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ABSTRACT

A multisensory robotic system (MRS) consists of a central high-level
computer, one or more robotic manipulators with dedicated computer con-
trollers and a set of diverse visual and non visual sensors. The intelli-
gent, adaptive and autonomous behaviour of an MRS depends heavily on
its ability to perceive and respond to the dynamic events that take place
in ils work environment. Al any given inslance, various factors, such
as payload variations, the position, shape, orientation and motion of in-
dependently moving objects may affect the course of action taken by the
MRS. The information required to detect potential failures, to distinguish
between temporary failures (hard or soft), and to accommodate failures,
is extracted from a diverse set of data. Complete perception is made pos-
sible through sensor fusion of the data (information) derived from the
system’s diverse set of sensors.

The chapter models the MRS as a hierarchical system with bidirec-
tional interaction and focusses on the function and complexity of the
vision subsystems. Various conditions that may cause the vision system
to fail are illusirated. The problems involved in fusing (and registering)
muliisensory data are explained. The design of a new hybrid range and
intensity sensor is explained. A VLSI architecture suitable for an MRS
1s also described.
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1. INTRODUCTION

A multisensory robotic system may be modeled as a three interactive level
system of organization, coordination and execution of tasks, a common struc-
ture of hierarchical systems [1]. The communication within the hierarchy is
kept bidirectional to facilitate processing of the feedback signals. Given a user
command, the system formulates plan candidates based on prior experience and
information through various sensors, in order to evaluate the dynamic state of
its workspace and adapt (if necessary) its course of action. The on-line dynamic
interaction of the system with its environment of operation may dictate modi-
fications in the execution of a specific task, or accommodation of local failures
due to unexpected events.

The hierarchical structure of the system, and in accordance with previous
studies [1], dictates that the organization level deals with off-line system func-
tions while the coordination and execution levels deal with real-time, on-line
dynamic situations occurring during the execution of a specific plan scenario.
It is, therefore, the objective of the coordination level to develop specific exe-
cution scenarios and detect, identify, isolate and accommodate potential (local)
failures related to the mechanical components of the system.

The coordination level is composed of a specific number of coordinators
of a fixed structure, each performing a set of specific functions. For an MRS,
these coordinators are defined to be: i) the vision system coordinator, ii) the
motion system coordinator, iii) the gripper system coordinator, and, iv) the
(non visual) sensor system coordinator.

Specific execution devices are associated with each coordinator, which ex-
ecutes specific tasks that the coordinator is being assigned. The coordinators
do not communicate with each other (serially) directly; however, sharing and
exchange of data between the coordinators is made possible by a dispatcher,
common to all coordinators, the variable structure of which is dictated by the
organization level [2].

This chapter concentrates on failures due to the vision subsystem. Meth-
ods are suggested to overcome several potential (soft) failures to enhance the
flexibility of the vision system coordinator. The hardware mechanisms to be
built are also related to the vision system coordinator components. Therefore,
none of the other system components is affected. The organization level remains
unchanged, too. However, the overall system performance is enhanced.

Vision (video) sensors provide a wealth of information that may be used
by the system in several ways. The operational complexity of the vision subsys-
tem in a multi sensory robotic system varies vastly. For example, in a simple
situation, the robot may require information related to the presence/absence of
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any obstacle within its predefined path of motion, while in more complex situ-
ations, the position, orientation and the surface structure of a totally unknown
object (kept in the workspace) must be understood in order to generate an ac-
ceptable path of motion. The ‘path of motion’ refers to the exact sequence of
movements a robot manipulator follows in order to pickup an object for further
manipulation. Consider for example a scenario where a robot manipulator must
pickup an object A from location L 4 and move it to a location Lg. A potential
failure occurs, if the object is dropped by the manipulator while moving from
L4 to L. Another potential failure occurs when the vision subsystem fails to
recognize a known object (possibly due to noisy data) or an ‘unknown’ object
entering the workspace environment. In all cases, the vision subsystem plays a
dominant role in failure recovery.

Reflecting this large variation in the functional demands, the vision subsys-
tem is required to operate over a large dynamic range of underlying complexity,
resorting to simple, fast methods wherever and whenever it is sufficient to do
so. The vision subsystem should operate under at least two different modes of
operation: 1) acquire coarse and fast measurements under normal conditions
suitable for most model based vision applications, and, ii) acquire more accu-
rate, complete and perhaps slow (not significantly) measurements required for
failure prone conditions. When the vision subsystem finds itself inadequate to
resolve the signals it should advice the co-ordinator (level) module which in
turn will activate other (nonvisual) sensors to further resolve the scene using
complex methods suitable for unstructured scenes.

Section 2 explains various aspects of the vision subsystem. The discussion
includes the factors that could challenge the proper operation of the vision
subsystem. It emphasizes the nature and difficulties involved in sensor fusion.
The design of a hybrid range intensity sensor is described in section 3. The
theory and operation of the sensor is covered in detail. The barrier removed by
this sensor is emphasized. A VLSI implementation of the sensor is proposed.
Section 4 concludes the chapter.

2. ROLE OF THE VISION SUBSYSTEM

Applications of three dimensional (3-D) machine perception techniques for
autonomous systems have become very important in recent years. It has been
demonstrated that the effectiveness and reliability of robotic assembly (RA)
systems [3,4] and combat-oriented target identification systems [5], are signif-
icantly enhanced when they are endowed with 3-D visual (perception) feedback.
Research on 3-D perception may be broadly classified into: i) understanding
of the 3-D state of nature of a (structured) scene consisting of a known class
of objects and, 1ii) understanding the 3-D state of nature of an (unstructured)
environment where the presence of alien (unknown) objects is inevitable. Most
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of the DARPA lead research on image understanding [6, 7, 8] has been focussed
on problems related to structured scenes with known objects.

3-D perception systems reported in literature [3,4] are capable of per-
ceiving the 3-D shape, orientation and location of objects within static as well
as dynamic (slowly varying) scenes in the realm of structured/controlled envi-
ronments. Published techniques may be broadly categorized into: 1) passive
monocular techniques (shape from shading [9], occlusion clues [8], surface ori-
entation [10], and geometrical clues [11], [12]), ii) passive binocular techniques
using photogrammetry [9], iii) dynamic scene analysis of monocular image se-
quences (motion-based techniques for objects with planar (13] and quadratic
surfaces [14]) and, iv) fusion of images derived from multiple views [15], and
multiple sensors (stereo analysis of intensity and range images [16]). Contribu-
tions made in the first three categories have made it possible, to a large extent,
to solve many real-world applications where the scene is structured (or slightly
unstructured).

2.1. Open Problems in Designing an Ideal Vision
System

The fundamental problems in vision systems are generally associated with
the many-to-one transformation that takes place during the image formation.
Factors contributing to fundamental problems include:

1) Regardless of the sensor and the sensing methods used, the data suffer
from a limitation called finite volumetric aperture. The objects self
occlude themselves and prevent their back surface from being visible.

2) Depth ambiguities in orthographic images and scale ambiguities in
perspective projections are inherent.

3) When more than one object are in the scene, critical parts of a specific
object may be occluded by one or more objects making the recognition
of the specific object almost impossible. Situations may occur where
all the clues which facilitate unique identification of the specific object
have been occluded by other parts in the scene to the extent that a
known object is marked “unknown.”

To illustrate further the above problems, consider the smallest sphere that
completely encloses the object space to be monitored. A finite number of cam-
eras may be positioned in orbits around this sphere to collect images from
distinct vantage points in order to cover all of the 47 steradians possible views.
However, physical imaging conditions require a surface of support for the ob-
Jects; hence, cuts down the field of view to 27 steradians. Based on these re-
striction, some other sensors like tactile sensors may be used on or behind these
surfaces to collect data. Therefore, i) images have to be registered somehow
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and, it) while self occlusion is completely dealt with in the case of single objects,
this approach is not a solution in the case of scenes with multiple objects.

The interpretation of 3-D information from 2-D images is similar to solving
any other ill posed inversion problems. Ill posed problems are broadly divided
into three groups: i) those with no solution at all, ii) those with no-unique
solution and, iii) systems that do not depend continuously on initial data. It is
apparent that we are dealing with the second group of problems. The general
approach to such problems is to devise a set of consistency tests (functions)
based on a prior: knowledge of the solution space. That is, the problem is
regularized by imposing a set of appropriate constraint in order to narrow the
class of feasible solutions.

2.1.1.  Principles of Model Based Vision

The process of regularization invariably involves minimizing some disparity
functions, and/or energy functions. Methods that follow the hypothesize and
verify approach tend to back project what was understood of the scene onto
the image by first reconstructing the 3-D scene (hypothesized version) and then
comparing its predicted image to the data, thereby minimizing certain regularity
function. Least squared error functions are used in general. Situations do arise
wherein the visual perception is meaningless while the algebraic perception is
stable, — at least in the least squared sense.

One possibility is to take into account the image spatial structure of the
error (disparity) image. The weighted structure-based error is interpreted in
such a way that erroneous patterns which are more intolerable are assigned
high cost functions. This leads to model based vision as a potential solution.
The emphasis is on the underlying 2-D structure present in the 2-D image,
from which the strong clues about the 3-D structure of the objects may be
recovered. The images are segmented and described by a graph structure called
region adjacency graph (RAG).

The 3-D perception problem reduces to finding a subgraph isomorphism
between various RAGs and the anticipated 2-D structures of a 3-D object. The
use of range images has been shown to accelerate the computation [3] and to
increase the robustness. Consider the representation of the intensity image of
a ball. The representation of the segmented image may indicate two patches.
Albedos, the characters written on the surface of objects is another problem in
representing the objects. Examples indicate that the validity of the 2-D RAG
structure is critical. This may be achieved by having a coarsely sampled range
image, or, by stereo vision.
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2.1.2.  Introspective Vision: An effective Paradigm

A major class of vision applications is related to introspective vision sys-
tems. An introspective vision system examines by definition a scene very thor-
oughly when necessary and plays a less significant role when everything in the
scene conforms to what is expected of the scene. Upon identifying an event
of importance in the scene, the vision system can specifically focus on to that
location. For example, consider a model based vision algorithm devised to de-
tect spheres. If an alien object is placed in the scene, the iterative computation
may not converge. Eventually, the iterative algorithm would terminate saying
that the data is ill conditioned. The objective of the introspective vision is
to then gather adequate information and help the recovery process by a set
of more complex algorithms designed to deal with alien but tractable objects.
Generally speaking, introspective vision is highly directional, sensitive, and is
nonuniform in nature.

In principle, mobile robotic systems are required to operate in dynamic
unstructured environments. Such systems are equipped with binocular vision
in order to detect 3-D objects and hence prevent collision. Fast response is
required, and simplifying assumptions are necessary to adapt to any changes
in the environment. Both binocular vision (spatial aggregation) and dynamic
vision (temporal aggregation) techniques may be used to enhance the system
flexibility and adaptability. Introspective vision requires that the robot be
able to focus on every point in its workspace with almost equal sensitivity. It
becomes necessary to dynamically alter the camera parameters to meet such
specifications.

2.2. Sensor Fusion: An Alternative to Vision

Sensor fusion attempts to integrate information derived from two or more
sensors of different modalities. The simplest application includes at least one
range image and an inlensily image of a scene recorded by a video camera and
a depth sensor respectively. The objective is to measure those features (such
as a spherical surface) using range images, albedo features (the identification
labels or written text) of the surfaces by intensity based methods. The physical
features such as the size and mounting hardware of these sensors (cameras)
require that the sensors be placed apart in the 3-D space. Thus, each image
contains certain information that may not be visible from the vantage point of
the other sensors. The task is to integrate information from a set of (two or
more) views of a 3-D scene in which each view is either a range image Or an
intensity image. Theoretical results in this area indicate potential for solving
the complex problem of 3-D perception in an unstructured environment. To
emphasize the difficulties involved, a description of the registration process is
given in the next section.
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2.3. Registration of Multi Sensory Images

Consider a multi sensory robotic system whose operation involves the 3-D
perception of its workspace environment. The problem involves integration of
information derived from: i) multiple video images and/or ii) multiple data sets
where each data set is derived from a different sensor.

Let ®,(X;t) and ®2(X;t) be two distinctly different characteristics of the
scene that are measured in a multi sensory system by twosensors fi(.) and fa(.),
respectively. Also, let the two measurements fi (), f2(p) be made available in
two entirely different domains IT and R respectively. It is required to register
the images by identifying the intrinsic relationship between these spaces so that
the measured signals can be grouped easily. The complexity of the registration
is determined by the nature of the X — II and X — R mappings each of
which may be many to one and non invertible in the worst case.

Consider a point @/; € IT. Let f; and f> be a pair of intensity (video) and
thermal (infrared) images. Then registration identifies a point ®/; € R that
corresponds to the given point x/;, so that the observed image-intensity values
fi(zry) and fa(wty) may be grouped in the perception process. The points @/
and x/9 are said to form registration or point correspondence, if they indeed
represent the same physical point located in the scene. The example deserves
a further comment in that both X — x/; and X — w®/5 are many fo one and
noninvertible. Therefore, given a point &y € IT and a point x/s € R it is not
possible to uniquely determine X; hence, there is no direct procedure test if
they form a registered pair. It is sufficient that at least one of the spaces II or
R be invertible.

When the overall objective is to monitor the workspace, one can assume
specific geometric knowledge (to a certain extent) of the workspace. Then, at
least in principle, for every point X in the workspace one may first compute its
location in each image (or sensor domain) and then aggregate the information
across many sensors. That is, for every X in the workspace, first compute
X — =z and X — 2/ and then use fy(x/;) and fa(xfy) for fusion. Such
applications are said to operate in a structured environment in that the 3-
D structure of the objects and the position as well as the orientation of the
cameras in the scene are known a priori.

Real world applications, however, are more complicated. Most systems,
in fact, are required to operate in unstructured environments where the 3-D
geometrical (spatial) structure can not be assumed explicitly ¢ priori. The
processes of registration, recognition, as well as localization tasks are indirectly
related. The necessary condition for registration is that: at least one of the
sensors, say fi(.), must have a one 10 one and invertible mapping X — x/; which
permits to compute xf; — X uniquely. The registration is further complicated
due to the discretization of the II, R, - -, spaces as a result of the sampling
process.
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Figure 1. A simple perspective imaging system with its
origin located at p.

2.3.1.  Loss of Depth in Perspective Imaging

The intrinsic geometric model of an intensity camera is illustrated in Fig-
ure 1. Xy, (X,Y,Z); and/ or (X1,Y;,Z) are used to represent the position
(Xr1,Y1,Z1) of an arbitrary point X measured with respect to the camera coor-
dinate system I. In general, the intensity camera projects a certain point X lo-
cated on the surface of an opaque object onto an image point &y = (z,y,z = Hir
located on the image plane. The image plane is uniquely determined by the
focal length f of the camera, and satisfies the equality Z; = f. An irreversible
loss of depth information is introduced by the underlying perspective projection
expressed as:

x X
y| =[P]|Y (1
1 Z1;

where,

P= with, A= -Z-fi and A>1 (2)

D O>~
O O
MO O

That is, both X; and aXj, where a # 0, result in the same image point.
Therefore, (1) is noninvertible in that given X; one can determine z; but
not the opposite. However, given a point @7 on the intensity image, X is
constrained to a line (of points) passing through the focal point (0,0,0); and
the image point (z,y,2 = f)r.
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Given the absolute position X of a point (with respect to the world coor-
dinate system), both X; and hence = are described as follows:

Xr X
Y| _ Y
1 1
where,
—a,; ay a; ——aT.p-
Bz ,By B. _:BT'p
T= . r (3d)
Yz Yy Yz . -y .p
L0 0 o0 1

o, 3,+ = direction cosines of the camera’s X,Y and Z axes,

p = vector position of the origin of the camera coordinate system.

The matrix T'is uniquely characterized by six parameters, and is always
invertible. These parameters are easily calculated when the camera position
and orientation are known; also, in principle, these parameters can be exper-
imentally estimated by some calibration techniques. From equations (1), (2)
and (3) it follows that:

X Azy Az
Y — -t | A = 7! ! 4
7 - [ ] /\f = [ ] I O ( )
1 1 1

Thus, the absolute position X of a point is constrained to a line by its image
.

2.3.2.  Recovery of Depth from Stereo Images

Consider a multi sensory system consisting of two intensity cameras, called
L and R. These cameras will also be referred to as left and right cameras re-
spectively. The objective is to extract the depth of the observed object points
by using the left and right images. The notations, X, (X,Y,Z2) and/or
(XL,YL,ZL) are used to represent the position (Xr,Yz, Zy) of an arbitrary
point X measured with respect to the coordinate system L. Let the focal
length of the left camera L be fr, and the image of a point X, be defined by
L in a manner consistent with previous definitions. Similar definitions hold
for the right camera R. Let X be an object point whose image is at g and
zr from the right and left images respectively. The points £z and zp form a
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registered pair or a point correspondence. From (4) it is concluded that:

X )\Rl'R /\L.’L'L

Y -1 | Aryr —1 ] Atyr

z TR Anfn L Py ®
1 1 1

where both Ag and Ar are unknown, positive real numbers greater than unity.
By equating the corresponding entries, three equations (6) in the two unknowns
are obtained and solved uniquely for Ag and/or AL hence the absolute position
of the object point X. The equations for this process are:

TRAR — (rnzr + rioyr + risfrL)AL =tz

YRAR — (ro12p + r22yr + raafL)A =ty (6)
JRAR — (ra12L + r32yr + rasfL)Ap = ¢,

where,
i1 riz riz i
F -1 _ [T21 T2z Tz iy
[T] - [TR] [TL] - r3y T3z 7raz 1 (7)

0 0 0 1
When 21 and zg are known, the depth of X can be computed by solving (7)
for A\ as:
frty — TR,

Ar =
L (ra1zr +raeyr + rasfr)zr — (ruizr + rioyr + rafL) fr

(8)

2.8.3.  Registration of Stereo Images

The major problem in stereo vision is with establishing the point correspon-
dence, i.e., identification of the pairs #1 and zg. A large number of these pairs
are required to compute a densely sampled depth image of the 3-D workspace.

Consider a problem instance where zp is known and it is required to
uniquely determine the corresponding point xg. Further inspection of (6) re-
veals that there are three equations in four unknowns, namely zg, yg, Ag and
AL. Ifeither Ap or Ag is known, then one could solve for zr. However, the very
objective is to compute Ay and/or Ag. Eliminating Af, and Ag in (6) results in
[14]:

€11 €12 €13 TL
(xR, YR, frR) | €21 €22 €23 yr | =0 (9)
€31 €3y €33 fr
where:
e11 = (rait; — raity) e12 =(raat, — rasty) e13 =(ra3t, — rasty)
ear = (ratty — riat;) e22 =(raaty — r12t;) eas =(rasty — riat;) (10)

es1 = (rnty — rats) e3z =(riaty — roaty) e33 =(riaty — rasty)
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The interpretation of (9) is that, given x; the expected value of zg is con-
strained to a line. Thus, given a pair of points, one can test if they form a
point correspondence. Different values of ¢ generate distinctly different lines.
All of these lines pass through a same point in the (z,y, z = f)r plane. These
lines are called epipolar lines and they all concur at a point called epicenter.
The epicenter is actually the image of X; = 0 imaged on the image plane of
the camera R. It is not possible to identify the desired z even though T and
s are known. Additional information is necessary to uniquely determine the
corresponding point g when , is given.

2.3.4. Registration in Structured Environments

It is instructive to examine if the problem may be simplified in structured
environments. When the parametric form of the surface is known one gets
an additional constraint to solve, the equation (9). It can be shown that the
problem is still complex in that the knowledge is insufficient even when the
structure (orientation) is fully known.

To prove the statement assume that the object point is located on a planar
surface. The objective is to solve for zr,yr when (zr,yr, fr) is known. First,
the equation of the plane is expressed conveniently in the form:

Z=-pX —qY —s (11)

where (p, ¢) uniquely define the orientation of the planar face of the object
and s is a parameter that fixes (uniquely) the object face. Let (pr,qr,sL)
and (pr, ¢r, sr) describe the plane uniquely with respect to the cameras L and
R. Actually (p,q,s)r may be computed from (p, ¢, s); and T By substituting
X = Az, in (11) we get:

SL
AL = — 12
k (prer +qryr + fr) (12)

From (11), (12) and (6) one could show that s, is required to uniquely determine
zg from xy. That is, pr,qr and sp must all be known to uniquely compute
zp. In effect, we require that the 3-D location and orientation of the planar
face be known a priori. However, the very objective of the stereo vision system
is to locate the object. It is permissible to assume only (p,q) as known and
not s. Thus it is clear that zg and yr can not be determined uniquely, in the
absence of Ap and Ag.

2.3.5.  Registration in Unstiructured Environments

If the underlying problem is the recovery of 3-D shape of an unstructured
scene, the point correspondence has to be established by clues that do not in
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anyway restrict the geometrical shape or state of the scene, for example color
or spatial signatures.

One practical approach is to extract a number of candidate points &g
and €7 from the (Z = f)r and (Z = f); image planes respectively, where
the observed image indicates distinct features. Then, for each point in &g, its
potential match is expected (most likely) to be present in £ . Certain correlation
operators may be applied to evaluate the likelihood of a match.

It is clear, that we are confronted with a fundamental issue in that, 1) we
need 3-D position of the object point in order to extract the point correspon-
dence; 2) the very objective of establishing point correspondence is to extract
the 3-D position of these points.

2.3.6. Registration of Two Image Sequences

Temporal variations in an image sequence are isotropic features that are
easily measured and processed. In principle, it is possible to extract the time
varying nature of intensity at each pixel in each image sequence, and be able
to assign the pixels to one of many classes. For each pixel with a particular
temporal signature in a particular sequence, one could expect its corresponding
pixel in the other image sequences to indicate the same. Hence the potential
match can be found using a finite search. The only requirement is that the
object must move in space and time and/or the scene must be dynamic in
nature.

Recovery of 3-D motion and orientation of objects from an image sequence
is a problem that has gained attention in the past decade [13]. Several ap-
proaches have been proposed to recover both the shape and orientation of the
objects in addition to recovering the motion parameters, T. The derivation of
(9) is taken from the point correspondence approach due to [14]. The method
relies on external aid to establish the point correspondence. A line correspon-
dence approach due to [17] indicates some improvement, nonetheless we are
confronted with identifying lines in both images that correspond to each other.
The method may not be suitable for scenes where polyhedral objects are least
likely. A region-based region-correspondence approach developed in [13] reduces
the burden in establishing the correspondence. However, the method is appli-
cable to planar faced objects only. All of these methods can be utilized fully,
if the temporal signatures were taken into account for establishing the match
first, and then the recovery of the motion parameters of the objects next. These
techniques were primarily developed for monocular image sequences, and are
easily applied to provide registered stereo image sequences.
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2.4. Sensor Fusion between Range and Intensity
Images

Several sensors are used to constantly monitor the environment in order
to detect and respond to the dynamic changes in the scene. These sensors
measure different characteristics of the workspace and provide information of
complementary nature. Availability of range and intensity images has been
shown to simplify certain robotic tasks [18]. However, there is a bottleneck in
these applications with image registration [16,19]. The resolution, sensitivity,
mechanical characteristics and dynamic range of each sensor vary considerably
from that of the other sensors. Such variations in the resolution make it dif-
ficult to establish registration and thus restrict potential applications. In the
limiting case all of the sensors are considered to be identical in that all sen-
sors are intensity cameras or range cameras. A multi sensory system should
include at least one sensor of each type. The objective behind fusing informa-
tion from multisensory images is to achieve a 3-D perception of complex scenes
[4]. The complexity of the recognition task is directly influenced by real-time
performance requirements and the degree to which the workspace is kept free
of foreign objects.

3. SENSOR FUSION: A HYBRID RANGE-
INTENSITY SENSOR

The design of a low cost, hybrid range-intensity sensor is described in this
section. It is expected to promote significantly the implementation of sensor
fusion and contribute to the advancement of research in this area. The $alient
features of the sensor include: 1) low-cost, ii) reliability and less sensitivity
to the misalignment of moving parts, and, iii) VLSI implementation. The
sensor offers siz different operational modes to provide: i) two (binocular)
intensity images, ii) two (binocular) range images observed from two vantage
points, iii) registered pairs of range and intensity images, iv) binocular intensity
image sequences; v) binocular range image sequences, and. vi) multi sensor,
multiview image sequences respectively.

In one mode of operation the sensor is viewed as a pair of intensity cameras
operating under a stereoscopic configuration. When the scene is completely
structured, this mode facilitates the use of dedicated, inexpensive intensity-
based image processing hardware. In the second mode, the system operates
as a range-intensity sensor, and delivers two range image sequences and two
intensity image sequences.

The range and intensity sensor offers the following advantages: i) easily
alterable camera /sensor parameters with extended dynamic range to support
introspective vision, ii) registered pairs of intensity and range images with accu-
racies that are of the same order, iii) fast acquisition times including real-time
embedded control algorithms to facilitate the use of this sensor in closed loop
applications, iv) less sensitivity to positioning errors, easy calibration as well as
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linearization, and/or compensation of spatial disorders, and, v) partial imple-
mentation of steps iii) and iv) in VLSI.

The specific design details pertaining to a prototype sensor involving two
cameras, as well the design of a VLSI based Radon Transform Processor are
now explained in detail.

3.1. The Principle of Operation

The basic structure of the hybrid sensor is illustrated in Figure 2. The
sensor consists of four major components:

i) A pair of video cameras that can monitor the scene under existing lighting
conditions.

ii) A laser beam-spreader that generates and steers (deflects) a planar sheet
of laser-beam as shown in Figure 2. When the laser beam is made incident
on the object surface it generates a contour which is referred to as laser
induced contour (LIC). The geometric nature of the LIC is a function of
the surface parameters. LIC is a straight line for planar surfaces and it is
a conic for quadratic surfaces.

iii) Control and coordination system to position these two cameras in a desired
geometrical relationship.

iv) Hardware components to extract the laser induced contours (LIC) in each
image to calculate /identify point correspondence of the points located on
these LICs and to recover the depth image from these corresponding points.

The design of the proposed sensor takes advantage of the stereopsis between
the cameras to recover a registered pair of intensity and depth images. The
registration problem is trivially solved by extracting the LICs from each image
and making use of (9). Given a point 1, on the LIC observed in the left image,
it is clear that its corresponding point must satisfy (9) and must be also located
on the LIC extracted from the right image. The orientation of the plane of laser
sheet is not required since the sensor operation does not use that information.

3.2. Image Registration in Real Time

In real applications this results in attractive hardware solutions. For the
y*" row in the left image one may first find the position of the point at which the
LIC intersects that row, by fitting a gaussian. A patented algorithm involving
two fast adders and one multiplier/divider has been used in [20]. Given the
value of (z,y, ), there may be a digital differential analyzer (DDA) that will
generate a set of points in the second image (i.e., right image plane) located
on the line defined by (9) to facilitate a search for the point where this line

th
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Figure 2. The functional components of the Range-Intensity Sensor in a
object recognition application.

intersects the image of the LIC. The line is in fact determined by the values
of each (z,y, f)r and the Trr parameters as given in (9). Exactly one DDA
is required to identify each point correspondence. It is known that each DDA
would detect exactly one match, within a finite amount of time. A set of DDAs
operating in parallel may be designed making a VLSI solution feasible. In fact,
exactly Ny number of DDAs will be required, where N is the number of raster
lines derived from the left camera. For commercially available cameras this
number varies from 480 to 625 considering NTSC and PAL systems as extreme
cases.

The point (z,y, f)r in the left image is given at a subpixel accuracy since it
is computed based on moments[20]. The DDAs on the other hand generate the
line of search (within the right image plane) at the pixel resolution. One way to
handle this disparity is to fit a gaussian pattern along this line, too. The model
is justified since an oblique cross-section of gaussian hill is also a gaussian with
its centroid in place. Thus, an integration (or summation) operator is conducted
over the line of points generated by each DDA. This is in fact one component
of the radon transform of the right image. The general form of radon transform
is defined as follows:

R(p,ﬁ)://K(z,y,p,ﬁ)f(:c,y)&(:ccos&+ysin0—p)d:rdy (13)
zJy

where K is called a kernel function of the transformation, p and @ define a line
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and 6 1s the Kronecker function.

At any given instance, the parameters (p,6) that determine the line in
(13) are considered available through (9) and (10) since Ty g,z are known.
Hence, the line of integration is uniquely fixed by (z,y, f)r. The values (p,9)
which determine these families of lines on the right image plane may be precom-
puted and stored in a lookup table. The memory used to store p(z,y, f) and
0 (z,y, f) can be updated if the relative orientation is changed over time. Only
512 programmable radon-transform processors may be required. Although (13)
appears to contain multiplication, one can still use double adder mechanisms
for this specific application. The parallel operations of these radon transform
processors do however introduce interesting problems related to the memory
organization of the second image. A busy traffic (in terms of memory access)
is expected for pixels g that are closer to the epicenter in the right image
plane. The design of the parallel radon-transform processors must account for
the potentially simultaneous access to the gray level value stored at these pixels.

3.3. The Architecture of Sensor Controller

The architecture of the overall sensor is illustrated in Figure 3 for a con-
figuration containing two cameras. It is assumed that both of the cameras are
synchronized. A frame buffer is essentially a high speed random access memory
(RAM), which is scanned /accessed in a particular way. The processors are or-
ganized in a specific manner so that each processor can easily access the image
stored in the RAM of any other processor.

One of the video processors, say the primary L, includes a real-time mo-
ment computing circuit, capable of computing the first and second moments of
the pixel intensity values along each horizontal line of its image. The computed
moments are then processed to locate the point (z,y, f)r where LIC intersects
that line. Estimation of (z,y, f)1 based on the moments has to be performed
within 63us (assuming RS-170 standards) before the end of the next horizontal
scan. This point is then read by the central computer, which is then used to
initiate the search for corresponding points in the other video images.

The video processor of each secondary camera, for example R, contains a
set of Radon Transform Processor Elements (RPE). The RPEs facilitate the
search for the point (z,y, f)r located on the line defined by (9) where it in-
tersects the LIC. The estimation of (z,y, f)g is based on the first and second
moments computed along the line, similar to the process used in the estimation
of (z,y, f)r. At the end of each horizontal trace, exactly one radon processor
in each secondary video processor will be loaded with the necessary informa-
tion (p, f) to conduct the search for corresponding points. The exact values are
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Figure 3. The architecture of the range-intensity sensor.

computed by using the most recently extracted zr in (9) as follows:

ener + e1yr +e13ft
eanxr + exyr +eafr
ea1zr + e3zyr +easfL

p =
\/(611” + e12yL + e13fr)? + (ea12L + a2y + e2afr)’

# = arctan [
(14)

Computation of (14), and the initialization of necessary constants are to be
performed by the central controller; these operations are condensed into a block
called look up tables and scheduling in Figure 3.

It is desirable to operate all the RPEs to compute the radon transform
using maximum parallelism. Two fundamentally different scheduling strategies
may be considered for scheduling to facilitate the concurrent computation of
moments by all the RPEs. The first scheduling strategy is to activate each RPE
as soon as the necessary parameters have been downloaded. This implies that a
large number of loosely coupled RPEs computing moments along distinct lines,
with the pixel values being fetched (read only) from a shared memory. This
approach poses severe constraints on the design of the memory. The second
strategy is to operate the RPEs under a data parallel SIMD configuration with
no conflicts in memory access. The principle of this operation is as follows: the
contents of the RAM (image plane) will be traversed in a specific order and
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broadcast it to all the RPEs within that video processor; each RPE must then
test if the pixel lies on the line of its interest then capture accordingly both the
coordinates and the value of the pixel for computing the moments; the entire
operation takes O(n?) time for an image of n x n pixels.

The data parallel approach was chosen to suit the nature of the problem;
however, the video processors can also be used for computing general purpose
radon transforms. For a given LIC in space, that is for a fixed position of the
laser beam deflector, the total time taken for establishing all possible point
correspondence is expected to be an integral multiple of the time required to
traverse all the pixels. Consequently, the sweep rate of the cylindrical mirror is
determined by this time as well.

The programming model of the RPE chip, including the important sig-
nals is described in[21] The adders and comparators are implemented in bit
serial logic. Current projections indicate that at least 16 of these RPEs will be
integrated into one VLSI chip. Each VLSI chip will also include a pipelined mul-
tiplier, and a realtime serial to parallel interface transposer (SPINT) network,
to facilitate fast fixed-point multiplications. The proposed linearly connected,
RPE array is easily adapted for both forward and inverse Radon Transforma-
tion of general purpose kernels. For a detailed discussion, the reader is referred
to [21} and [22].

4. CONCLUSION

The proposed sensor significantly reduces, if not eliminates, the problem of
registering two or more images of a scene viewed from different vantage points.
No explicit assumption was made about the object surfaces. The result is a
simple, robust sensor capable of recording multiview video images, and densely
sampled range (depth) scene images. Each video camera in the sensor provides
a video image sequence over time. Thus, the sensor facilitates the application of
dynamic scene analysis, such as the recovery of 3-D motion parameters, shape
as well as object orientation. In particular, this is very useful in autonomous
land vehicles.

Traditionally there are two ways of perceiving a scene. The first is to
get a number of images from many different vantage points. Any conclusion
reached from these images is said to follow spatial clues. There is evidence in
human perception that spatial cues play an important role in perceiving static
scenes. The mechanism assumes that extreme conditions in the images represent
extreme conditions in the scene. The success depends on the structure of the
scene. Spatial inference is made possible if the objects are rich in features.

The second approach to perceiving a scene is called temporal surveillance,
in which the aggregation is somewhat spatio(local)-temporal. A hypothesis of
the spatial configuration of the scene is then formed based on how the local
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evidence (temporal information) vary (spatially) between the images. This is
called time-aperture of the sensing phase. No initial knowledge is necessary
except that one has to rely on the mobility of the subjects within the field
of view. This corresponds to unstructured dynamic environment. The stereo
image sequences derived from the sensor facilitate such analysis.

The proposed sensor is expected to ease the barriers for research in sensor
fusion, and integration of spatial and temporal scene analysis of unstructured
scenes. Adaptive intelligent systems, capable of operating (primarily) based on
model-based vision algorithms may now detect and gracefully switch the mode
into complex vision algorithms for unstructured environments. Insight gained
may further our knowledge of integrating multisensory, spatio-temporal image
sequences.

The present sensor may be applied in: 1) a mobile robotic system; 2) multi-
armed multisensory robots; 3) aerial sensors for reconnaissance. The VLSI
circuitry developed related to this sensor may be used in synthetic aperture
radar systems.

A multi sensory robotic system equipped with the proposed sensor will
have enhanced visual capabilities and will be able to recover from local failures
related not only to model based vision but also to changes within the dynamic
(unstructured) environment of operation.
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