12

Learning in Control

Edward Grant
Department of Computer Science
The University of Strathclyde
Livingstone Tower
Richmond Street
Glasgow G1 1XH
U.K.

Abstract

In this Chapter we review the three separate methods by which
intelligent control can be applied in dynamic system control;
human control, passive-learning, and machine learning. Working
from the knowledge that humans posses the ability to control
complex dynamic systems by applying simple heuristics our first
task was to establish those heuristics for a given dynamic domain,
a pole and cart system. In our work two models of the pole and cart
were constructed; one was a computer simulation, the other a
physical system. First we “captured the soul” of a human who was
sufficiently adept, and proficient, at controlling the simulator.
This was their rules for control. Later, these same rules were
encoded as a rule-base automatic controller for the purpose of
conducting performance trials on the simulator and the physical
system. A comparative study was also undertaken in this phase,
where the performance of our controller was tested against a
second rule-based controller, a controller using rules that were
derived by interpreting the dynamic equations only. This
concluded the non-learning phase. In the passive-learning phase
the cause-effect signals recorded during our rule-based controller,
controlling the physical system, were post-processed using rule-
induction to continuously refine and tune the rules needed to
control the process effectively. The last phase, machine-learned
control, assumed no "a priori" knowledge of the process. Here, the
two types of machine learning was examined; the ‘BOXES’
machine-learning algorithm and, neural networks. In this first
series of trials both performed equally well in the simulated and
physical worlds. llowever, there were certain features observed
when using the machine learning algorithm in the physical
domain that was particularly noteworthy.

284 INTELLIGENT AND AUTONOMOUS CONTROL

1. INTRODUCTION

This chapter demonstrates how artificial intelligence techniques based on learning
can be applied, in the control of complex dynamic systems. Our initial interest
was the development of adaptive rule-based controllers where the control rules were
derived through observing human skills, or by trial-and-error learning. Although it
has long been recognised that humans are good at mastering the control of dynamic
systems, it has been equally well understood that they are poor at articulating the
heuristics they have been applying. Were such individuals able to express their
intuitive rules comprehensively, an expert system could be constructed that would
emulate their skills completely. However, previous experiences in building expert
systems had taught us that this route was tortuous even for well structured, well
understood systems. What chance of success could we then expect when we were
dealing with a complex dynamic system, a pole and cart, in the physical and the
computer simulated worlds. Controlling a system of this type requires
instantaneous, reflex, responses. Rather than conduct extensive in-depth trials into
the cognitive skills of a variety of subjects operating the system we attempted
simply to “capture the sole” of a single skilled human, then use this captured
knowledge to produce a rule-based automatic controller. The capabilities possessed
by our rule-based controller were also measured in a series of comparative trials
against a Makarovic controller [13]. This second rule-based controller, Controller
B, uses control rules that were derived through considering the systems dynamic
equations only. The pole and cart proved useful to test the efficiency and
robustness of all types of controllers examined, human, rule-based, and later
machine learned. Control was achieved by applying either a left or right force of
constant magnitude to the cart, bang-bang control.

The second phase of our work dealt with passive-learning from human control
decisions. In the context of our work passive-learning means using off-line rule
induction [4, 9, 12, 17] to interpret and refine the cause-effect relationships
between the rule-based controller and the pole and cart test-beds. When our rule-
based controller was applied to the physical system the sensed outputs were
processed by the ¢4.5 induction rule generation algorithm to demonstrate passive-
learning. Passive-learning of this type provided feed-back and allowed a direct
comparison to be made between human and machine generated rules. After a
limited series of passive-learning experiments it was decided to move quickly to
the final phase to be dealt with, a comparative study of machine learned adaptive
controllers. An alternative passive-learning method we adopted used neural
networks. Here, experimental data was qualitatively partitioned into binary patterns
using a hand-crafted rule. These patterns were then used to train the neural network,
which was then became a controller.

Initially, the experiments in the final phase were to be undertaken completely
using machine learning algorithms, this decision was later reviewed and neural-
network controllers were included in the programme. These machine-learned
controllers showed that they could adapted to changing system parameters.
Learning experiments conducted on the physical system, under human control,

Learning in Control 285

have shown that it is impossible for a human to control even the simplest
physical apparatus.

However, through the use of observation, training on the simulator and on a
physical system, we have produced effective controllers and control algorithms that
can adapt to changing system parameters. Insight into the strengths and
limitations of using Machine Learning Control (MLC) in adaptive control
situations, machine learning algorithms and neural-networks, was gained through
working in the physical world. For example, in our trials into MLC the neural-
network controller eventually performed better than a controller based on the
‘BOXES’ learning algorithm acting as an automatic controller. This, in part, may
be due to the manner in which sensory data is handled by the 'BOXES’ learning
algorithm used as the MLC.

Artificial intelligence techniques have begun to enter control engineering [6, 18].
The requirement for an accurate mathematical model of the process to be controlled
and the inability to set meaningful goals for the adaptive mechanism are the two
major difficulties in designing an adaptive controller using conventional control
theory. The expert controller equipped with the control engineers' knowledge and
skills overcomes the above two difficulties. Additionally when attempting to
implement an expert controller in real-world problems, the experts must transfer
their skill into the controller. This knowledge transfer phase is never completely
achieved by asking the expert to articulate their rules because their skill is semi-
intuitive. To tackle real-world problems with this kind of expert behaviour, an
expert controller with learning capabilities must be built, so that the expert can
transfer skill by a “tutorial” process of showing examples. That is, the machine
must be able to build up it's skill in the domain automatically in the form of
appropriate control actions triggered by the sensed state variables.

By machine learning adaptive control here we mean the control scheme is
independent of the mathematical modelling of the object dynamics and the precise
estimation of its physical parameters. Both the above are required by adaptive
control using conventional control theory. Learning controllers acquire their
control skills either by watching or by doing. Michie and Chambers 'BOXES'
algorithm [14] was an early example of learning control actions by self-
optimization. The task chosen was that of learning by trial and error to balance the
pole in an inverted pendulum and cart system. Since then the pole and cart problem
has become a widely accepted bench-mark problem in the area of machine learning.
One of the interesting features of the 'BOXES' algorithm is its threshold
subdivision of state space into local regions. More recently, this method of
reducing the problem space to a manageable size has been adopted by many authors
in developing connectionist-net based control-learning procedures. Among them are
ASE/ACE [3] and a multilayer extension of this work by Anderson [1]}

The paradigm of learning by imitating was demonstrated by Donaldson [7] as long
ago as 1960, using the pole balancing problem as a test case. In his experiment

286 INTELLIGENT AND AUTONOMOUS CONTROL

the balancing skill was adaptively acquired from a skilled human's control
responses. Widrow and Hoff [25] made a similar acquisition-from-tutor approach to
the pole balancing problem based on their Perceptron-like ADALINE device.
Chambers and Michie [5] also demonstrated how an acquisition-from-tutor
capability could be incorporated into their 'BOXES' algorithm.

However, one objective that has not been realised by any tutorial-style use of
neural nets is for the learning algorithm to discover and form a summary of the
trainers' strategies. Controller design for the inverted pendulum and cart system
(pole and cart system) is well understood in terms of modern control theory based
on its Newtonian dynamics [8, 16, 21]. The task is to balance a pole that is
mounted on a movable cart within the limits of a track by applying a force of fixed
magnitude either left or right to the cart. However, to make such a controller
adaptable remains to be a non-trival task in control engineering field.

Michie and Chambers [14] were among the first trying to solve adaptive control
problems using a machine learning approach. They developed the ‘BOXES’
algorithm to balance the pole-cart system. More recently, the Adaptive Heuristic
Control (AHC) algorithm developed by Selfridge et.al.[22] and the CART
algorithm developed by Connell and Utgoff [6] both used the pole and cart problem
as a test case. Sammut [20] presented a detailed survey and simulation results on
pole balancing using the above three machine learning algorithms. The major
findings were (i) the learning algorithms were independent of the equations of
motion and, (ii) control skill is acquired by empirical derivation from sample data.
Through implementing these algorithms some of their individual deficiencies
became apparent, such as (iii) learning only taking place after trial failure and, (iv)
a dependency on a set of learning parameters that are a function of the system.
Because of (iii), the practical use of these algorithms is limited. The result of (iv)
is that the controller finds it difficult in adapting to changing system parameters.
Recently, Makarovic [13] used a totally different approach to the data-oriented one
above. He derived control rules based on a study of the equations of motion for the
pole and cart system according to classical mechanics. His theory-oriented approach
was semi-intuitive and it does not work if the system to be controlled is too
complex.

In this Chapter, we present an approach which is different from both the theory-
oriented and data-oriented approaches outlined above. Our technique requires that
the control skill is acquired by modelling the experience of a skilled human
controller. The skill of a human is embedded in a set of rules which in turn leads
to developing a rule-based adaptive controller for the pole-cart system. Also here,
we report on our investigations into the use of a connectionist-net of the
‘Rumelhart’ type [19], for learning and exercising intelligent control of the pole
and cart system. The controller consists of a three layer feed-forward network, with
a sigmoidal activation function, that is trained using Rumelhart's back-propagation
algorithm [19]. Unlike previous efforts, the state variables of the pole-cart system
are not directly used as the input to the network, they are pre-processed to form

Learning in Control 287

patterns which give a qualitative description of the system. These patterns are in
turn used as the input to the network. The output of the network is used as the
control signal for the pole-cart system. The training data is generated by recording
each system state and the corresponding action taken by a human teacher when he
controls the computer simulated pole-cart system. When presented with the same
input pattern as the human was during training, the neural-net must produce the
same output response as the human [10]. This is accomplished by the net
adjusting the weights of its internal inter-connections and its activation thresholds
to conform with these input-output constraints. This learning process is performed
off-line. Results show that the neural network controller is able to learn a control
law which is not explicitly known to the human teacher and generate stable control
without the existence of the human intervention.

We have gained a knowledgeable insight into the use of rules for controlling
dynamic systems. The rules we we used to develop a range of rule-based controllers
has proved robust, efficient and adaptable, and they have been applied in the control
of other simulated and physical process [24]. One rule has also become the basis of
the neural-net controller. The work reported on here catalogues experiments into
human-supervised learning, passive-learning, and machine learning.

2. THE SIMULATED DYNAMIC SYSTEM

All majority of the work undertaken in the three phases of experimentation, non-
learning human control, passive-learning, and machine-learning, were carried out
on pole and cart systems. Basically, the pole and cart can be considered as a trolley
that moves in the plane of the track upon which is mounted a hinged inverted
pendulum, see Figure 2.1. The control objective is to keep the pole as near the
vertical as possible, and the cart within the bounds of the track. Such a system is
unstable in the open loop because small disturbances of the cart make the pole
rotate, or oscillate, about the pivot. Control is obtained by applying a right or left
force to the cart via a d.c. motor, see Figure 3.2. The pole and cart is just one
example of a general class of dynamic system that is made up of a collection of
interacting and interdependent objects. The state of the system is altered by the
external stimuli, in our case the d.c. motor input, whose role is to control the
system within strict bounds by manipulating the input. The system outputs are
related to the system states, but it may be neither possible, or desirable, to
measure all such variables. The controller; in our case the human, the rule-based
automatic controller, or the MLC, is responsible for determining the appropriate
control action based on knowledge of the input signal, monitoring of the output
channels, and feedback. The controller must also be capable of dealing with
disturbances, which can be both internally and/or externally generated. For such
systems one of the major difficulties is the provision of an accurate model of the
system, this is particularly so if there is an associated physical system, Figure 3.1.
The force analysis of the system in Figure 2.1 begins by considering the pole and
the cart as two separate, unconnected units.

Having noted that the angle of the pole, 6, which needs to be kept small for a

288 INTELLIGENT AND AUTONOMOUS CONTROL

control strategy to be developed, gives only a partial description of the dynamic
state of the system the complexity of the analytical analysis of the model must be
reduced. By eliminating the common vertical and horizontal forces that act on both
the pole and the cart separately, and linearising parts of the equations through
considering small perturbations about the operating point, we are left with the two
second order differential equations. These can be represented either as one 4th order
differential equation, or, four 1st order differential equations. Assuming a solution
exists, these two second order equations can be solved if (i) the four initial
conditions are known and, (ii) an input force is specified. The simulation uses the
following non-linear differential equations [8]:

IFI Cart
(@) Q

Figure 2.1 The Pole and Cart Notation

where:
m. = 1.0 kg, mass of cart.
my = 0.1 kg, mass of pole.
1 = 0.5 m, half length of pole.

g =98 ms-2, acceleration due to gravity.
F = 10 newtons, force applied to carts’ centre of mass.

Learning in Control 289

F+m, 1 9 2 5in®
g sinf — cos6

é _ m+ mp
4 my cos6>
3 o,

- F+mpl[62sin9—écosel
X =

mg+m,

A fourth-order Runge-Kutta method was used to solve the above differential
equations, the sampling rate chosen (h) equalled 100 Hz.

3. THE PHYSICAL SYSTEM
The physical system is shown in Figure 3.1,

Figure 3.1 The Physical Pole and Cart Apparatus

290 INTELLIGENT AND AUTONOMOUS CONTROL

The motion of the cart mounted on a parallel track is controlled by a d.c. motor via
a wire and pulley configuration. The motion of the cart is either “left” or “right”,
so the control action provided to the cart by the d.c. motor is ‘bang-bang’ control.
There is no intermediate ‘do-nothing’ control action.

The apparatus shown in Figure 3.1 consists of a 2-degree of freedom system acting
in a single plane. The pole was a round wooden rod of uniform density and rotates
in 1-degree of freedom about a pivot mounted on the cart, which operates linearly
in 1-degree of freedom. End stops are provided on the pole to prevent it passing 20
degrees from the vertical in either the clockwise or the anti-clockwise direction.
Optical shaft encoder's were used to monitor the angle of the pole and, after
calibration, the linear position of the cart. Data from these shaft encoder's was also
used to compute the respective angular and linear velocities of the pole and the
cart. These angular velocities were calculated as the average rate of change of angle,
and linear position, relative to a previous time period. Obviously this may not
totally reflect the current state but it does indicate the trend. Reed switches were
mounted at each end of the track to limit the operating range of the cart. These
switches were activated by a magnet attached to the cart, their status was monitored
through the I/O port of the controller, which was resident in an IBM PC/AT, or a
compatible, computer. The computer was responsible for the execution of
whichever control algorithm was currently under test. The high level hardware
architecture is shown in Figure 3.2.

4. CONTROL STRATEGIES & EXPERIMENTS

In this section we will describe the range of experiments that were conducted
during the course of the project. After careful consideration we believed that these
experiments should be partitioned into three separate and distinct modules; (i) Non-
Learning, or more correctly non-machine learning but human control, (ii) Passive-
Learning, a set of experiments similar to (i) but with rule-induction monitoring
the cause-effect relationships and, (iii) Machine-Learned Control, a set of
experiments where no “a priori” knowledge of the system is known, and where the
system is controlled totally using machine-learned controllers that are adaptive.
Schematics showing the full range of the experiments and an appropriate key code
are shown in Figures 4.1 to 4.4.

4.1 Non-Learning (Human) Control

It is a well understood fact that human operators have the capability to operate
complex control processes in instances where conventional numeric techniques
proved inadequate. Problems that exhibit such ill-defined complexity can, in many
instances, be controlled manually. We define an ill-defined process as one where
the interaction between all the process variables is unclear. In such cases manual
control using heuristic rules can be effective, this is because humans’ handle
complexity in an imprecise manner. To arrive at a control decision based on a set
of vague rules a human operator will often approximate quantitative data, and
consider qualitative information, prior to making a judgement. Rule-based
controllers have been applied to physical processes, but these processes were

Learning in Control 291

chosen because their response times are measured in minutes or even hours. In
such cases the response times of the simulation can closely match those of the
physical system. Physical systems of the type dealt with in this Chapter require an
instantaneous response so any automatic controller constructed from trials on a
simulator, where response times can be slowed, might be totally unsuitable for
controlling the physical process. However, it was considered that these controllers
might prove useful during the passive learning experiments where the experimental
data could be used to induce rules. Rules induced from experimentation could then
be compared with the hand-crafted rule to optimise the parameters. In pole
balancing problem, as in Figure 2.1, there are four state variables, these are:

IBM
Joy-stick =g poap [UDC1| UDC2
d.c. d.c.)
Power - Motor Dé.codl.ng
Supply Controller ircuit
d.c. oo Optical
Power Amplifier Shaft
Supply Encoders
% 0, 61
d.c.
Motor

OO
L <¢—— R

Figure 3.2 The High Level Hardware Architecture

INTELLIGENT AND AUTONOMOUS CONTROL

292

syudwirradxy Sutured-uoN 7'p dindig

apo)) A3y ['p 3andiyg

eotsAyd QUON omy
EoIsyg SUON uewny Wn&*ll@
Jorpwg SQUON oy Ww ‘I|n
I0RNWIS JuoN uewngf W.w “I@
wasg
pajionuo) uonedoy, ad4y,
JoadLy, TN 13[[(0.13U0) pewdYIS
ONINIVAT-NON
\.

wiAshg earsAyg

Jojejnung

(OTIN) S31103u0)) Suluied] swydR

(paseq-any *3-3) J3(j0.0u0)) dnewoIny

J3f[onuoe) uswny

HAOD AU

©[d-] B 1

293

Learning in Control

spuswiaadxry SuluIea -2A10Y pp dnd1y

spuaunradxy Sutusea-aatsseq ¢'p 2m3Ny

feotskud

Joruig

wNshg

pajjonue)
joadi]

Qul-u0 I

auy-uQ TN Ww

uone0| adfy,
o g’ Rjoue) AeudyPs
ONINIVAT-IALLOV

reotsAud

Tea1sAud

JORMWIS

Jor[nuts

wAsks
pajlonuo)
j0df

AU-HO

ui-JoO

[al-jo

W30

o0y
g7\

oy

wewngy

oy

wewny

adiL
1[onU0)

newdaydg

ONINIVATHAISSVd

294 INTELLIGENT AND AUTONOMOUS CONTROL

x = the position of the cart on the track

x = the linear velocity of the cart

0 = the angular displacement of the pole from the vertical
é= the angular velocity of the pole

First of all, we identified one system variable whose out-of-range condition was
allowed to trigger system failure, we call this the trigger variable. In our system 0
was chosen as that appropriate variable. We then decided upon a threshold value
that would divide the range of © into three regions; region one is where the
absolute value of 0 is within a given threshold (we call this region R), the other
two regions are where the value of 0 is positively greater than the threshold
(Region R1) and negatively less than the threshold value (Region R») respectively.
Figure 2.1 shows the notation used for describing this. Working with these
thresholds means a control decision is made using three sets of rules, that is there
is a rule which corresponds to each of the three regions. If the magnitude of the
force applied is constant under bang-bang control, the rules for region Ry is
consistent with, but opposite too, the rule for region Ry. Applying a left or a
right force to the cart will produce one of the following responses:

(a) 0 increasing and 0 increasing
(b) 6 increasing and 6 decreasing
(c) 0 decreasing and 6 increasing
(d) 6 decreasing and 0 decreasing

4.2 Non-Learning (Human) Control of a Simulator

A fourth-order Runge-Kutta method was used to solve the differential equations
used in the pole-cart simulation, see the section on simulated dynamic systems,
the sampling rate chosen (h) equalled 100 Hz. Also, the track was assumed to be
4.8 m long and the pole angle could not exceed 12 degrees (0.2 radians). These
parameters were held constant for all experiments using simulation irrespective of
the domain being examined, non-learning, passive-learning or active-learning. The
first series of experiments were undertaken after a graphics interface had been
constructed for a simulator running on a Compaq 386/20. Human control of the
pole-cart system is achieved via a joy-stick (Archer Super-Deluxe Cat. No. 270-
1703), that generates control signals from its internal micro-switches. This joy-
stick was chosen because its micro-switches gave the necessary “on-off” control
action that is the main feature of the type of adaptive control being researched.

Experiments were conducted with a variety of subjects in order to find an
appropriate delay time for the simulator, a delay time that would match a range of

Learning in Control 295

human response times. When the simulator had been adjusted accordingly
preliminary trials were conducted, again with a variety of human subjects. These
trials showed the performances of the human subjects varied considerably, they
ranged from poor to excellent. Only boredom, or a lack of concentration, affected
these subjects after a period of time. It became analogous to playing a computer
game. Five subjects were involved in these trials, some had extensive knowledge
of “bang-bang” control of the simulated system on a Compagq, and of qualitative
rules. Typical results achieved using the simulator were encouraging, certain
individuals were able to balance the pole-cart for periods that extended to several
minutes. However, in order to achieve these results it was necessary to “tune” the
simulator by adding a delay described above thereby allowing enough time for a
human to decide on an appropriate control action.

Let us consider the rules in region Ry where our convention makes 0 positive
(clockwise). From (a) and (b) above, the pole has the tendency to fall right, so a
right force needs to be applied. If (c) applies, the pole has a tendency to fall left, so
a left force is necessary. Finally, if case (d) applies then the pole is moving
towards the upright with a low momentum, in this instance a right force needs to
be reinforced. Therefore, the rules for region Ry are as follows:

if (6(k) > threshold)
then if (6(k) > 6(k-1)) then apply a right force
if ((0(k) < 6(k-1)) and
(16(k) - 6(k-1)} > |8(k-1) - 6(k-2)|)) then apply a left force
if ((6(k) < 6(k-1)) and
(j6(k) - 6(k-1)| < |6(k-1) - 6(k-2)|)) then apply a right force

where, 6(k) is the current value of pole angle and 6(k-1) is the value of pole angle

at the previous time step. A similar set of symmetrical rules can be used to control
the system in region Ro, because it is a mirror image of region R. In the region

R, where the pole is almost upright, a different set of rules apply. In this region
the pole will not fall suddenly so rules to control the cart position only, e.g. move

it to the centre of the track, need to be generated. As before, four states prevail
only in this instance they describe cart position relative to applied force:

(e) x moving to the right and x increasing

(f) x moving to the right and x decreasing

(g) x moving to the left and x increasing

(h) x moving to the left and x decreasing

Since the goal is to move the cart to the centre of the track, any control rules that

296 INTELLIGENT AND AUTONOMOUS CONTROL

apply when the cart is on the right half of the track will be complementary to
those on the left half of the track. Two separate control strategies can be adopted,
the first is found by observing the rules used by acrobats balancing a long pole,
the second is controlling the rate of change of motion of the cart. The rules are
generated when the pole is in region R, and the cart is in the left half of the track.

For case (e), with the cart is moving towards the centre of the track quickly, the
cart must be slowed down and a right force needs to be applied. In case (f), the cart
is moving right so its movement needs to be reinforced by applying a left force. In
cases (g) and (h), the cart is moving in the wrong direction, therefore a left force is
needed to move the cart to the track's centre.

The corresponding rules are shown below:

if (j6(k)| < threshold
then if (x(k) < 0.0)
then if ((x(k) > x(k-1)) and
(Ix(k)-x(k-1)| > |x(k-1)-x(k-2)})) then apply a right force
if (x(k) > x(k-1)) and
(Ix(k)-x(k-1)| < |x(k-1)-x(k-2)[)) then apply a left force
if (x(k) < x(k-1)) then apply a left force

In the second series of Non-Learning experiments, the human controllers’ expertise
was tested on a physical pole-cart system,

4.3 Non-Learning (Human) Control of Physical Systems

Trials of human performance were carried out using joy-stick control, via the IBM
PC/AT (see Figure 3.2). Also, the same joy-stick that was used in the bang-bang
control experiments on the simulator was used again. Five different subjects
attempted to control the physical system and their performances were less than
impressive. The experimental trials lasted for a period of 2 hours, and no single
individual could control the system for more than a few seconds. None of the
subjects could balance the pole using heuristic rules because the response time
required was so short. The trials that lasted longest were commonly based on
random control decisions.

A later set of trials were conducted on a separate physical system constructed from
an X-Y plotter, and again using an analog joy-stick to produce the control signal.
Over a period of 2 hours approximately 60 trials took place. Trials ended when the
cart reached the end of the track, which was short, or when the pole fell beyond 45
degrees. Typical peak trials lifetimes were consistently low, 3-4 seconds, and
average lifetimes were lower still, 1-2 seconds. More importantly, over the
duration of the experiments no significant improvement of performance was
noticed. This was also true of the case where the pole length was extended, a
technique used to slow down the physical system response time. From these trials
we concluded that the physical systems tested were beyond human control. The

Learning in Control 297

main problem is the speed at which a physical system gets into an irrecoverable
state. We suggest that significant changes to the physical system, e.g. the
inclusion of damping, and intensive experimentation if human control is to be
investigated further.

4.4 Comparative Rule-Based Controller Trials

In this series of experiments the objective was to test the set of rules derived from
the human experts control decisions against the theory-oriented control rule derived
by Makarovic [13] which is as follows:

if e >Thresholdé then Push Right

if © <— Threshold 6 then Push Left
if © > Threshold 6 then Push Right
if 0 < — Threshold 6 then Push Left

if x > Threshold x then Push Right

if x < — Threshold x then Push Left
if x > Threshold x then Push Right
if x < — Threshold x then Push Left

His was the bench-mark rule against which we tested our experience derived rules.
Trails were carried out once we had encoded these two rules into rule-based
controllers, Controller A and Controller B respectively. Each trial started from a
random position within the following bounds:

x is in the range —1.0 to 1.0 metres

x is in the range —0.2 to 0.2 metres/second

0 is in the range —0.1 to 0.1 radians
é is in the range ~0.2 to 0.2 radians/second

Using our rule, Controller A, the system could be successfully balanced for as
long as 200 seconds, the cut-off time in the experiment. In addition, several runs
were performed with the cut-off period extended to 2000 seconds. Again, Controller
A performed well leading us to believe that the system could be balanced
indefinitely using this controller. Comparisons were made with Makarovic's rule,
Controller B, derived from examination of the systems’ differential equations. To
test the robustness of the rules the system parameters were varied in a random
fashion to make the task more difficult. Table 1 summarises the results.

298 INTELLIGENT AND AUTONOMOUS CONTROL

It can be seen that Controller B works equally as well as Controller A in the
original system configuration. Both Controllers successfully balanced the system
20 out of 20 runs for a period of 200 seconds. However, when system parameters
change, the Controller B cannot guarantee success. This was because of the
arbitrary choice of threshold values by Makarovic. One set of threshold values is
not ideal for a system configuration that alters. In contrast, our rule was written
without any threshold values being placed on observation. Here the condition part
of the rules only deals with the sign of errors and with the sign of variations of
observed system state variables. It reflects the human control heuristics. It can
adapt itself to different system configurations and perform consistently well in all
circumstances.

System Parameters Failure Rate Success Rate

Mc Mp Controller Controller
kg) | kg | L@ | FN)

A B A B
1.0 0.1 0.5 10 0/20 0/20 20/20 | 20/20

0s 0.1 0.15 10 0/20 | 18/20 | 20/20 2/20
0.5 0.1 0.25 10 020 3/20 20/20 1 1720
0.5 0.1 0.25 15 0/20 | 17/20 | 20720 3/20

Table 1 Summary of Rule-Based Controller Trials

5. PASSIVE LEARNING EXPERIMENTS

In this section we deal with the introduction of a category of learning that shall be
called Passive Learning. By Passive learning here we mean learning through
observation, interpretation, and conclusion. An analogy that might be drawn is
that of an aeroplane co-pilot. Throughout a period of training the co-pilot learns
much from observing the responses of the pilot to given situations, in effect
learning the rules being applied in a passive manner. Our interpretation of this
situation is twofold. First, we produced a rule to qualitatively partition
experimental data, these qualitative patterns were then fed into a neural network to
train it as the systems controller. Second, we used rule induction, a technique that
generalises from specific examples, in an attempt to refine the human rule used in
the construction of Controller A.

5.1 The Back-Propagation Network Theory
In this section, we give a brief review of the Rumelhart semi-linear network on
which our controller is based.

Learning in Control 299

Hecht-Nielsen [11] showed that a three-layer neural network was able to represent
any continuous mappings from input to output using the Kolmogorov Existence
Theorem [23]. However, the introduction of the hidden layer between the input
and output layers has made learning in multi-layered (three layers or more)
networks difficult. Since the input units are not directly connected to the output
units, it is difficult to decide under which circumstance the hidden units should be
active and subsequently contribute to the desired input-output mapping. This
position has changed since Rumelhart, Hinton and Williams [19] developed a
novel algorithm which could give an effective learning procedure for the neural
networks with hidden units. A multi-layer neural network of Rumelhart type is
illustrated in Figure 5.1. In such a network, the output of units in layeri are
multiplied by appropriate weights i which in turn become the input to the next

layer. If output of the units in layer 1 is y; then the total input to a unit in layer j

is:
Xj= § ; OiYi
i

The output of a unit in layer j is:
Yi= hi (Xj)

where f is the activation function, or the function that determines the probability
with which the unit transits to one-state. The most commonly used activation
function is the sigmoidal function, Figure 5.2. The sigmoidal function is
expressed in the form:

1

Yi =f (Xj) =

1 +e—0l
T

where AE; = xj + h; is an energy gap between the current and the new states, h;
is the internal ‘threshold’ for unit j, and T is the ‘temperature’ of the system,
Rumelhart's back-propagation learning algorithm adjusts the weights to obtain a
minimized system energy function. This is done by repeatedly propagating
backward the difference between the actual and desired outputs to the hidden layer.
There the weighting of each unit is adjusted in relation to the derivatives of the
error function, the ones used to adjust the weights for the output layer units. The
error at any output unit in layer k is:

ek =ty — Yk
where t is the desired output for that unit and yj is the actual output. The total
error function can be written as:

300 INTELLIGENT AND AUTONOMOUS CONTROL

1 2
E= -z—z‘(tk = yk)

The error is minimized by starting with any set of weights and repeatedly changing
oE

each weight by an amount proportional to 10,

JE
Awkj = —Ea—% = s?)kyj

where the error signal dy is given by:

8 =t — Yy (1 -y
at an output unit k, and

k

at any hidden unit j. The thresholds are learned by taking hj as being equivalent to
weight ®jo thereby connecting the unit j to a bias unit which is always active. As

the learning parameter € tends to zero and the number of updates tends to infinity,
the learning algorithm is guaranteed to find the optimised set of weights that gives
the least mean square error of the total error function. In practice, a momentum
term is added so that the learning rate € can be increased without causing
oscillations:

A(l)jlk+1 = £5kyj + QA(DEJ

where the momentum parameter ¢ determines the effect of past weights on the
current direction of movement in weight space.

5.2 Passive-Learning of Human Control on the Simulated Pole
and Cart

In this section, we use a Rumelhart semi-linear network as the basis of a design

for a passive-learning controller, a controller that learns by observing human

supervised control decisions.

The control process consists of developing pattern formations to give the required
motor drive control. The latter is implemented with a connectionist-net of the
Rumelhart semi-linear feedforward type. At each instant in time, the values of a
training set of the systems state variables are processed into a single pattern which
in turn is applied to the input layer of the connectionist net. The response, at the
output layer of the net, is used as the control signal for that instant.

Learning in Control 301

u
1 2 3 4 5 6

Figure 5.1 The Synthesized Neural-Net Showing Certain
Weights and Thresholds

Output A

0 >
Effective input
Figure 5.2 Sigmoidal Activation Function

302 INTELLIGENT AND AUTONOMOUS CONTROL

During the learning period, the system is controlled by a human operator, and the
neural-net learns to mimic human control by back-propagating the human's
decisions through the network and updating the synaptic weights. The neural-net
was trained on 8 out of 96 possible input patterns and then tested on the remaining
88. Simulation results show that it generalized correctly and hence can take over
the control task from the human teacher. In addition, the behaviour of the trained
neural-net produces a set of rules which would be very difficult to elicit from the
human operator.

A multi-layer neural network of Rumelhart type is illustrated in Figure S.1. In our
network, the output of units in layer i is multiplied by the appropriate weights
;i which in turn become the input to the next layer. Rumelhart's back-
propagation learning algorithm adjusts the weights to obtain a minimized system
energy function. This is done by repeatedly propagating backward the difference
between the actual and desired outputs to the hidden layer. There the weighting of
each unit is adjusted in relation to the derivatives of the error function, the ones
used to adjust the weights for the output layer units. The latter is implemented
with a connectionist-net of the Rumelhart semi-linear feed-forward type. At each
instant in time, the values of a training set of the systems state variables are
processed into a single pattern which in turn is applied to the input layer of the
connectionist net, see Table 2. Using the neural net as a controller, the task is to
generate the control decision whether a right or a left force should be applied. The
features of the input pattern to the neural net are:

up -- pole angle.

up -- change of pole angle.

uj3 -- variation of change of pole angle.
uyq -- cart position.

ug -- change of cart position.

ug -- variation of change of cart position.

Through adopting the sigmoidal activation function, the outputs of the hidden
units are constrained between zero and one. The input patterns are chosen to be in
the same range so that their associated weights can be adjusted for fast
convergence. The value of the input patterns are discrete and fixed so there are only
a finite number of inputs, and all pattern apart from uj have two values.

There are three values for pattern uj, one, zero and 0.5 which is the output of the

sigmoidal function when the activation value of the unit equals its threshold value.
These features are formed by pre-processing the system state variables using the
following qualitative partitioning rule where (k) and x(k) are the current value of
pole angle and cart position respectively, 6(k-1) and x(k-1) are the values of pole
angle and cart position at last step. This qualitative partition of the system state
yields 96 patterns corresponding to all of the combinations of the feature values.

Learning in Control 303

The output of the neural net can be considered as the probability of applying a
right' force. An output of '1" indicates applying a right force (the probability of
applying a 'right' force is 1.0). An output of '0' denotes a 'left' force (the
probability of applying a 'right' force is 0.0).

if (6(k) > THRESHOLD) ul = 1.0

if (6(k) < -THRESHOLD) ul = 0.0

if (|6(k)] < THRESHOLD) ul = 0.5

if (J0k)| > 16k-1)]) u2 = 1.0
else u2 = 0.0

if (J6(k) - 6(k-1)| > 16(k-1) - 6(k-2)]) u3 = 1.0
else u3 = 0.0

if (x(k) > 0.0) 4 = 1.0
else u4 = 0.0

if (Ix(k)| > |x(k-1)]) u5 = 1.0
else us = 0.0

if (|x(k)-x(k-1)] > |x(k-1)-x(k-2)]) u6 = 1.0
else u6 = 0.0

From Figure 5.1 it can be seen that our neural network has six input units, three
hidden units and one output unit. Experiments were conducted in three phases, the
knowledge acquisition phase, the learning phase or knowledge transfer phase and
the controlling phase. Phase one consisted of data being acquired through
observing and recording a skilled human controlling the simulated system. In the
knowledge acquisition phase this training data was transformed into the training
patterns that were to be used in the learning phase,

The training data was presented in groups of three, and input-output patterns are
formed by processing the data in each group. During the second phase of the
experiment, the neural-net was trained using the training patterns obtained in the
first phase. The neural-net learned all eight patterns in an autonomous manner, in
other words, the human's knowledge was successfully transferred to the neural-net.
Comparisons of the actual outputs with the desired outputs are listed in Table 2.
Finally, the remaining eighty-eight patterns in the problem space were presented to
the neural-net. The training was done off-line and it took about 10 minutes on a
Sun 3 machine. The values of certain weights and thresholds, autonomously
acquired by the neural-net through training, are illustrated in Figure 5.1.

Since the values of the output are the probabilities of applying a 'right' force, it
was seen that the neural-net could successfully discriminate between 'left' category
input patterns where the output of the net is less than 0.5 and 'right' category input
patterns where the output of the net is greater than 0.5. Of particular importance to
us is the ability of the neural-net could passively learn a control law which is
embedded in the human operator. From our observations we can express a neural-
net rule as follows:

304 INTELLIGENT AND AUTONOMOUS CONTROL

Data
System State Variables Human Pattern Features .
Gm:p y Control Desired | Actual
an
. 3 Output | Output
Pattern| x 0 x 9 Action oo owow o ow g P P
No. | (m) (rad) (m/s) (rad/s)
-0.016 -0.071 0331 -0.182 left
1 -0.009 -0.074 0.137 0.086 left 0 0 0 0 0 O 0 0.026
-0.006 -0.073 -0.056 0.354 left
0.026 -0.084 0326 -0.07 left
2 -0.020 -0.086 0.132 0.185 left 0 0 1 0 0 0 1 0.944
-0.017 -0.082 0.061 0449 right
-0.037 -0.078 0.520 -0.346 left
3 -0.026 -0.084 0.326 -0.079 left 0 1 0 0 0 O 0 0.007
-0.020 -0.086 0.132 0.185 left
-0.238 -0.07t -0.140 0.150 right
4 -0.241 -0.068 0.055 -0.163 left 0 1 1 0o 0 o 0 0.045
-0240 -0.073 -0.138 0.106 left
0244 0.080 0.527 -0.492 left
5 0233 0.070 0331 -0.175 left 1 0 0 0 0 O 1 0.945
-0.227 0.066 0.134 0.138 right
0205 0.083 -0.122 -0216 right
6 0208 0.078 0.071 -0.481 left 1 0 1 0 0 o0 0 0.036
0206 0069 -0.125 -0.164 left
-0.233 0.070 0331 -0.175 left
7 0227 0.066 0.134 0.138 right | 1 1 0 0 0 © 1 0.959
0206 0.069 0328 -0.132 right
0397 0.055 0327 -0.103 left
8 0390 0.053 0.131 0.206 right |1 1 1 0 0 0 1 0.959
-0.388 0.057 0325 -0.069 right

Table 2 Neural Network Training Patterns

Learning in Control 305

if pole angle is greater than the threshold
then
if pole angle is increasing
then apply a right force;
if pole angle is decreasing and the variation of pole angle is increasing
then apply a left force;
if pole angle is decreasing and the variation of pole angle is decreasing
then apply a right force;
if pole angle is less than the threshold
then
if pole angle is increasing
then apply a left force;
if pole angle is decreasing and the variation of pole angle is increasing
then apply a right force;
if pole angle is decreasing and the variation of pole angle is decreasing
then apply a left force;
if pole angle is within the threshold
then
if cart is on the right half of the track
then
if cart position is increasing
then apply a right force;
if cart position is decreasing and the variation of the cart position
is increasing
then apply a left force;
if cart position is decreasing and the variation of the cart position is
decreasing
then apply a right force
if cart is on the left half of the track
then
if cart position is increasing
then apply a left force
if cart position is decreasing and the variation of the cart position
is increasing .
then apply a right force
if cart position is decreasing and the variation of the cart
position is decreasing
then apply a left force

The Neural Net Rule

306 INTELLIGENT AND AUTONOMOUS CONTROL

5.3 Passive-Learning from Human Control of the Physical Pole-
Cart System

The objective of this section was to see if passive-learning could be achieved
observing the human responses in the control experiments of section on the
human control of the physical pole and cart system. Since the physical system was
uncontrollable by a human it is considered here that no passive-learning could take
place. It was therefore decided to conduct experiments on the physical system using
the rule-based controllers, derived from experiments carried out on the simulator. It
was also decided to introduce inductive learning here, first as a means of verifying
the human rules and, second as a potential route to refining the human rules. This
is possible because inductive inference automatically generates rules based on
classification from presented attributes, in our case the attributes from the
qualitatively partitioned state-space.

5.4 Inductive Inference and Inductive Learning

In the field of machine learning much attention has been given over recent years to
the use of inductive inference, and in particular the use of inductive learning for
expert system development [4, 9, 12, 17]. Inductive inference is used for
generalising from specific examples. In our work we applied the ¢4.5 algorithm,
one of Quinlans’ [17] ID3 family, to our probabilistic data to induce a decision tree
that is representative of the relationship between the attributes and the classes. The
c4.5 induction algorithm was chosen because it is based on both statistical and
information theoretic techniques, as such it is suited to handling probabilistic data
of the type we were dealing with. This algorithm is also suited to handling ‘noisy’
data.

The data samples given to the algorithm were obtained from an experimental trial,
each sample was described in terms of the attribute values, in our case linear and
angular displacement, rate of change of linear and angular displacement, and a class
label. Since c4.5 uses a hierarchical mutual information approach it yields a ‘top-
down’ tree that maximises the mutual information gain at each partitioning step.
Put simply, it gives valuable information on the relevent importance of the
various attributes which can be an advantage over more conventional classification
techniques. In common with such algorithms Shannon’s entropy (H) of a class
random variable (C) is used as a measure of information, and is defined as:

n
H(C) = Z p; logy (1/p;)

i=1

If there are N attributes each denoted by A, where 1 <i < N. Also, if we consider
that each attribute Ajhas n; values, and that n; is finite, then I(C; A;) is the
mutual information between C and A according to Shannon. So, the ‘top-down’
tree classifier algorithm recursively seeks to determine whether a node is a ‘leaf’, or
not, and if not it determines which attribute provides the most information at that
node.

Learning in Control 307

5.5 Passive-Learning from Automatic Control of the Physical
System

The results obtained from the trials conducted in section on the automatic control
of the physical system, for the automatic controllers based on the rules of
Controller A and Controller B, were processed by an induction rule generator. The
rule generator used in these experiments was c4.5 because it accepted data directly
in the form that it had been logged in the trials. In the case of the trial using
Controller A, 1704 items of training data were used, while in the Controller B
1601 items of data was used. The rule generator c4.5 was set up with a minimum
of 10 items on either side of the threshold test, and with a pruning confidence level
of 1%. With this arrangement the results proved very different. The decision tree
generated from the Controller A experiments produced a tree of 15 nodes from the
three attributes considered. This tree is considerably larger than the hand-crafted rule
tree developed by Controller A, which only had 8 nodes. The generated tree from
the Controller B experiments was closer to the Controller B rule. In this instance
c4.5 produced a tree with 5 nodes from 4 attributes, 3 nodes less than his hand-
crafted rule. At this stage these results are reported on as an demonstration of an
ability to passive-learn rules. The technique requires further examination and
experimentation before more focussed conclusions can be drawn.

6. MACHINE-LEARNED CONTROL (MLC)
In this section, we propose an application of the rule to control the pole-cart
system by using machine learning techniques.

6.1 ‘BOXES’

Very briefly, the ‘BOXES’ learning algorithm [14] is an adaptive controller that
develops its control strategy on a vector based on the system’s state at any instant,
or, on the receipt of failure signal after the system has gone out of control. Should
a failure occur the system is re-set, in a random manner, then experimentation
continues. Using the reference text as a guide, we will try here to give an overview
of the learning mechanism as presented by Michie and Chambers [14]. First the n-
dimensional state-space is partitioned into the n representative variables first given
in a previous section, see Control Strategies and Experiments, sectiond.

Here, the terms for linear and angular velocity can be found by differencing their
associated displacement terms with respect to a time interval. Being confronted
with an infinite number of 4-element vectors that were available in the state-space
Michie and Chambers adopted a novel quantisation technique to reduce the time
that the algorithm needed to calculate the required control signal. The ‘model’ they
adopted is shown in Figure 6.1, close examination shows that they set thresholds
for the variables, 5 ‘boxes’ each for the displacement terms, 3 ‘boxes’ each for the
velocity terms, a total of 255 ‘boxes’ in all.

The decision making process for the ‘BOXES’ algorithm is best understood if we
consider that each of the 255 ‘boxes’ is inhabited by a local demon, a control
switch, and a score-board. All the local demons are overseen by a single global

308 INTELLIGENT AND AUTONOMOUS CONTROL

demon. Local demons make their left and right control decisions based on
experience, a weighted sum of the ‘life’ of his ‘box’ (LL and RL), and a weighted
sum of the ‘usage’ of his ‘box’ (LU and RU), Figures 6.2, 6.3. A local demon’s
control decision, the setting of his switch (S), is therefore a function of ‘life’,
‘usage’, and TARGET, Figure 6.4. This is the basis of the ‘BOXES’ algorithm. In
its original form, the ability of ‘BOXES’ to learn was primarily determined by the
quantisation of the state-space. Although Michie and Chambers did say in their
paper that boundary adaption, ‘lumping’ and “'splitting” as they put it, would be a
desirable extension to their work it was never implemented. In part, the work
described in this Chapter deals with that particular extension to their work.

6.2 Learning to Partition the State Space

In Michie and Chambers learning algorithm ‘BOXES’ [14], the physical state
space is partitioned into boxes. The algorithm learns to set correct decisions for
each box through trial-and-error. Unfortunately, state space partitioning prior to
experimentation is arbitrary because it is reliant on human knowledge. If the
original partitioning is wrong, the algorithm can not learn to correct it. In the
following, we will show how our rule can be used to partition the state space in
pole-cart application.

Each ‘box’ contains a setting which is either ‘left’ or ‘right’ and a record of any
changes made. A decision is made by the rule whether the last move is good or
bad. If it is a good move, then the setting S; in box; , which contains the system
states in the last step will remain unchanged. The same move will be repeated in
boxJ- , the box which contains the current system state. Otherwise, the alternative
setting will chosen both for the box; and box_i . The number of setting changes in
each box is recorded. If this number is greater than two, this means that box
boundaries have been set badly; the control decision is either left or right. This
information is used as a signal to trigger a subdivision of the box. This is achieved
by subdividing the interval within which one of the state variables fell in the
preceding step. Our partitioning approach is similar to binary search.

The subdividing should only affect the box concerned, boxy, so after splitting it is

divided into n+1 sub-boxes. Thereafter, n more boxes are added to the total, where
n is the number of dimensions of state space. Alternatively, when two or more
adjacent boxes are found to agree on the same setting, they can lumped into a
single box. Figure 6.5 illustrates the control system. The decoder transforms each
state vector into a box, this contains the current system state. The entries in the
decision table, which are indexed by the boxes, corresponds to the settings in the
boxes. These settings are either left or right. A supervisor or learning automaton
learns to set the correct entries for the decision table by memorising past states and
evaluation of current system performance. The decision table is dynamic and can be
expanded or contracted by the learning automaton during the trial. The learning
automaton also sets the correct function for the decoder, which means that for each
box decoded there exists only one possible decision.

309

Learning in Control

WISIUEYIIP UOISIN(- SAXOM, T'9 3131y

PIOYS2AY |, I[qBLIEA 'S T°9 2un3Lg

< ED

< E
o

« D

IWSINVHOTIA NOISIDHA - SAXO0d,

§ST = EXSXEXS = SAXOF JO spquuny

I [S (s/39p) ©
b+ 9+ 9 vz :
N [TT 1 S @) 0
i+ 9+ | A | 9 a-

N il K Gmx
oE+ "I og- :
_ [[@nx
sE+ 1T+ L+ L 1T~ s¢-

SATOHSHYHL ATAVIIVA ALVLS

INTELLIGENT AND AUTONOMOUS CONTROL

310

Suow3(J [eqo[s) pue [e30] 9 3andij

wiSieyd A Supuaed| pasiatadng ¢'9 andiy
1 N su!

(4) anjep <> () angeA

:13Y1ay A uo Surpuadap paproap st
S UOI}JOE [023U0)) "PI)E[NIBI ST (Y)IN[eA ‘A[Hepuiis

M +nD
—_——— =(DMEA
Pdhelx [+717

(44314, 20 2997, = §) UOHIY [0HuUO)) .

(1=<12:0=<00) W X (1D + 0D) = 13818,
NO/10 = BN

1+(Iaxnn)=n9
4L+ Ia x19) =19

s[ejo], uow([eqo[s)
MA X, T =Nd
AAX.TI=Td
N+OIaxnD=n1

(1L -41) Wu_.. ax1D="T1
N

(1331, UOISINAP § IIPISUOD) S[EJO], UOWI(] [€I0T] -«

TVOOT % TVHOTO - SNOWHA

.5_
ay) 0) A1)uUd IY) pue und dyj Jo y1ejs ay)
UIIM)9q Awll) Y I, “UTLI JUILIND) Suranp
PAJ43)Ud UG SEY X0q B YDIYA Je S|,
(NE 2L L) JWIL

‘uowdp Jursiasadns

ay) £q payddns st sty I, "wa)sAs 3y) jo i
UBIW JULIND Y} Jo jdynui Juejsuod y
LaADAVL

*sunt snoiAdad Suranp suoISIAP Uo1IAIP
seradordde ay) jo wins payydom ay |,
(.28esn-)y3u,, pue 3esn-pL) N R N1

*X0q € 0) A1jud

U0 Ud)E) SUOISINAP uondLIp Aerrdordde
Y} Jo ,,SIAI|,, Y] JO WINS PAYSIM Y|,
A:O.—:..un—wm.—: pue :Ou__-a.—o_:v TA®TI

INSINVHD A ONINIVIT
AASIAYA4NS SIXOd: HH.L

Learning in Control 311

6.3 A Neural-Net MLC Controlling a Simulator

The third phase of the experiments carried out was the machine learned control
(MLC) phase, could the neural-net learn sufficiently to become an MLC and take
over the control task from the human teacher. Over 20 balancing runs under the
control of the neural-net it was found that the neural-net successfully balanced the
pole-cart system for as long as two hundred seconds, the simulation cut-off time.
Several runs were performed for up to two thousand seconds, and there was an
indication that the system can be balanced 'for ever"!

To test the robustness of the neural controller its performance was tested against
that of the performances of two other automatic controllers, one based on the
‘BOXES’ learning algorithm, and the other based on Makarovics' Rule. The test
was to see how they coped with varying system parameters, Table 3 summarizes
the results. Success is measured by a system controlling the pole-cart simulation
200 seconds. From Table 3, it can be seen that the neural controller has
successfully balanced the system for all test runs. This rule learned by the neural-
net has been compared with the rule learned by 'BOXES' algorithm. The latter was
derived by Sammut taking the output of a successful 'BOXES' trial as input to
Quinlan's c4 induction program [15]. Table 3 shows a comparison of the results
of the two different methods.

It can be seen that the 'BOXES' learned rule work equally as well as our neural-net
learned rule using the original system configuration, both successfully balanced the
system 20 out of 20 runs for a period of 200 seconds. However, when the system
parameters change our neural-net rule adapts itself to system parameter changes and
continues to perform consistently well in changed circumstances.

The neural-net uses a rule that is similar to that of the human pre-processed rule,
Controller A or Controller B. However, we discovered that care must be taken
during the pre-processing stage, the preparation of the training patterns for the net,
too much intervention here can lead to biased learning. To ensure un-biased
learning the net must be made to generate the training patterns automatically from
the human responses as it is acquired. To ensure that no bias had occurred we
conducted a series of trials where automatic pattern generation was the goal, some
of the weights and thresholds are included in Figure 5.1. Once this neural-net had
been trained a series of performance trials were conducted to see how it performed
against a ‘BOXES’ controller and Controller B. The results of these tests is shown
in Table 3. One point noted was that if 6 is small and x is large the neural-net
controller is not so exact as the rule derived by human observation.

7. CONCLUSIONS

This Chapter has dealt with how best to use artificial intelligence techniques in
control engineering. The work reported on included technical issues such as
human-supervised learning, passive-learning, and machine learning, and how best
they can be applied to control engineering problem, pole-balancing. However, in

312 INTELLIGENT AND AUTONOMOUS CONTROL

if 6 > 0.105 then right
if 6 > 0.089 then right

if © >—0.870 then left
if 6 < 0.015 then

if © >—0.875 then right

if x < 0.565 then left
if 6 < —0.11 then left

if 6 < 0.005 then right else left
else

if x > —0.795 then right

if x <—0.475 then right
if 8 < 0.095 then left

if x < ~0.39 then right
if x < -0.375 then left else right
The Humanly Derived Rule

extensions to the work here we have used the same techniques to examine rocket
control, others have used the techniques for manufacturing processes .

Initially, our work work dealt with the building a computer simulation of the pole-
cart system. Once this was completed and a graphical interface had been constructed
the simulation was used as a test-bed for ideas throughout the duration of our
work. To ensure maximum flexibility these simulators were developed for both
PC-based machines (IBM PC-AT and Compaq 386/20), and Sun workstations. At
an early stage joy-stick control experiments were established on the PC's, this
allowed human-supervised learning trials to begin. Through conducting these trials
a better understanding of human control strategies was obtained, particularly in
relation to human response time when controlling a highly dynamic system.

Once a suitable delay had been found for the simulator a series of trials was
undertaken to assess human performance, the abilities varied considerably but the
observations made were useful for inclusion in later non-learning and learning
control work. Human-supervised learning became a major study area for others at
the Turing Institute.

Learning in Control 313

Partition Rule Performance
Modification Evaluation
History
Buffer
e éx ;
o
—1 Decoder - Pole-Cart
— Decision P System
Matched Table Control o« o
"box" Action 0 0XX

Figure 6.5 A Machine Learning Controller Based on ‘BOXES’

In the next phase automatic controllers were developed, rule-based controllers,
where rules were derived from observing human experts controlling the pole-cart
simulation, or from interpretation of the systems dynamic equations. The human-
supervised control data collected proved useful not only for developing a rule-based
automatic controller, it was also used later when the neural-net controller was
constructed. The rule, which became known as Controller A, was based solely on a
control decision based on pole angle. The properties of Controller A have been
compared with that of another rule-based controller, one where the rule, Controller
B is derived from theory. Experiments conducted in simulation showed that our
controller was more efficient when compared to the performance of the one based
on theory, especially when the system parameters are gradually changed. That is,
when both controllers were "tuned” to the dynamic system they performed equally
well, but when the physical parameters were altered, tests showed Controller A
adapted, Controller B did not. A more appropriate test was to be performed later,
on the physical pole-cart apparatus.

In this Chapter we also show how the data obtained from human-supervision of a
pole-cart simulator can be used for a connectionist-net machine learning approach.

314 INTELLIGENT AND AUTONOMOUS CONTROL

Further this neural-net controller can be applied to achieve intelligent control. A
trainable adaptive controller has been built to control a simulated mechanical
apparatus, the pole-cart system. The controller is implemented with a three-layer
neural network, based on the work of Rumelhart, whose intermediate layer
contains three hidden units. Unlike previous neural-net efforts, in which the neural
controllers learn to control through 'trial-and-error', our neural controller learns to
control through training. That is, it initially observes a file of stored decisions
made by an experienced human operator controlling the simulated pole-cart system.
Then it emulates these actions. After a period of training, it is possible for the
human operator to exit the control loop and allow the neural controller to take
complete control. As in the BOXES'-based experiments of Chambers and Michie
this property of learning without failure shows promise for the development of
trainable adaptive computer-based controllers, where a computer is trained to
control rather than being programmed to control. When a complete mathematical
model of a complex dynamic is out of the question, which is often the case in real-
world applications, control by learning shows promise and is worthy of being
considered as the controller choice in these instances.

System Parameters Rule Failure Rule Success
Mc Mp L F |N-N BO- Contr- N-N BO- Contr-
[kgl [kg] [m} [N] XES oller B XES oller B

1.0 0.1 05 10 020 020 0120 20120 20120 20/20
05 01 05 10 |020 1120 2/20 20/20 9/20 18/20
05 01 0.25 10 |0/20 20720 3/20 [20/20 0/20 17/20

05 01 0.15 10 1 0/20 20/20 17/20 20/20 020 3/20

0.5 0.1 0.25 15 | 0/20 20/20 1820 |20/20 0/20 2/20

Table 3 Comparison of the Neural-Net Learned Rule with the
BOXES Learned Rule and Controller B Rule

All of the above work was undertaken in simulation because of a lack of a physical
test-bed, only recently has this been rectified. The limited series of testing that has
taken place on the physical pole-cart system has provided invaluable information.

Learning in Control 315

For example, under human-supervised control with a joy-stick the system is
uncontrollable! When the automatic control trials were carried out with the two
rule-based automatic controllers neither performed outstandingly well. Further,
when the data from these trials was processed by an inductive-rule generator, for
passive-learning, the number of rules generated from the Controller B trials was
closer to the hand-crafted rules than that of Controller A.

The MLC experiments, like the passive-learning experiments above, at are an early
stage of development. Initial trials with the ‘BOXES’ learning algorithm showed
improved performance over the trials conducted, at this point it is too early to
comment on the efficiency and effectiveness of MLC. An extensive period of
experimentation is required, this should include a comparative study using other
learning algorithms as the basis of the MLC, and included in this should be further
work on neural-net controllers. The physical system is an ideal test-bed for
passive-learning and MLC work. The trials that were conducted highlighted issues
that are not apparent when operating in the simulated world. True, the simulated
world can have the time delays removed allowing them to run as fast as the
physical system. But, simulation does not have to address problems such as sensor
resolution. In the results recorded it was noticed that only certain boxes were
visited in the state-space, this was due entirely to the resolution of the rotary
encoder's. This continual visiting of the same boxes caused an computer register
overflow resulting in negative values appearing in the boxes. It was concluded that
this register negation could effect MLC performance, trials are continuing.

An interesting piece of MLC work was having the simulator running on the PC
and the MLC running on the Mac IIx. Although this was purely an exercise in
connectivity it has provided a graphic illustration of how controllers may be
resident in one machine while the process is hosted by a completely different
machine. At this stage this has only been used for demonstration, no MLC trials
have been conducted. When complete mathematical modelling of an automated
system is out of the question, which is often the case, learning may be the only
choice. Research is continuing towards building a trainable adaptive controller.
This work see a new kind of computer control developed, one where the computer
is trained-to-control rather than being programmed to control.

8. ACKNOWLEDGEMENTS

This study was jointly funded by the United Kingdom's National Engineering
Laboratory, British Aerospace(Hotol), British Telecom Research Laboratories,
Apple Computers (Europe), the Science and Engineering Research Council, and
the British Council. We also acknowledge the support of the Directors of the
Turing Institute Limited, and the Department of Computer Science at the
University of Strathclyde. Thanks are due to Professor Donald Michie for
contributions and comments. We acknowledge useful suggestions from Dr.
Andrew Hay, formally of the National Engineering Laboratory and the helpful and
constructive contributions of fellow researchers, Dr Bing Zhang and Mr. Michael
Bain.

316 INTELLIGENT AND AUTONOMOUS CONTROL

9. REFERENCES

1 Anderson, C.W., "Strategy Learning with Multilayer Connectionist
Representations”, In: Proceedings of the Fourth International Workshop on
Machine Learning, Pat Langley (ed.), Morgan Kaufmann, Los Altos, (1987).

2] Astrom, K. J., Anton, J. J. and Arzen, K. E., "Expert Control", In:
Automatica, Vol. 22, No. 3, pp 277-286, (1986).

[3] Barto, A. G., Sutton, R. S. and Anderson, C. W., "Neuronlike Elements
That Can Solve Difficult Learning Control Problems", In: IEEE Trans. on
Systems, Man, and Cybernetics, vol 13, pp 835-846, (1983).

[4] Bloomfield, B. P., “Capturing Expertise By Rule Induction”, In: The
Knowledge Engineering Review, Vol 2, Part 1, March, Cambridge University
Press, pp 55-63, (1987).

[S] Chambers, R. A. and Michie, D., "Man-machine Co-operation on a
Learning Task", In: Computer Graphics: Techniques and Applications, R.
Parslow, R. Prowse and R. Elliott-Green (eds.), London:Plenum, (1969).

[6] Connell, M. E. and Utgoff, P. E., "Learning to Control a Dynamic
Physical System”, In: Proceedings of the Sixth National Conference on Artificial
Intelligence, Morgan Kaufmann, Los Angeles. (1987).

[71 Donaldson, P. E. K., "Error Decorrelation: A Technique for Matching a
Class of Functions”, In: Proceedings of the Third International Conference on
Medical Electronics, pp 173-178, (1960).

[8] Feng Zuren, Yin Zhenggi and Chen Huitang, "Stabilization of a Double
Inverted Pendulum by Analogue Controller", In: Proceedings of the 9th World
IFAC Congress, Budapest, Hungary, (1984).

91 Goodman, R. M. & Padhriac, S., “Decision Tree Design Using Information
Theory”, In: Knowledge Acquisition, Vol 2, Part 1, March, Academic Press Ltd.,
pp 1-19, (1990).

(10] Grant, E. and Bing Zhang, "A Neural Net Approach to Supervised Learning
of Pole Balancing", In: Proceedings of the Fourth International Symposium on
Intelligent Control, 25-27 September, Albany, New York. (1989).

[11] Hecht-Nielsen, R., "UCSD Extension Class Notes", (1986).

[12] Kirkwood, C. A., Andrews, B. J. & Mowforth, P. H., “Automatic
Detection of Gait Events: A Case Study Using Inductive Learning Techniques”, In:
J. Biomed. Eng., Vol 11, November, Butterworth and Co. (Publishers) Ltd., pp
511-516, (1989).

(13] Makarovic, A., "A Qualitative Way of Solving the Pole-Balancing
Problem", In: Machine Intelligence 12, J.E. Hayes, D. Michie and E. Tyugu
(eds.), Oxford, Oxford University Press, (1989).

[14] Michie, D. and Chambers, R. A., "BOXES: An Experiment in Adaptive
Control", In: Machine Intelligence 2, E. Dale and D. Michie(eds.), Oliver and
Boyd, Edinburgh: Edinburgh University Press. (1968).

[15] Michie D. and Bain M., "Machine Acquisition of Concepts from Sample
Data", Artificial Intelligence and Intelligent Tutoring Systems: 1989 Spring
Symposium at the University of Maine, (1989).

[16] Mori, S., Nishihara H. and Furuta K., "Control of Unstable Mechanical
System: Control of Pendulum”, International Journal of Control, Vol 23, No. 5,

Learning in Control 317

pp. 673-692, (1976).

[17] Quinlan, J. R., “Discovering Rules By Induction From Large Collections
Of Examples”, In: Expert Systems in the Microelectronics Age, D. Michie (ed.),
Edinburgh University Press, pp 168-201, (1979).

[18] Reynolds, D. E., Boulton, C. B. and Martin, S. C., "Al Applied to Real-
Time Control: A Case Study”, In: Proceedings of Conference on Applications of
Al to Engineering Problems, (1986).

[19] Rumelhart, D.E., Hinton G.E. and Williams R.J., "Learning Internal
Representations by Error Propagation”, In: Parallel Distributed Processing:
Exploring the Microstructure of Cognition Volume 1: F oundations, D.E.
Rumelhart and J.L. McClelland (eds.), Cambridge, MA, Bradford Books/MIT
Press, (1986).

(20] Sammut, C., "Experimental Results From An Evaluation of Algorithms
That Learn to Control Dynamic Systems"”, In: Proceedings of the Fifth
International Conference on Machine Learning, J. Laird (ed.), San Mateo: Morgan
Kaufmann, (1988).

[21] Schaefer, J. F. and Cannon, R. H., "On the Control of Unstable
Mechanical Systems", In: Proceedings of the 3rd World IFAC Congress, (1966).
[22] Selfridge, O.G., Sutton, R. S. and Barto, A. G., "Training and Tracking
in Robotics”, In: Proceedings of the Ninth International Conference on Artificial
Intelligence, Morgan Kaufmann, Los Altos, (1985).

[23] Simpson, P. K., Naval Ocean Systems Center Technical Report, Code 441,
(1987).

[24] Valmiki, A., West, A. A., & Williams, D. J., “The Evolution of a Neural
Network for Adhesive Dispensing”, In: Proceedings of IFAC Workshop on
Computer Structures Integrating AIIKBS Systems in Process Control, May 29-30,
pp 93-101, (1991).

[25] Widrow, B. and Hoff, M. E., "Adaptive Switching Circuits", In: 7960
WESCON Conv. Record, part 4, pp 96-104, (1960).

