'i(bzica‘{ - 5&]1.) + ¢Sal. LetV; =

n—i X
a C()g

X | < ®

N, €N ;= —pjv,:¢ % — 0,50, wherey ; > 0,05 > (1/2¢5):7+(1/2) X/, (®],®_,/+,;),and examine its derivative,
% i , i Y i Y, i i oy vty
0,i = 1....,n,j = 1, ..., R are design parameters. Then, theV1 — (205221 21) — 222005 ) + Z;zzl (@L@H{/%{). Using the
. . A 1
expression ok, Vi = — (127 /¢) + 2122+ 51 05, 05 ,C,0 =
1

; s 2/.0c /‘c2 R T & . L,
1we will generally omit the arguments of functions for brevity. 31(51,31' +zial — (1/2)2(¥5 /97 ) + Z]:1 (q)ual'q)wﬂl /Mﬂl ). Choose
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the adaptation lavd o = =3, = —p;7, iCai®l = 39 o With o0 = minicicuicj<r (o, q) we have — Y°I_, (€= /v7) <
design constantsaj > 0,0 Jl >0, = ,1 . R (we tnink of —Zo >0 (27/47) = —To > 3?/1/;‘)(@"/7)
1 i3
o, H Liasa Ieakage term”). Also, note that for any constant> 0, < —Co Zi:l (/v )(U /97) < —Lolm Yy (2/00)
1 ‘

—/,1(5 _7 < |/«1|da1 < Llul +( d? /41-1) We piCk&i = —Fk1z1. and _(1/2)2 Z] 19 -7(|(I> 3| /l -7) <

Notlce also that, completlng square5<1>T 9 g = —<I>T (s i+ o0(1/2) 2202 Z; 1 (|<I’ a| /7., a) Then, letting

*q 1 )

') < —(®,12/2) + (8%,%/2). Finally, observe that "t = i (26, ), We have that i

(}'1 .C\l O’l
~(2/vD)er + (u’““/?ﬁ"f)) < —(Rfeier — (W5,/205) < _
—(@z1/¥}), with o= (u1 /2¢%) > 0. Then we obtain S_ LI >
B —@A/T) — /DT, o (0, /) + am V=2t 222 o ©)
1S 111 2]1 a a 2 i=1 "t i=1 j=1 az
(d2, /4k) + (1/2)2 ., 3(9*3/7 j) This completes the first
step of the proof. _ _ with Vo = (Wa/34), thenV < 0 and all signals in the closed loop

We ‘may continue in this manner up to theth Step} — are pounded. Furthermore, we hale< — 34V + Wa, which implies
where we have:, = @, — dni = iy, With du—y @nd thato < V(1) < (Wa/Ba) + (V(0) — (Wa/Ba))e~ " s0 that both
a,_; defined as in Theorem 1 Consider the ideal signal yhe ransformed states and the parameter error vectors converge to a
an(Xny vn) = (1/00)(0h = enzn + Guor + dn_y) WIth  poynded set. Finally, we conclude from the upper bound o) that
cn > (¥5,,/2¢7). Notice that, even though the terrl?rsg _, appear the state vectoX,, converges to the residual set (4). O
in af through the partial derivatives i1, 0, does not Remark 1: The representation error bounds and the size of the ideal

n—1 parameter vectors are assumed known, since they affect the size of the

need to be an input te;,, since the resulting product of the partial

) residual set to which the states converge. It is possible to augment the
derivatives andy os  Can be expressed in terms of, ... z.—1,  directadaptive algorithm with “autotuning” capabilities (similarto [7]),
v andeo ol An—1. TO simplify the notation, however, we will omit which would relax the need for these bounds.
the dependenmes on inputs other th&pn and v;, but bearing in Furthermore, note that the stability result Difieorem 1lis semi-
mind that, when implementing this method, more inputs may Iglobal, in the sense that itis valid within the compact sktsands.., ,
required to satisfy the proof. Also, note that by assumption (3)=1, ..., n, which can be made arbitrarily large. The stability result
las,| < oc for bounded arguments Therefore, we may represgént may be made global by adding a high gain-bounding control term to
with o, (X5, vn) = Z] 1 p](t)e { g (Xn, vn) + bar, (Xis v) the control law. Such a term may be particularly useful when, due to a
for X, € S, . C R" andv, € S " R"X" The parameter vector complete lack of priori knowledge, the control designer is unable to

N

o e Ve .N_, € X is an optimum within a compact parameterguarantee that the compact séts, ¢ = 1, ..., n, are large enough
o " N S0 that the state will not exit them before the controller has time to

setO@n, n asense similar 167 I sothatfor Xy, va) € Se,, X S, bring the state insid®,; moreover, it may also happen that due to a

[6a,,| < da,, < oo for some bounrrllf\n >0.Let® i = 9 o sz ,  poor design and poor system knowled@g, is not contained ir5,.

Tyt

and consider the approx|mat|m as given |nTheorem 1The control In this case as well, bounding control terms may be helpful until the

Un

law v = &, + o), yields e = 0L + z/)n(nn +a}) — d&,—1 — design is refined and improved. However, using bounding control re-
&S+ u’;; (af —al) = —cuzn + MZ, ! ,)J(U)@ G quires explicit knowledge of functional upper boundg«f(v, X;)|,
a,) 4+ wSad. Choose the Lyapunov function candrdat@s well as of the lower bounds’, i = 1, ..., n, whose knowledge
Vo= Vi o+ (1/209):2 + (1/2) ijl @7, @ ;/v.,) We do not mandate iheorem 1Bound|ng terms may be added to the

. . R 2 nl oo diffeomorphism inTheorem 1but we do not present the analysis since
and examine its derivative}) = ln 1= (enz/Un) +

LR ) . it is similar to the one we present here and it is algebraically tedious;
ED I 4) ()@ v Cat = Fnbay + e = (1/2)zn (s J0y ) + we simply note, though, that the bounding terms have to be smooth
YL (@, i/ :) One can show |nduct|ve|y thal, 1 < (because they need to be differentiable), so they need to be defined in

-y (cm /w - (/2 Z] ) J(|<I> J| /7. J) + terms of smooth approximations to the sign, saturation, and absolute
n—l ;32 /. n— 1 * value functions that are typically used in this approach.
anven + DI (L /4k) + (/) DL DL 0 21 1P ’| /W Remark 2: If the boundsy, +; and, are known, it becomes
with constantfl =ci— (¥, /207) > 0,i=1, ..., n. . The choice Of possible for the designer to directly set the constanta the control
adaptation laws fof o, and Of“ A'n Theorem Jtogether with the ob- law. Notice that with knowledge of these bounds, the term is also
servations that-(o a/l ERLL S (7,3/7.5)(12,;"/2) +  known, and we can pick constamtssuch that; > (¢, /2¢°). Define
(0,5 /7, (|6'*] |2 /2) —Mné ¥ g A + (da,, [4kn), with k, >0  the auxiliary functions); = ¢; z;. We may explicitly setthe constant
andn—(:n/u )((n + (L/,”/QL n’; < _((M’L/L °) imply ino; ifwe Ietql be aninputto théth approxmatorstructure i.e.,ifwe
. - n X j| |eta (Xsyvi, X)) = Z] L pi(v)d C (X, vi, Xm» ni) +
V< - Z it Z o, + Wy (5) . The approxrmators used in the control procedure are then given
i=1 s i=1 j=1 byal(Y,ul,A,z,m)_XL , p;(v)8 jg i (X, v, X,.,n:) and

where W; contains the combined effects of representatiofhe stability analysis can be carried out'as expected_
errors and ideal parameter sizes, and is given by

Wa = S0 (2 /4k:) + (1/2)30, Zle (|(J+ /7 j B. Performance Analysi€, Bounds and Transient Design

Note that it S (@Y > W,; or The stability result ofTheorem 1lis useful in that it indicates con-
(1/2)>7", Z] Lo ](|<I> ]| /7. ]) > Wy, then we havd” < 0. ditions to obtain a stable closed-loop behavior for a plant belonging
Furthermore letting: = 1111n1<l<,,( ), 0. = maxi<ic, (0), O theclass given by (1). However, it is not immediately clear how

" - to choose the several design constants to improve the control perfor-
mance. Here we concentrate on the tracking problem, and present de-
2 We omit intermediate steps for brevity. sign guidelines with respect to a@i bound on the tracking error. We

and defining? = mincicn (@), ¥ = (¥ /¥,) and
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are interested in having, track the reference model statg, of the
reference model,, = =, ,,,i=1,2,...,n=1,&, = f.(X, r),
with bounded reference inputt) € R. Now, we need to use the diffeo-
morphismz, =z — @y, 2 =i — Qi1 —af_,i =2, ..., n with
aT(‘th v, ‘737‘1) = (1/11‘(1)(_0(1‘_01 21 +'T'r2) ando‘? (Xie Vi, IYrg) =
(1/) (=7 — cizi + & + &) fori = 2, ..., n. The stability proof
needs to be modified accordingly, and it can be shown that the trackin

error|zy — z,, | converges to a neighborhood of si g"de/ﬁd-
From the upper bound onV(t), we can

V(t) < (Wa/B4) + V(0)e P4t From

it follows that  (1/2)3°0, (z7(t)/4i(t)) <

(Wa/Ba) + ((1/2) 357, (27(0)/47(0)) +

(/2T T (12,500 /1,)7").  The terms  =(0)
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[Il. CONCLUSIONS

In this paper, we have developed a direct-adaptive control method
for a class of uncertain nonlinear systems with a time-varying structure
using a Lyapunov approach to construct the stability proofs. The sys-
tems we consider are composed of a finite number of “pieces,” or dy-
namic subsystems, which are interpolated by functions that depend on
%ossibly exogenous scheduling variable. We assume that each piece
is in strict-feedback form, and show that the methods yield stability of
write all signals in the closed-loop, as well as convergence of the state vector
here, to a residual set around the equilibrium, whose size can be set by the
choice of several design parameters.

We argue that the direct-adaptive method presents several advan-
tages over indirect methods in general, including the need for a smaller

depend on the design constants in a complex manner. For tAfount of information about the plant and a simpler design. Finally,
reason, rather than trying to take them into account in the desig@ provide design guidelines based©nbounds on the transient and
procedure, we follow the trajectory initialization approach taken iargue that this bound makes it possible to precisely determine how large

[6], which allows the designer to set(0) = 0,i = 1,..., n by

the compact sets for the function approximators should be so that the

an appropriate choice of the reference model’s initial conditions. Biates do not exit them.

our case, in addition to the assumption that it is possible to set the
initial conditions of the reference model, we will have to assume

certain invertibility conditions on the approximators. In particular, ¥

since z1(0) = x1(0) — z,,(0), for z1(0) = 0 we need to set
xr, (0) = 21(0).

For theith transformed state;, i = 2, ..., n, z;(0) = x;(0) — 2]
Qi1 (0) - 0:;,1(0). Notice thatv;_;(0) = o _{(zi—1 (0), 27]_2(0)>,

so that ifz;,—_1(0) = 0 andz,_>(0) = 0 we havea;_;(0) = 0.
In particular, notice that this holds far = 2. In this case, to set
z2(0) = 0 we need to havé, (x1(0), v(0), 2-,(0)) = 22(0). This
equation can be solved analytically (or numerically) for (0) pro-
vided (¢4 /dwry )|t=0 # 0. This is not an unreasonable condition,
since it depends on the choice of approximator structure the designel5]
makes. The structure can be chosen so that it satisfies this condition.
Granted this is the case, it clearly holds that0) = 0, and the same (6]
procedure can be inductively carried out fo= 3, ..., n, with the
choicesd;—1 (X;—1(0), ¥;—1(0), ,.(0)) = z;(0). 7
This procedure vyields the simpler boun® i, z7(t) <
(20, Wa/Ba) + ¢ (0, 0 (1P (0 /7,9)e™ . We
would like to make this bound small, so that the transient excursion of
the tracking error is small. Notice that we do not have direct control on [9]
the size of3,, since this term depends on the unknown constants
which appear in the ideal signalg. Even though it is not necessary 10]
to be able to set, to reduce the size of the bound, it is possible to do
so if the boundsi’rj, ZC andq;, are known.
At this point, how to choose the constants to achieve a smaller bound
becomes clearer. Recalling the expressiomlaf note that, first, one
may want to havel; > 1, so thati, is not made larger when divided
by 34, and so that the convergence is faster. This may be achieved by
settinge; such thate;¢,,, > 1 (if enough knowledge is available to
do so) andr_,; > 1. However, having large_; makesi¥V, larger;
this can be offset, however, by also choosing the raio/~_; < 1
or smaller. Finally, it is clear that makirfg larger reduces the effects
of the representation errors, and therefore madkesmaller. Observe
that there is enough design freedom to méKe small andgq large
independently of each other.
These simple guidelines may become very useful when performing
a real control design. Moreover, notice that the boung gh 22(t)
makes it possible to specify the compact sets of the approximators
so that, even throughout the transient, it can be guaranteed that the
states will remain within the compact sets without the need for a global
bounding control term. This has been a recurring shortcoming of many
on-line function approximation-based methods, and the explicit bound
on the transient makes it possible to overcome it.

(3]

(4]

(8]
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