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Abstract. Expert control is a paradigm for controllers with a higher
degree of automation than ordinary controllers. Such controllers perform
several tasks that are normally done by operators, process engineers,
and control engineers. The system is composed of ordinary algorithms
which are combined with a knowledge-based system that captures some
of the heuristics in design and operational practice. The chapter gives
an overview of expert control systems, the ideas they are based on and
how they are implemented. Expert control may be viewed as a natural
extension of conventional automation systems with controllers and relays
for logic and sequencing. An interesting fact is that many less-talked-
about features of conventional control systems, as well as some of the
unconventional control systems like fuzzy and neural control, fit into
the paradigm. It is thus possible to present these systems in a unified
framework.

1. INTRODUCTION

Practically all automation systems are intended to be used by humans.
There is a trend to increase the degree of automation of control systems
by including more and more of the functions performed by operators, pro-
cess engineers, and control engineers into the the control systems. Typical
examples are systems for autonomous vehicles, systems for industrial au-
tomation and process control systems with automatic tuning and adapta-
tion. There are several reasons for the increase in automation degree. It is
highly desirable to make systems easier to use. The knowledge about how
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to design, commission and operate systems is increasing significantly and
the computing power required for implementing more automated systems
is becoming cost effective. One consequence is that words like intelligent
sensors, intelligent actuators and intelligent systems are being used to
describe sensors, actuators and controllers with automatic calibration, di-
agnosis and automatic tuning. The purpose of this chapter is to describe
one paradigm that is used to obtain controllers with increased functional-
ity.

The field of automatic control has for a long time focused on algo-
rithms. To obtain flexible systems it is useful to add other elements like
logic, sequencing, reasoning and heuristics. Such features are found in
many conventional control systems, and to a much higher extent in adap-
tive control systems. In adaptive control it is attempted to automate mod-
eling and control system design. Modeling includes several features that
are difficult to describe by algorithms, like selection of model structure,
assessment of experimental conditions and model validation. Control sys-
tem design also includes steps that are difficult to describe by algorithms,
e.g., assessment of achievable performance, selection of appropriate design
methods, trade offs between different specifications, etc. Typical examples
are systems for autonomous vehicles, systems for industrial automation
and process control systems with automatic tuning and adaptation. In
implementation of systems it has been the experience that control algo-
rithms are often straightforward to implement but that heuristics is time
consuming to implement and validate. Expert control is one possibility to
obtain controllers with increased functionality.

Section 2 provides background by giving examples of algorithms and
heuristics in typical control system configurations. A knowledge-based
system is one way to describe heuristics. Such a description naturally
leads to the notion of an expert control system of the type proposed in [1],
which is a flexible architecture for combining real time algorithms and
logic. Such a system is described in Section 3. This leads to simplification
of conventional systems and makes it possible to obtain control systems
with new capabilities.

In Section 4 we go a little deeper into some issues that must be
considered when attempting to automate design and operation of simple
controllers. This provides the background for Section 5, which describes
some applications. Section 6 gives examples of implementation of expert
control systems.

2. ALGORITHMS AND HEURISTICS

Heuristics plays an important role in conventional control systems. It
shows up as logic around linear control algorithms that help them to work
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over wider operating ranges. Typical examples are anti-windup protection
and logic mode switches. Heuristics is also an important part of tuning
and commissioning procedures. A recent investigation of industrial con-
trol systems has revealed that the development and maintenance of the
heuristic part of a system require a large engineering effort. Some exam-
ples of heuristics will be given in this section. It will also be indicated that
the expert control paradigm is an excellent way to deal with heuristics.

2.1 Simple Controllers

Consider an ordinary PID controller. The small signal behaviour of a
system with such a controller can be understood very well from linear
analysis. To obtain a good PID regulator it is also necessary to consider
operator interfaces, operational issues like switching smoothly between
manual and automatic operation, transients due to parameter changes, the
effects of non-linear actuators, wind-up of the integral term, maximum and
minimum selectors, etc. An operational industrial PID regulator contains
heuristic logic that takes care of these issues. Although these heuristic
factors are of extreme importance for good controller performance they
have not attracted much interest from theoreticians. They are instead
hidden in practical designs and rarely discussed in the control theory
literature. One reason for this is that the theoretical analysis is quite
difficult, another is that many researchers are unaware of these issues.
Practically the heuristics shows up as if-then-else statements that are
intermingled with the ordinary control code.

There are systematic methods to design the linear control algorithms.
Similar methods for dealing with the heuristics are presently lacking, A
disadvantage with this is that it is often poorly understood and poorly
documented.

2.2 PLC and DDC

Industrial automation systems were traditionally composed of two cate-
gories of equipment, analog controllers for regulation, and relay systems
for interlocks, sequencing and logic. With these systems there was a sep-
aration between the control algorithms and the logic. The separation was
very strong, since the systems were also handled by different organiza-
tions. With the introduction of microprocessors analog controllers were
replaced with digital controllers (DDC) and the relays have been replaced
with programmable logic controllers (PLC). Since both systems are imple-
mented in the same technology using microprocessors, a natural merging
of the techniques of logic, sequencing and algorithms is occurring. DDC
systems thus commonly contain some PLC functions and vice versa. This
has created many interesting possibilities to make systems with increased
capabilities. For example, it is possible to process alarm signals to give
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Figure 2.1 Block diagram of an adaptive controller.

more meaningful information. It is also possible to provide the alarm sys-
tem with capabilities for inquiries.

Logic can be expressed very conveniently in terms of rules. The use
of an Al programming style admits system descriptions that are much
more compact than those normally used for PLCs. For example, it is
possible to have generic rules that apply to all processes of a certain
type, allowing significant simplification in programming, modifications,
and troubleshooting.

The merger of algorithms and logic is also noticeable for simple con-
trollers. A recent standard proposal for a PID controller has 256 different
modes. The reason for the large number of modes is that it is attempted
to cover all possible situations. A much smaller number of the modes will
be used in each specific application. An alternative implementation would
be to incorporate a small knowledge-based system in the controller that
admits easy customization.

2.3 Multivariable Controllers

Many multivariable control problems are solved by interconnecting simple
single-loop controllers. The problems with windup and mode switching are
much more difficult in this case. A systematic approach to anti-windup,
mode switches, and reconfiguration in case of faults for true multivariable
controllers is still only partially solved.

2.4 Adaptive Controllers

Adaptive systems is another example of a system which contains a mix-
ture of algorithms and logic. An adaptive controller has conventional al-
gorithms for digital control and algorithms for parameter estimation and
control design, see Figure 2.1. Since parameter estimation and control
design are performed autonomously, it is essential to provide several safe-
guards. First, it is necessary to make sure that occasional outliers do not
give rise to poor estimates. Forgetting of old data is another key issue.
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For adaptation it is necessary to discard old data, on the other hand it is
important not to discard old data if relevant new information is not re-
ceived. For example, very little information can be deduced from normal
steady state operations when outputs and control signals are constant. It
is also necessary to perform various validation procedures to ensure that
the models obtained are reasonable before passing them on to control de-
sign calculations. Many different ways have been suggested to cope with
the problems. Practically all schemes rely on heuristics, which are imple-
mented as supervisors or safety nets for the adaptive systems. These are
typically implemented as a collection of if-then-else statements that are
mixed with the algorithms.

3. THE EXPERT CONTROL PARADIGM

Development of a control system consists of the following activities: mod-
eling, identification, analysis, simulation, control law design, and imple-
mentation. It is fair to say that developments over the past 30 years have
had a drastic influence on identification, analysis and design. Implemen-
tation has also changed mainly, because digital systems are now replacing
analogue systems. The vigorous development of concepts and theory are
now having an impact on the practice of automatic control. This is accel-
erated by ideas like expert systems, fuzzy logic and neural networks. In
this section we will describe the idea of expert control.

3.1 Basic Ideas
The visionary goal of expert control is a controller

e that can satisfactorily control a large class of processes, which may be
time-varying, nonlinear, and exposed to a variety of disturbances;

¢ which requires minimal prior process knowledge;

e which can make intelligent use of available prior knowledge;

» where the user can enter specifications on the closed-loop performance
in qualitative terms, e.g. “as fast as possible”, “small overshoot”, etc.;

e that successively increases its knowledge about the process and im-
proves control performance accordingly;

* that performs diagnosis of the control performance and loop components
including detection of actuator and sensor problems;

* with an effective communication scheme where a user can get infor-
mation about things like process dynamics, statistics on control perfor-
mance, factors that limit the control performance, explanations for the
controllers current actions;

e where the underlying control knowledge and heuristics is stored trans-
parently in such a way that it can easily be examined, modified and
extended.
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Figure 3.1 Block diagram of an expert controller.

This definition of an expert controller is vague and unprecise. Elements
of expert control are, in fact, found in many conventional control systems.
There is, however, no existing system that has all features listed above.
A key element that is absent from most systems are questions that are
related to explicit knowledge representation.

It may also be questioned if it is possible to build a system with all the
features listed above. If the class of systems is restricted to single-input
single-output processes, which are open-loop stable, the goal is probably
not too far away. This will be discussed further in Section 4.

The way to reach the visionary goal can be metaphorically described
as an attempt to include an experienced control engineer in the control
loop and to provide him with a toolbox consisting of algorithms for control,
identification, measurement, monitoring, and control design.

A strong motivation for expert control is to reduce the engineering
effort in using feedback control. An expert controller thus supports several
of the functions that are traditionally performed by operators, process
engineers and control system specialists. The functions are either fully
automated or computer supported. An expert controller thus represents
a system with a higher degree of automation than an ordinary control
system.

A block diagram of an expert controller is shown in Figure 3.1. The
system consists of an ordinary feedback loop with a process and a con-
troller. There are, however, many other algorithms in the system apart
from the control algorithm. These algorithms perform parameter estima-
tion, control design, supervision, fault detection and diagnosis. There may
also be several alternative algorithms for the same task, e.g. several differ-
ent controllers. This is indicated by the different layers in the figure. For
example, the controller may be a simple PI controller or a more compli-
cated algorithm based on an observer and state feedback. There are also
algorithms for generating perturbation signals to excite the process. The
fault detection and diagnosis tasks are aimed at finding faults that are
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local to the control loop that the expert controller is part of. This differs
from the plant-wide approach to diagnosis taken by the majority of the
work in diagnosis, e.g., [2].

The algorithms are coordinated by an expert system, or a knowledge
based system, which decides what algorithm to use when. The knowledge-
based system also interacts with the operator. The system in Figure 3.1 is
very general, it contains the conventional adaptive control system shown
in Figure 1 as a special case. An advantage of the system is that it admits
a nice separation of algorithms and logic.

3.2 Expert Systems

An expert system consists of an explicit representation of the domain
knowledge for a certain application, in this case expert control. The knowl-
edge is usually a combination of pure rules-of-thumb heuristics and knowl-
edge based on a deeper, theoretical understanding of the problem.

The block labeled expert system in Figure 3.1 is composed of a data-
base, a rule base and an inference engine. It communicates with the
operator by a user interface. The database could simply be a list of strings
with statements like:

sl: Gain margin is 1.2
s2: Variation in pressure of vessel V576 unusually high.

Alternativerly the database could be represented as objects with attributes
defined in class definitions. Natural objects in the expert control domain
are control loops, numerical algorithms, models derived by the expert
system, etc.

The rule base consists of a collection of rules of the type

R1: If {premises] then {conclusions or actions]}

The premises are conditional expressions that operate on the contents of
the database. The conclusions add new information to the database. The
actions could be commands to the different algorithms, e.g.,

Al: Measure the amplitude margin of loop 52.

A2: Introduce perturbations to obtain better estimates of the transfer func-
tion in the range 0.5 to 2 rad/s.

A3: Change control law in loop 15 to PI control.

It is natural to group the rules into classes that are associated with differ-
ent algorithms and different tasks to be performed. It is very convenient
to have generic rules, i.e. rules that apply to classes of objects.

The inference engine is an algorithm that draws conclusions based on
the data and the rules. Several strategies can be used for this purpose.
The forward chaining strategy is data driven. Starting with premises
in the database, it generates conclusions by applying the rules until all
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possibilities are exhausted. Simultaneously it executes the corresponding
actions. This can also generate new conclusions. Backward chaining is
another strategy which is hypothesis driven. Starting with a statement
like, Reduce variations in the process output of loop 5, the strategy finds
rules that has this conclusion. It then chains all rules backwards from
conclusions until it find premises that support the desired conclusion or
finds a contradiction.

Expert systems usually have an explanation facility that explains how
a conclusion was obtained, or the reasoning that supported a hypothesis.
The user interface often has nice features like a syntax sensitive editor or
a natural language interface.

Expert systems are described in [3], [4] and [5]. They have been ap-
plied to a wide variety of problems with varying success. Some commonly
given criteria for success are that the problem is nontrivial and sufficiently
complex, that the problem can be solved by human experts and that ex-
perts are available. The control problems we are considering satisfy all of
these criteria.

Expert systems were originally developed to solve static problems, i.e.
situations where the premises do not change with time. The control prob-
lems we are considering are not static. A statement may, e.g., suddenly
switch from true to false because of a change in the physical system be-
ing controlled. Reasoning with time is a very complicated problem where
many theoretical problems are unresolved [6]. Some pragmatic approaches
are taken to deal with these issues. One method is to replace the dynamic
problem by a static problem by assuming that all premises hold over a
small sliding time-window. Another method is to keep track of the chain
of reasoning so that all conclusions drawn from a statement can be with-
drawn when the statement ceases to be true. It is also important that
conclusions are reached in a reasonable time. Since the time increases
rapidly with the number of rules, it is useful to structure the rules into
groups. It is also useful to focus the reasoning to a given set of rules.

3.3 Planning

Rules is the standard knowledge representation formalism in expert sys-
tems. Rules are also a natural way to to describe much of the logic that is
built around conventional control algorithms. However, rules are not very
well suited for problems that have a strong sequential element. Although
expert control is not dominated by sequential elements, some parts, e.g.
control design, are clearly sequential.

The sequential parts of the problem can be represented in different
ways. One approach is to combine the rules with a conventional procedural
programming language. This solution is adopted in the G2 expert system
shell. Another approach is to use sequential function chart formalisms,
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e.g. Grafcet, to structure the activation and deactivation of groups of rules.
Here a rule group can be seen as a knowledge source specialized on one
specific subproblem.

Both methods for representation sequences mentioned above have the
drawback that the sequential parts are fixed and must be supplied by the
developer of the expert controller. Planning is the automatic generation of
a sequence of actions that lead to a desired goal. One example is to find a
method to bring an oscillating system to a stable operation, another is to
move a system from one operating condition to another in a smooth way.
Planning has received a lot of attention from Al researchers. See, e.g.,
[7], and [8]. One possibility is to characterize each action by preconditions
and postconditions. The preconditions tell what is required to perform an
action and the postconditions describe possible situations after the action.
Many of the tasks required in expert control can be described as planning
problems.

4. KNOWLEDGE STRUCTURING

Domain knowledge is a key issue in expert control. In this section we
will illustrate acquisition of knowledge and reasoning by discussing a
single loop controller. Many issues can be illustrated in this way. Notice,
however, that there are also important issues, e.g. in diagnosis that
require a global view of the system, where the interaction of many loops
is considered.

Automation of control system design and operation should consider
the tasks of design, commissioning, normal operation and emergencies.
Control system design involves issues like control performance, modeling
and choice of control laws. Commissioning involves initialization, tuning,
trouble shooting and loop auditing. Normal operation involves supervision,
diagnosis and fault detection. To perform these tasks we have to represent
knowledge about

a) process dynamics
b) actuator saturation
¢) disturbances

e) specifications.

There is an interplay between several of these factors. Dynamics is, in
principle, no limitation for linear systems that are strictly positive real
(SPR) or with first- and second-order dynamics. For such systems the
speed of response is limited by measurement noise and actuator satura-
tions. Large pole excess and non-minimum phase dynamics, like time
delays and inverse response, impose severe limitations on the achievable
performance. It is thus essential to find methods to determine whether
the performance is limited by the dynamics or other factors. It is also
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essential to characterize the complexity of the dynamics, e.g. the presence
of oscillatory modes, the order of the dynamics, etc. For systems with dif-
ficult dynamics an attempt can be made to change the system so that the
dynamics becomes simpler. Time delays can be reduced by repositioning
sensors and actuators. Dynamics can be improved by replacing sensors
and actuators with devices having faster responses. An attempt to use
local feedback to make the dynamics simpler and more reproducible can
be made.

The disturbances include set point changes, load disturbances and
measurement noise. It is essential to find the ranges and the character of
these disturbances. The range of set point changes the required precision
in the controlled variable and the maximum loop gain indicate whether
proportional control is sufficient or integral action is needed. The magni-
tude of the error due to load disturbances depends on the amplitude and
frequency characteristics of the disturbance and of the loop gain.

Several actions could be contemplated with respect to the distur-
bances. They can be reduced at the source. Feedforward control can be
considered if there is a measurable signal, which is correlated with the dis-
turbance and appropriately located. Filtering can also be used to reduce
disturbances and possibly to reconstruct signals that can be modeled.

Measurement noise results in variations in the control signal. To-
gether with actuator saturation this limits the achievable regulator gain
and thus also the achievable bandwidth. If an actuator saturates because
of measurement noise and high gain, an attempt can be made to reduce the
gain, to reduce the disturbance level by filtering or to replace the actuator
with a more powerful device.

Model uncertainty is another limiting factor. It can be minimized to
some extent by having a high loop gain at those frequencies where the
uncertainty is large. To maintain a high loop gain, however, it is neces-
sary to know the phase reasonably well around the cross-over frequency.
Uncertainties in the time delay, which give very large phase uncertainties
at high frequencies, is a severe limitation on the achievable bandwidth.

Several of the issues discussed above pertain to selection and position-
ing of sensor and actuators, particularly their sizing and resolution. An
important task of an expert control system is also to assess if good design
choices have been made. Capabilities to help in auditing control systems
can therefore be very valuable. Useful knowledge for this purpose can be
derived by observing the operation of a control system. Investigation of
static process characteristics gives important information for this purpose.
It is also useful to have diagnosis systems that indicate if some component
of the control loop is degrading.
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4.1 Static Properties

Static input-output characteristics are an important system property,
which can be described simply as a function. This function gives the ranges
of the input and output signals and indicates the degree of non-linearity.
By observing the inputs and outputs of a system during stationary condi-
tions we can also derive useful information about the system.

Preconditions. To determine stationary characteristics it is necessary
to first have some criterion to decide that a system is in stationary op-
eration. In typical process control problems this means that we would
like to determine cases when there are set-point changes and large pro-
cess upsets. Since the set point is available, it is easy to find out when it
changes. It is also useful to have information about the time scale of the
process to know how long a set-point upset lasts. Load disturbances are
more difficult to determine, but criteria can be based on the magnitude
and frequency content of the signals. To obtain good data it is useful to
lowpass filter the signals. To do this properly it is necessary to know the
time scales of the closed-loop system.

Signal ranges. Observation of the signal ranges and calculation of sim-
ple statistics, e.g. mean value, variance, maximum and minimum devia-
tions, will tell if the actuators are properly sized and if sensors and actu-
ators have the proper resolution. If the variations are only a small part
of the signal span, it is an indication that a poor selection has been made.
It could, for example, be indicated that a system with parallel actuators,
one for large deviations and one for fine control, should be used.

The static input-output relation. If a detector for stationarity is avail-
able, it is simple to keep a statistic for the fraction of time that the system
is stationary. A simple case is, for example, to say that the conditions
are stationary if the set-point changes are sufficiently small. The static
input-output relation can then be obtained simply by logging the process
input and output. To obtain good data the signals should be filtered with
respect to the time scale of the closed loop. Curves like the ones shown
in Figure 4.1 are then obtained. From these curves it can be determined
whether the major variations in the output are due to set-point changes or
load disturbances, i.e., whether we are dealing with a servo problem or a
regulation problem. We have a servo problem if the experimental data give
a well-defined curve and a regulation problem if there is no definite rela-
tion between inputs and outputs. A simple statistic of the fraction of the
total time when there are set-point changes or transients due to set-point
changes is also a useful indicator. Of course, there are also systems which
are mixtures of servo and regulation problems. It may be useful to let the
operators participate in the assessment. For a regulation problem it may
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Figure 4.1 Examples of static input-output data logged during normal opera-
tion. The results shown in A, B and C indicate a pure servo problem. The results
in F indicate a pure regulation problem. Case D and E are mixed cases. Case B
indicates poor resolution of the sensor and case F indicates poor actuator sizing.

be useful to request the operator to look for candidates for feedforward
signals by looking for signals that are related to the control signal.

For a servo problem the variations in the static gain of a system
can also be determined. This gives a valuable indication of whether gain
scheduling is required. The static gain curve can also be used for diagnos-
tic purposes. Changes in the curve indicate changes in the process. By
comparing the slope of the static gain curve with the incremental process
gain measured during tuning or adaptation, we can also get indications
whether there is some hysteresis in the loop or not.

To perform the operations it is useful to represent signals in such a
way that statistical data over different time ranges are available. This
can be done as follows.

Basic signal processing. Let us assume that each signal is associated
with four numbers: mean, variance, maximum and minimum. These are
called the signal characteristics. Each signal is also associated with a
time scale T,. This can, for example, be the ultimate period of the control
loop associated with the signal. The characteristics of each signal are first
averaged over T,. The average is then stored in a ring buffer. Each time
the signal has circled the buffer, the mean buffer value is transferred to
another ring buffer, etc. The buffers are chosen so that they correspond to
intervals such as minute, hour, day, etc. The primary buffer can respond in
the primary loop. The others may conveniently be located at higher levels
in the system hierarchy. Wavelets are also convenient ways to represent
signals.
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4.2 Process Dynamics

This section attempts to characterize the process dynamics. We start with
crude characteristics and proceed to descriptions that require more details.

Qualitative features. The following are essential system features:

a) stable/unstable
b) monotone/oscillatory
¢) essential monotone, minimum phase

These features can be determined from simple experiments on the process.
The assessment can be made by a properly trained operator or by a neural
network. Some of the features may also be known from design data.
Experiments are required to make the assessment or to verify estimates
obtained from design data. Two methods, step response and frequency
response, are simple to apply and commonly used.

Step response. The step test is a simple experiment that yields useful
information about a dynamic system. The test is performed by having
the system in equilibrium with a constant input signal. The input signal
is then suddenly changed to a new value and the response is recorded.
A visual inspection of the step response gives the crude classification
discussed above.

A characterization of the step response can be made in terms of a
time delay L and the maximum slope, a, of the step response. These
parameters are the ones used in Ziegler—Nichols tuning rules.

For processes that are stable with monotone or essentially monotone
step responses it is possible to determine three parameters: process gain
ky, apparent dead time L and apparent time constant T. For processes
with oscillatory step responses it is possible to determine the period T,
and damping d of the oscillation.

Frequency response. Frequency response is another simple way to
characterize the dynamics. It is of particular interest to note that the
intersection of the Nyquist curve with the coordinate axes can be deter-
mined from simple experiments with relay feedback. A crude classification
of the dynamics can also be made from features of the Nyquist curve.

Ultimate gain and ultimate period. The intersection of the frequency
response with the negative real axis is of particular interest. It can be de-
scribed with the parameters kg0 and wis0. The equivalent parameters
ky = 1/kigo and T, = 27/ w1s0, called ultimate gain and ultimate period,
are sometimes used for historical reasons. The parameters can be deter-
mined approximately by applying relay feedback to the process. The period
of the limit cycle obtained is the ultimate period (7,) and the process gain
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is approximately given by
k1go = ﬂam/ 4d

where a,, is the amplitude of the limit cycle and d is the relay amplitude.
Knowledge of T, and kjgo is sufficient for crude design of a PID
regulator. If an additional parameter, e.g. k,, is known, it is also possible
to improve the tuning and to assess the suitable regulator type, see [9].
The characterization of the Nyquist curve can be gradually refined by
including more points such as kgo, @go, k270 and wz70. The parameters
koo and weo can be determined by relay feedback, where the process is
cascaded with an integrator. Since an integrator has a phase lag of 90°, the
closed-loop system with ideal relay feedback will oscillate at a frequency
close to wgo. The process gain at that frequency is approximately given by

kgo = na,,.a)go/4d
where d is the relay amplitude and a,, is the amplitude of the relay

oscillation. A more accurate estimate is obtained by Fourier analysis.

Mathematical models. A complete mathematical model is a well-known
representation of the dynamics. Simple cases that are common in process
control are

e—sL
G(S) = kp -im{ (4.1)
and
e—sL
Gls) = b s(1+sT) (4.2)

More elaborate models are, of course, also possible. When specifying mod-
els it is also desirable to give a validity region. When detailed specifi-
cations are given, control theory can be used. Models can be determined
using system identification methods. Notice that there are simple methods
to determine model (4.1) from a relay experiment.

System identification techniques can be used to obtain more compli-
cated models. Notice that there is a significant advantage to have a crude
model to plan the experiments and to choose appropriate excitation sig-
nals.

Levels of knowledge about the process. When developing a knowledge-
based system it is useful to define different levels of process knowledge.
The following classification is useful:

Level 0 Qualitative characterization

Level 1 Level 0 and a and L or kg and wiso
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Level 2 Level 1 and &,

Level 3 Level 2 and more points on Nyquist curve, possibly with uncer-
tainty regions

Level 4 Complete mathematical model with uncertainty regions

Level 4A Process with known dynamics that is SPR or of first or second
order with known model.

4.3 Disturbances
Disturbances are important aspects of a control problem. In some cases
the disturbances are key factors in control system design. The trade-
off between rejection of load disturbances and measurement noise is a
key question. Unfortunately, there are no simple rules, like the Ziegler—
Nichols rules, to find a controller that makes this trade-off. In simple
controllers it is often the nature of the disturbances that determines if
derivative action should be used.

It is important to know the origin of the disturbances, i.e., whether
they are due to measurement noise, load disturbances, set point changes
or parameter variations.

Qualitative classification. Disturbances can be classified as transient,
stationary or a combination. The transient disturbances are occasional
upsets such as steps, pulses, ramps and drift. The stationary disturbances
can be periodic, narrow-band or wide-band.

Quantitative description. To describe disturbances quantitatively, it is
necessary to give both their amplitude and time characteristics. A simple
description of the amplitude distribution can be given in terms of mean,
variance, maximum and minimum. A more elaborate description is to give
the amplitude distribution.

Time variations can be described in many ways, e.g. as a spectral
distribution or in terms of a filter. Crude properties of the filter, e.g. time
constants or frequencies, can also be used. To make a useful assessment it
is necessary to know the disturbance levels below and above the bandwidth
of the system. This means that it is necessary to know the time scale
for a proper classification. For simplicity we label the high-frequency
disturbances as measurement noise and the rest as load disturbances.

If a PID controller has been found it is possible to make a simple
assessment of the high-frequency measurement noise simply by measuring
the mean square value of the derivative part. Similarly the need for
additional filtering can be estimated by also measuring the mean squared
value of a low-pass filtered version of the derivative term.

Levels of knowledge about disturbances. Different levels of knowl-
edge of disturbances can be summarized as follows:
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Level 0 Qualitative knowledge

Level 1 Level 0 and magnitudes of measurement noise and load distur-
bances

Level 2 Level 1 and time constants associated with the disturbances
Level 3 Mathematical models of disturbances.

Knowledge of the type discussed in this section is easily encoded by simple
rules and algorithms.

5. EXAMPLES

In this section we will give examples of how the expert control paradigm
fits different types of feedback systems. The algorithms and the heuristics
used will be described briefly.

5.1 Single Loop Controllers

Simple process controllers of the PID type are currently going through
an interesting development. Features like automatic tuning, adaptation
and gain scheduling are currently being incorporated even in single-loop
controllers. To achieve this, it is necessary to automate modeling as well
as control design. Modeling has been automated both by conventional
system identification methods [10], [11], [12], [13], and with heuristical
approaches based on pattern recognition [14], [15], [16], [17] and [18]. A
controller that combines an expert system with a neural net is discussed
in [19], see also [20]. Control design has also been automated using
both algorithmic and heuristic methods. The traditional way of tuning
controllers is often based on heuristic rules of the Ziegler—Nichols type
[21]. Recently there have been significant efforts to improve and extend
these methods. See [16], [9], [22].

A result of this development is that the instrument engineers now
have algorithms that will help them tune the controller or will even tune
the controller automatically. An interesting side effect is that it has also
made gain scheduling easy to use. It is straightforward to generate a gain
schedule semi-automatically by using an auto-tuner.

Many of the design choices in existing systems are restricted by the
computational power that was economically feasible. With the current
rate of increase of computational power and techniques, that have already
been proven in laboratory tests, one can extrapolate the characteristics
of future controllers. Natural next steps are to include diagnostics and
loop auditing [28]. With such features we can talk about autonomous
controllers. When such a controller is connected to an unknown process,
it will explore the features of the process and the disturbances to decide
upon a suitable controller structure and perform the control functions. A
system may have the following key components for analysis of the process.
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Static Analyzer

Transient Response Analyzer
Relay Feedback Analyzer
Frequency Response Analyzer
Parameter Estimator

Noise Analyzer

The static analyzer gives the relation between the process inputs and out-
puts in steady state. It tells if the relation is linear or essentially nonlinear.
It also gives an indication if the primary function of the feedback loop is
regulation or servo following, see [24].

The transient response analyzer investigates the transient responses
both passively, when there are natural disturbances, and actively by intro-
ducing perturbations. The analyzer determines the period and the damp-
ing of the dominant mode, static gain, settling time, rise time, ete.

The relay feedback analyzer determines the frequency @0 where the
system has 180° phase lag and the gain kg0 at that frequency. When ap-
plied to an open-loop system this data can be used to determine parameters
of a PID controller, see [10]. When applied to a closed-loop system with
error feedback, relay feedback can be used to determine the amplitude
margin. Simple calculations show that this is given by

_ 1+k180

m =

kiso
where kg0 is the gain obtained from the relay analyzer.

The frequency response analyzer determines the frequency response
of a system by active perturbation. This is useful in order to determine
dynamics accurately. The parameter estimator determines a parametric
model of the system and the noise analyzer characterizes the disturbances
acting on the system.

Control design can be based on two subsystems:

— Controller Assessment
— Control Design

The controller assessment determines the structure of a controller that
will satisfy the specifications based on data obtained from the analysis and
interaction with the operator. Different ways of doing this are discussed
in [24]. Several control designs may be used depending on the control
algorithm. For PID control there are essentially two types of algorithms
that are used. One gives suggestions for modification of the controller
parameters based on features obtained from the process analyzers. This
is often expressed in terms of rules, see [16] and [15]. The other type of
algorithms gives the controller parameters directly as functions of data
obtained from the process analyzers, see [10], [22], [9]. In spite of all
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work that has been done it appears, however, that good simple tuning
rules for PID controllers that cover the full range of interesting processes
and operating conditions are still missing.

When the system is running it is useful to have various monitoring
routines like:

Stability Assessment
Performance Assessment
Actuator Monitor

The stability assessment monitors the stability margins continuously. This
can be done passively by tracking the loop transfer function at a few
frequencies as is discussed in [11] and [12]. The performance monitor
measures means, variances, max and mean of the control signal and the
error. Actuators like valves are critical components in many cases. The
actuator monitor determines if the actuator deteriorates by determining
backlash and hysteresis.

Several of the ideas discussed above have been implemented in ex-
isting industrial controllers although in a limited form. Tuners for PID
controllers have been implemented as expert systems [15] and [25]. Su-
pervision is a task that is conveniently implemented as an expert system,
see [26], [27], [28), [29], [30]. Applications of expert control are found in
[31], [32], and [33]. Another interesting application is described in [34]
and [35]. In this application an expert system is used to reconfigure and
redesign a flight control in case of damages to the airframe. Testing and
validation of rule-based systems is a difficult task. An attempt to do this
is described in [36].

5.2 Fuzzy Control

Fuzzy control {37}, [38], [39], and [40] is conceptually quite different from
expert control. In expert control it is attempted to determine and refine
as much knowledge as possible about the feedback loop. The goal of fuzzy
control is instead to find a framework to deal with imprecision and to
design controllers based on inaccurate knowledge of a system. In spite
of this there is a strong similarity between the structure of fuzzy and
expert controllers. To see this consider the block diagram of a fuzzy
controller in Figure 5.1. The sensor signals are converted to linguistic
variables characterized by their membership functions. This process called
fuzzification, is equivalent to a quantization of the signals. The number
of quantization levels are typically small, three to seven. A fuzzy control
law may be viewed as a state feedback that gives a representation of the
control signal as a fuzzy variable in terms of the state where it is assumed
that all state variables are available as linguistic variables. For example a
control law where the state variables, in terms of the error (e) and its rate
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Figure 5.1 A fuzzy controller.

of change (v), are available as linguistic variables N (negative), Z (zero)
and P (positive) and the control signal is also quantized in three levels. A
fuzzy control law can then be expressed by the three rules

If (enot N and v P) or (e P and v Z) then u N
If (e and v Z) or (e and v of opposite sign) then u Z
If (e not P and v N) or (e N and vZ) thenu P

which gives the conditions for the linguistic variable that represents the
control signal to be negative, zero or positive. The fuzzy control law gives
the control signal as a linguistic variable. The linguistic variable is then
mapped into a real number by an operation called “defuzzification”. This
corresponds to taking the mean or the median of the membership function
of the variable.

The fuzzy controller described above may be regarded as a nonlinear
PD controller. Sometimes the controller computes the change in the control
variable. This means that the controller would be a nonlinear PI controller.

The control law described can be implemented as an expert control
system of the type shown in Figure 3.1. Doing so we find that the fuzzy
controller has two algorithms, one for fuzzification and one defuzzification.
The heuristics is captured by a few rules of the if-then-else type. This
shows that the system configuration in Figure 3.1 is quite flexible.

6. IMPLEMENTATION

Several experimental expert control systems have been implemented. It
was shown in [41] that a blackboard system is a convenient architecture.
A detailed description of an implementation is given in [41]. Alternative
implementations are also found in [42] and [43]. Comparisons between
different tools for implementing such systems are given in [44] and [45].



182 INTELLIGENT AND AUTONOMOUS CONTROL

6.1 Distributed control systems

There is a substantial activity in the process industry aimed at investigat-
ing the potential of combining distributed control systems and knowledge-
based systems. The majority of the work is focussed on supervisory ap-
plications, e.g. alarm analysis, process monitoring, and diagnosis. The
systems are typically used as operator assistants. Use of knowledge-based
systems for plant wide control is outlined in [46].

A number of commercial real-time knowledge-based system tools have
been developed. The most widely used and most sophisticated system is G2
developed by Gensym Corporation [47], [48]. Other examples are RTWorks
from Talarian Corporation, RTAC from Mitech, Cogsys from Cogsys Ltd,
Muse from Cambridge Consultants, and Chronos from Sagem. Systems
of this kind are usually used as an add-on on top of existing distributed
control systems. For example, interfaces to G2 have been developed for
the major distributed control systems (ABB, Alan Bradley, Fisher Controls
International, Honeywell, Taylor, Yokogawa).

A problem with the real-time knowledge-based system above is that
they are only loosely interfaced to the distributed control systems. This
can potentially create problems with multiple operator consoles, commu-
nication bottlenecks, and data duplication. As a response to this several
system vendors have developed their own tools. Bailey Controls have de-
veloped Expert 90, a small rule-based software module that can be embed-
ded in their distributed control system [49]. Honeywell have developed
TDC 3000 Expert, an on-line monitoring system that provides its operator
output on the standard operator console. Interesting views on integrat-
ing knowledge-based systems into distributed control systems are given in
[60], [51], and [52].

It is quite clear that many of the existing real-time knowledge-based
system tools have the functionality that is required for expert control
applications. It is also clear that, due to their size, it is not realistic to
embed them in stand-alone controllers. However, in a distributed control
system it is quite feasible to let an integrated real-time knowledge-based
system take care of the tuning and monitoring of several control loops,
either decoupled or coupled.

Related works. Several works have been reported concerning different
aspects of expert control. A complete approach to the whole problem is,
however, still missing. Two areas, where most work has been done, deal
with automatic tuning of fixed, typically PID, controllers and supervision
of adaptive controllers. The work done also differs with respect to the
usage of expert system techniques. One approach concentrates on the
development of good control heuristics, often expressed in terms of if-
then-else rules, which then are implemented with standard programming
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techniques. Another approach also uses expert system techniques in the
implementation.

An example of a system focused on control heuristics but implemented
with conventional techniques is the Foxboro EXACT [14], [15]. EXACT is
a performance adaptive PID controller based on pattern identification of
transients in the control error caused by load disturbances or set-point
changes. Heuristics and theoretical knowledge is used to adjust the PID
parameters to achieve desired damping and overshoot. Similar work is
reported in [53]. Heuristic rules for supervision of adaptive controllers
are described in [29] and [25]. In the following examples expert system
techniques are also used in the implementation. The paper [54] describes
an expert system based tuner for PI controllers based on step-response
analysis. The process is classified according to its qualitative transient-
response characteristics, e.g. monotone, oscillatory, no overshoot, medium
delay, etc., for both the open- and closed-loop case. The parameters in a
PI controller are then adjusted by heuristic tuning rules for each process
class.

Sanoff and Wellstead have combined a rule-based expert system with
a self-tuning regulator [55]. The system consists of two parts, one off-line
configuration system that determines the parameter settings and one run-
time system that monitors the control. In [34], Expert System Adaptive
Control (ESAC) is described. The system consists of a self-tuning regu-
lator augmented with three different expert system modules: the system
identifier, the control system designer and the control implementation su-
pervisor. A real-time version of the system has not been implemented.

Several off-line consultation tools for controller tuning exist. A system
for choosing the parameter settings of an adaptive controller has been
implemented by [56] Off-line expert systems for tuning of PID controllers
also exist [25] and [57].

The above examples all consider control of general processes. Expert
control ideas have also been applied to specific processes. In [58] a rule-
based is combined with a neural network for control of a two-link robotic
manipulator. Real-time control of a mobile robot is also the topic in {59],
who proposes to use a blackboard architecture.

7. CONCLUSIONS

It is straightforward to extract a more general pattern from the examples
in Section 5. To solve a control problem a number of design approaches
are first determined that may be appropriate for the problem. The design
methods are analyzed carefully to determine the conditions under which
they perform satisfactorily and those when they do not. Next, criteria are
sought delineating these conditions. Finally, an expert system is used to
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decide when and how to apply the different methods. This approach, which
can be applied to a wide variety of problems, seems to offer interesting
possibilities for combining analytical and heuristic approaches.

For simplicity, the use of Al techniques has been applied here to
single-loop control. This allows an uncluttered presentation of some of
the elemental concepts that arise when Al and control technologies are
merged. A heuristic component has been added to familiar estimation
and control algorithms. A key point is that the incorporation of heuristics
through Al structures results in systems that are far more flexible and
transparent than systems based on selectors and safety jackets currently
in use in standard hard-wired logic.

Experience from experiments with systems of this type has shown
that the approach is useful in several respects. It is very effective as a
test bench for defining the logic required for safe operation of potential
control schemes even if this logic is later implemented differently. The
experiments point toward the conclusion that powerful control laws can
be obtained by combining conventional control algorithms with an expert
system. The approach taken in this chapter also emphasizes the need for
new theoretical results. Design of a stability margin supervisor is a typical
example.

Experience from building expert systems for real applications has
shown that their power is most apparent when the problem considered
is sufficiently complex. Process control problems are admittedly complex.
Plant operators run systems with multiple loops, unpredictable material
variations, etc. Over time, and with experience, operators generate rules of
thumb that help them deal with this complexity. This chapter has pointed
out that an expert system can provide a framework for blending numerical
algorithms with this detailed expertise of the plant operator.

Control systems are currently undergoing an interesting phase of de-
velopment. The driving force is primarily the drastically increased com-
putation ability offered by the microprocessor. This has the potential of
making systems more efficient and easy to use. A number of ideas dis-
cussed in literature have been reviewed. This includes fuzzy control, neu-
ral networks, knowledge-based systems and qualitative reasoning. There
are undoubtedly opportunities to make control systems with significantly
increased capability. In a simple setting this has been demonstrated by
recently announced single-loop controllers, with capabilities for automatic
tuning, gain scheduling and adaptation, that are easy to use.
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