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Abstract

Process control computers can be extended to include automated diagnosis through the
integrated use of Ariificial Intelligence techniques. Diagnosis, a complex reasoning
activity, is first characterized and then decomposed into its constituent information—
processing tasks (IP1s). Each IPT is described in terms of input, output, knowledge
representation and it;;‘erencing strategy. Examples drawn from practical implementa-
tions of knowledge-based systems are used to illustrate each IPT. How these IPTs
interact and are integrated to form a framework for constructing knowledge-based
diagnostic systems is described. It is shown how this task—based approach provides a
natural basis for pulling together a variety of technologies, such as neural networks,
statistical methods, conventional numerical methods and knowledge-based systems,
into a comprehensive system for automated diagnosis.

1. INTRODUCTION

In response to demands for increased production levels and more stringent product
quality specifications, the intensity and complexity of process operations have been
rising steadily. To alleviate the operating requirements associated with these demands,
plants have increasingly relied upon automatic control systems. It is well-known that
control systems — traditional analog devices or the more recent distributed control
systems (DCSs) — are effective for automatically making local process changes within
some range to establish or maintain operating conditions in the face of well—-defined
disturbances.

Even with highly sophisticated DCSs, it is, however, clear that processes are subject (o
eguigmem failures and unexpected changes in conditions that often result in off-spec
o whom all correspondence should be addressed
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product, reduced production or unsafe situations. Further, these equipment failures and
process abnormalities, if left uncorrected, caninduce additional failures in related equip-
ment. These process and equipment “malfunctions” lead to significantly higher operat-
ing costs and/or reduced profits.

Substantial benefits, with respect to improved plant operation, can thus be obtained by
expanding the scope of process control computers to aid operators in diagnosing equip-
ment failures and process abnormalities. The advantages of advisory systems are espe-
cially apparent if designed for early fault detection and identification.

Conventional control largely deals with control actions in the form of manipulated
parameter settings (such as control valve position) that are computed directly using a
specified control algorithm, like PI, PID or IMC [ 1. The control algorithm is typically
executed with the “diagnostic” goals of the controller essentially fixed. Fault detection
and isolation (FDI) is an extension of control that leads to “control actions” in response
to faults that can be characterized with a high degree of certainty. Furthermore, on-line
FDI is addressed with analytical redundancy where data from a plant are compared to
expected values generated by a mathematical model [32, 33].

Advances in artificial intelligence (AI) now offer the potential for new approaches to
extending control systems where the system adapts its ““diagnostic” objectives in re-
sponse (o changing conditions. In addition, these techniques provide the capability of
reasoning in uncertain and unstructured environments in which adequate mathematical
models may not exist. For diagnosis these knowledge—driven techniques involve the
interpretation of sensor readings and other process observations, detection of abnormal
operating conditions, generation and testing of malfunction hypotheses that can explain
the observed symptoms and finally resolution of any interactions between hypotheses.
Fundamentally, diagnosis is viewed as a decision—making activity that is not numeric in
nature. While the governing elements are symbolic, numeric computations still play an
important role of providing certain kinds of information for making decisions and draw-
ing diagnostic conclusions.

As the role of process control computers expands beyond the numeric-algorithmic
activities of conventional control and into the reasoning level activities associated with
diagnosis, there is a need for structured symbolic decision—making methods. With the
advent of Al technologies, such as knowledge-based systems (KBS), neural networks
and fuzzy logic, significant advances have been made in extending the capabilities of
plant control systems with automated diagnosis.

Al-based techniques have been applied throughout the process plant control infrastruc-
ture — [rom the low-end ““execution level” (o the high-end “supervision and planning
level” {2]. The execution level includes the use of techniques such as “fuzzy control”
or “neural control” for closed-loop control. An example is the fuzzy control of auto-
clave—cured composites reported by Wu and Joseph [3]. Fuzzy logic is used to express
and manipulate ill-defined qualitative terms like “large”, “small”, “very small™, ctc.
in a well-defined mathematical way to mimic the human operator’s manual control
strategy. Qualitative rules are used to express how the control signal should be chosen
in different situations. “Neural control” refers (o the use of neural networks (o develop
process models which are then used to implement robust, model-predictive controllers
[4]. The high-end “supervisory level”, on the other hand, seeks to extend the range of
conventional control algorithms through the use of KBSs for tuning controllers, per-
forming fault diagnosis and on-line reconfiguration of control systems. Tzouanas, etal.
{5] have reported using a KBS to support the deployment of multivariable control
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systems in cases of controller saturation, sensor failure and reconfiguration of SISO
control Joops. Other examples have been reported by Basila, etal. [6] and Astrom, et al.
[7]. KBSshavealso been used to determine the bestcontrol system configuration and/or
select the best control algorithm given the operating constraints. Birky, et al. [8] have
used a KBS to assist in the design of control configurations [or a distillation column. A
review of other KBSs for design assistance is given in James [9].

The focus of this chapter is knowledge-based diagnosis as a supervisory level extension
to the execution level techniques represented by conventional numerical control and the
more recent intelligent control techniques. Ourapproach o knowledge-based diagnosis
is grounded in the generic task theory originally proposed by Chandrasekaran [10,11].
The aim of this theory is to identily information-processing tasks as “building blocks™
of reasoning strategies which are both generic and widely useful. Furthermore, it is
recognized that complex reasoning activities rely upon different methods and even
different technologies. These are reflected explicitly as mechanisms for accomplishing
the individual tasks. An automated system for the diagnostic activity is thus computa-
tionally described as the integration of a small set of well-defined tasks. The integration
of the tasks to form a framework, thus provides a natural basis for pulling a variety of
technologies together in a comprehensive system for automated diagnosis.

In the following, we present a characterization of diagnosis, followed by a decomposi-
tion of the activity into its constitucnt tasks or sub—problems. How these tasks interact
and are integrated to form a framework for constructing knowledge-based diagnostic
systems is then described. This is followed by detailed descriptions of the tasks and the
use of different techniques — Al-based and traditional — to accomplish their respective
problem—solving goals. Examples drawn from KBSs implemented for industrial pro-
cess operations are used to illustrate the integration of the various problem-solving
techniques in forming the complete diagnostic framework.

2. CHARACTERIZATION OF DIAGNOSIS

Fault diagnosis can be broadly characterized as a separate reasoning activity which
sequentially follows abnormality detection. As a reasoning activity that is triggered by
detection, fault diagnosis can be more specifically characterized as the activity of map-
ping from symptoms to a conclusion comprised of one or more malfunction hypotheses.
These malfunction hypotheses explain the symptoms in sufficient detail (o take correc-
tive action. In process operations, the symptoms include both abnormal and normal
performance conditions as indicated by various process sensors, alarms, operator obser-
vations and laboratory analyses.

A variety of approaches to building diagnostic KBSs have been recently developed.
MODEX2 [12] isanapproach that integrates behavioral knowledge organized explicitly
for diagnosis with more fundamental simulation knowledge that allows for system
behaviors to be generated during run—time. Petti, etal. [13] advocated the use of numeric
plant models to arrive at diagnostic conclusions. Similarly, Grantham and Ungar [14]
have demonstrated the adaptation of models to account for new operating states in the
diagnosisof novel faults. Finch and Kramer [ 15} have described astrategy for diagnostic
focus, where knowledge about the functionality of process equipment is used to form
diagnostically useful abstractions. Calandrantis, et al. [16] have described a KBS ap-
proach representing diagnostic knowledge in tables. As an alternative 10 knowledge~
based approaches, neural networks have been used by Venkatasubramanian, et al. [17]
for both fault detection and diagnosis. Kramer and Leonard [18) have critiqued the use
of backpropagation neural networks for this purpose.
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While the common objective of all these systems is diagnosis, varying levels of emphasis
have been placed on different aspects of problem solving. Some focus on alarm analysis
and the rapid generation of corrective actions (o avert safy ety problems [19]. These
systems are designed (o respond (o critical abnormal behaviors. Time available for
suggesting corrective actions is typically shortand the root cause of the observed behay-
ior may not be known or identified. On the other hand, there are some diagnostic systems
where the emphasis is on resolving symptomatic data as they appear in time [ 16, 20, 21].
Due to the temporal aspect associated with the data, truth maintenance and generation
of consistent malfunction hypotheses are important in spite of conditions such as out of
orderalarms and inverse response. The majority of reported systems consider symptom-
atic data in the form of a ‘snap—shot’ within a window of time. Successive snap-shots
of data are used to perform real-time diagnosis.

We argue there are distinct differences between advisories for safety-related and root
cause diagnoses with resulting differences in the respective knowledge—based frame-
works. Rool cause problems share the [ollowing characteristics [22]:

(1) The aim of diagnosis is to identify the root cause malfunctions that affect production
and product quality. Early detection of problems before they develop into critical
behaviors and prevention of continued adverse economic operating conditions are thus
the important motivations. Root cause diagnosis is contrasted with rapid responses to
abnormal behaviors that jeopardize the safety of the plant.

(2) Root cause diagnosis, therefore, implies stabilized malfunctioning operation such
that there is usually sufficient time during diagnosis for performing detailed tests. We
use the term ‘pseudo steady state’ in recognition of the fact that some of the symptoms
used during diagnosis may not be truly at steady state, i.e. variables could be increasing,
decreasing or oscillating.

(3) The reasoning process is usually more deliberative, and the search through the space
ol malfunction hypotheses is much more systematic and thorough. Additional tests are
used (o resolve hypotheses in detail.

(4) The corrective action that follows root cause diagnosis is usually to fix the primary
cause(s), with the intention of preventing continued deterioration or recurrence. This is
contrasted with rapid response actions which immediately counteract the effects of a
critical abnormality. The aim of root cause diagnosis is to maintain the long term
operating objectives of the plant rather than avert immediate short—term crises.

We, therefore, recognize that different ““real-time” situations exist and that root cause
diagnosis is one that is associated with behaviors that have relatively longer time con-
stants. While “real-time” is a constraint, there is typically sufficient time to investigate
hypotheses in some detail and to request additional tests and/or collect additional data
to resolve a root cause.

Root cause diagnosis encompasses not only equipment failures but also other causes
related to changes in operating conditions [23]. The goal of fault diagnosis is the
identification of hardware malfunctions including breakdown and deterioration. Such
malfunctions are usually associated with unit operations (e.g. leaks, blockages of pipes,
mechanical malfunctions) or with control loop components (¢.g. sensors, actuators)
[24]. Faultdiagnosis also involves the identification of deviating operating parameters.
Examples include reduced heat transfer coefficients, low activity of catalysts and con-
taminated fermenters [24]. Although closely related, the distinction between these types
of malfunctions is important as the abnormal operating parameters provide a starting
point for determining corrective actions (o be implemented, if no hardware malfunction
is identified.
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3. ANALYSIS OF THE DIAGNOSTIC ACTIVITY

Consider a simplified chemical plant that consists of a feed pre-heater, a reactor and a
distillation column, as shown in Fig. 3.1. Now consider a scenario where the {low rate

.____.__.._A__.)
Product

Feed Preheater
Distillation
Column

Reactor

Figure 3.1 : A Simplified Chemical Plant Flowsheet

of hot oil through the heat exchanger is unexpectedly reduced due to a faulty valve. This
low flow rate then causes insufficient heat 1o be transferred to the raw material in the feed
preheater, which in turn results in a lower than normal temperature of feed to the reactor.
The low feed temperature causes a lower reaction rate, which then results in a smaller
amount of product. Let us now analyze how this diagnostic conclusion is reached using
the symptoms provided by the sensors on the unit. It should be pointed out that though
there are several sensors in the plant, only the product flow rate (FR2) and product quality
(from laboratory reports) are tracked continuously.

Diagnosis is initiated by a decrease in product flow rate indicated by FR2. Using the flow
rates measured by FR1, FR2 and FR3, it is found that the material balance around the
plant, and hence around the distillation column, closes. Also, the product quality is
observed o be within specifications. These observations lead to the conclusion that there
is nothing wrong with the operation of the distillation column. The focus of problem—
solving attention is then shifted to the reaction and feed pre-heat system. The observa-
tion that the temperature at the outlet of the feed preheater (TR 1), is lower than normal
narrows the possible malfunctions to the heat cxchanger segmentof the process. Further
consideration of the heat exchanger identifies the low {low rate of hot oil through the heat
exchanger, which in turn leads to the discovery of the faulty valve. “Faully valve” is a
malfunction hypothesis which explains the observed plant behavior and is of sufficient
detail for corrective action (such as ‘fix the valve’) to be taken.

An analysis of this simple, but characteristically typical diagnosis reveals several dis-
tinct sub-problems:

(1) We note a distinct progression of hypotheses examined from general o specific. The
first hypothesis considered was a malfunctioning distillation column. On ruling thisout,
the other two major systems, reaction and feed pre-heat were then considered. Once a
problem with the feed preheater was established, the objective became one of finding
the specific fault in the feed preheater. To this end, the components of the feed preheater
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were investigated and a fault in the valve was detected. Thus, the goal achieved is that
of generating malfunction hypotheses for evaluation. Only those systems that are identi-
fied to be mallunctioning are explored in further detail by examining sub-systems or
components. The generation of malfunction hypotheses for evaluation, therefore, in-
volvesasearchof the hypothesis space with different hypotheses pursued under different
conditions.

(2) For each malfunction hypothesis examined there is a need to establish with some
degree of certainty if it is true or false. For example, the normality of product quality
and the material balance closure are used as symptomatic features to rule out any mal-
function in the distillation column; while low temperature is used 10 establish that there
is amalfunction associated with the feed preheater. Thus, each hypothesis is associated
with a set of features which support or reject it. The evaluation of each hypothesis is
carried out locally (at each hypothesis) by comparing features associated with the hy-
pothesis with the observed symptoms. The basic mechanism for this is structured pattern
matching,

(3) The symptoms used in problem solving are not always direct sensor readings. For
example, the sensors do not directly provide information about the fact that the product
flow rate is low or that the temperature is low. Instead, the sensors only indicate numeric
values which must be interpreted as low, high or normal for use in diagnosis. Similarly,
the material balance closure is not indicated directly on any instrument. Rather, it is
calculated using several sensor readings. This task of providing qualitative interpreta-
tions of numeric sensor data is yet another sub—problem.

The above analysis demonstrates that the activity of diagnosis can be decomposed into
several problem—solving tasks that are called Information Processin g lasks (IPTs). Each
IPT has a specific objective or goal that is defined by a diagnostic sub-problem. For
example, the goal of the first sub—problem is to systematically generate malfunction
hypotheses for consideration. An IPT defines the mechanism for accomplishing the
goal. Each sub-problem described above, can be similarly characterized in terms of its
goals, input, output and problem-solving mechanism. The overallobjective of diagnosis
isachieved through the integrated efforts of the IPTs, each one performing its designated
function using specific kinds of knowledge organized in a specific way.

The decomposition of a complex reasoning activity into its constituent IPTs was first
proposed by Chandrasekaran [10, 11]. He postulated that a complex aclivity can be
computationally and generically described as the integration of a small set of well-de-
fined IPTs. These IPTs, thus, form the primitive building blocks for complex activities
like diagnosis.

The advantages of the task—oricnted view are many [25, 26, 27]. First, it encourages
analysis of a problem at the level of IPTs, thus greatly {acilitating the implementation
phase. Secondly, the concept of activities and primitive IPTs leads to modular systems,
consisting of soltware modules corresponding to each known task. With this concepl,
building a KBS for a new application involves first decomposing the activity into com-
ponent tasks and then inserting the application knowledge into each of the IPT software
modules as specifically required.

4. IPTS FOR CHEMICAL PROCESS PLANT DIAGNOSIS

While the analysis of the diagnostic scenario described in the previous section brings out
three IPTs, our research in the chemical process diagnosis has led to the identification
of six [23]. Table 1 gives an overview of these different IPTs. The interaction of these
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IPTs to form a complete framework for diagnosis is illustrated in Fig. 4.1. In the
following sections we describe the characteristics of each task and discuss how they are
coordinated with one another to form the development framework for acomprehensive
diagnostic system.

Name of the IPT Description of the task

Hierarchical Given a set of symptomatic features systematically generate
Classification feasible malfunction hypotheses and efficiently eliminate
(HC) infeasible hypotheses

Structured Pattern | Given a malfunction hypothesis (generated by HC above) and
Matching (SPM) [a set of symptomatic f{catures relating to the hypothesis,
establish or reject it with a certain degree of certainly

Qualitative Map from numeric data gencrated by sensor into diagnostically
Interpretation(Ql) | useful interpretations

Sensor Validation | Identify sensor errors and provide correct values

Hypothesis Generate the best explanation for sets of product quality
Assembly changes in terms of deviations in operating parameters
Diagnostically Resolve causally related malfunction hypotheses using
Focused simulation

Simulation (DFS)

4.1 The Core Diagnostic Tasks

4.1.1 Hierarchical Classification (HC)

HC s the heart of the diagnostic activity. The objective of this IPT is to map symptomatic
data into one or more malfunction hypotheses dcfined in sufficient detail that they are
recognized as root causes. Given the potentially large number of possible malfunctions,
HC offers a mechanism for efficiently searching through the space of malfunction
hypotheses and robustly arriving at the correct diagnostic conclusion. HC addresses this
combinatorial issue by compiling diagnostic knowledge such that diagnosis remains
highly focused and the space of likely malfunctions is narrowed rapidly. The compiled
knowledge is expressed as a hierarchy of malfunction hypotheses organized {rom gener-
al (o detailed. An example of this hierarchical arrangement of hypotheses for a fluidized
catalytic cracking unit (FCC) is shown in Fig. 4.2 [22].

At the top level, general malfunction hypotheses reflect a general decomposition of the
plantin terms of the various functional systems/subsystems or general fault categorics.
As shown for the FCC, there are three major functional systems — feed, reactor-regen-
erator and separation — and one fault category — catalyst problems — that form the
hypotheses (nodes) of the hierarchy at the first level of decomposition. This decomposi-
tion strategy of identifying functional sub-systems and fault catcgorics in increasing
detail, is continued at each level in the hicrarchy.

For the functional decomposition an arc indicates a relation described as “is a sub-sys-
tem of . For the fault decomposition the arcs are interpreted as “is caused by”’. Atthe
lower levels, the nodes reflect more specilic mallunction hypotheses, which take the
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form of malfunctioning equipment items, specific modes of failure, improper operating
parameter settings or improperly executed procedures. The hierarchy, thus captures
various levels of process detail by a mixture of malfunction categories gencrated from
functional, fault, mode of failure and structural decompositions of the process. As
exemplified for the FCC Feed System in Fig. 4.2, these decomposition methods result
in a problem solving structure particularly suited for diagnostic search.

Associated with this hierarchical knowledge organization is a problem solving strategy
that begins at the top level of the hierarchy. For a given top level hypothesis, specific
symptomatic information is used to evaluate the hypothesis (node) as either ‘established’
or ‘rejected’, with some measure of confidence. If the malfunction hypothesis is estab-
lished, then the focus of problem solving shifts to its children. When a hypothesis is
rejected, indicating that that segment of the plant is operating properly, all sub-hypo-
theses below are also rejected. This process of hypothesis evaluation is recursively
applied at each level of the hierarchy until one or more tip-level hypotheses is estab-
lished. This inferencing strategy is referred to as “‘establish-refine” [11, 23].

“Establish-refine”, as applied to the hierarchy in Fig. 4.2, is illustrated by drawing
boxes around the nodes. Hypotheses evaluated are drawn with boxes. H ypotheses
rejected are indicated with shaded boxes, while an unshaded box represents a hypothesis
that was established.  All other hypotheses are pruncd because a parent is rcjected. The
power of the establish-refine strategy in focusing the diagnostic search becomes readily
evident by comparing the relatively small number of boxed nodes with the total number
of nodes in the hierarchy.

Ifthe establish—refine strategy is applied in a systematic manner and driven by an orderly
consideration of hypotheses, we refer to the overall strategy as “malf) unction—driven”,
i.e. the order the hypotheses appear at each level in the hierarchy drives the order in which
hypotheses are considered. While the malfunction—driven, establish—refine stralegy is
the primary strategy used in HC, other problem solving strategies may be locally super-
imposed to augment efficiency in problem solving. Ramesh, et al. 11 ] have described
several variations of establish-refine for the FCC diagnosis. The two most common
variations are symptom-driven refinement and causally—dependent invocation. Symp-
tom—driven refinement defines a situation in which the existence of a specific symptom
is strongly indicative of a particular malfunction hypothesis and, as a result, systematic
search is unnecessary. In terms of the malfunction hierarchy symptom—driven refine-
ment results in the inference jumping across the hicrarchy to a specific node. Causally-
dependent invocation deals with causally-related hypotheses. Given the presence of
certain symptoms, the establishment of one hypothesis results in the consideration of
another hypothesis elsewhere in the hierarchy. The use of these strategies is required [or
complex operations when there exist multiple relationships among hypotheses and
symptoms under various operating conditions.

4.1.2 Structured Pattern Matching (SPM)

SPM refers to the task of determining the established or rejected status of a malfunction
hypothesis generated by HC. In this task, symptoms are matched against pre—delined
patterns that reflect the local relations existing between specific symptomatic features
and a given hypothesis. Compiling knowledge in this form eliminates the need for
generating symptom patterns at run—time using some form of simulation. The basis for
these pattems is, however, the input/output process behavior of that portion of the
operation represented by the hypothesis.
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Also, associated with each of these feature patterns is knowledge about the degree of
cerlainty in the establishment or rejection of the hypothesis, given the presence or
absence of symptoms. When symptomatic information maiches a pattern of features,
the appropriate confidence is assigned to the malfunction hypothesis. The confidence
may itsell be a simple pre-assigned value associated with each individual paticrn or may
involve more detailed computations using probability theory or other measures of uncer-
lainty.

Maiching symptoms to pre-defined feature patterns is a direct form of pattern matching.
As an example, et us consider the evaluation of the hypothesis Feed system in the FCC
hierarchy (Fig. 4.2). Table 2a lists the [eature patterns associated with this hypothesis
in a tabular form. As indicated, evaluation of this hypothesis is based on the values of
the features abnormality of feed data and upstream conditions. Feed systemis evaluated
as ‘established’ il upstream conditions are ‘not normal’ and the abnormality of feed data
is ‘established’ (Column 2 of Table 2a). Abnormality of feed data itself gets ‘established’
or ‘rejected’ based on the values of state of pre—heat and material balance, as indicated
in Table 2b. For example, if the state of pre—heat is ‘normal’ and the material balance
is ‘normal’ then abnormality of feed data is ‘rejected’ (Column 5 of Table 2b).

The “?” appearing in Table 2b indicates ‘unknown’. The degree of certainty is reflected
in the use of the following qualitative values: ‘established’, ‘very likely’, ‘likely’, ‘un-
known’, ‘unlikely’, ‘very unlikely’, or ‘rejected’. Each hypothesis (node) in the mal-
function hierarchy can be associated with one or more such pattern matchers and the
matchers themselves can be organized hierarchically. Fig. 4.3 illustrates the hierarchy
ol feature patterns used in this example.

T: 2a; Pautern “hing (able for ‘Feed system’
Evaluation of ‘Feed system’ Established Very likely Rejected
Abnormality of [eed data Established Very likely Rejected
Upstream conditions Not normal Not normal Normal
Tz . Paytern maiching for *Abnormality of [ ala’

Evaluation of ‘Abnormality | Established | Very likely Likely Rejected
of feed data’

State of pre-heat Cold ? ? Normal
Material balance ? Very high - | Not normal | Normal
or very low

State of pre-heat
Abn(mmﬂily<
of feed data Material Balance
Feed system

Upstream Conditions

Fig. 4.3 : Hierarchy of {caturc patterns

As pointed out previously, the HC and SPM tasks act in very close conjunction. The
generation of hypotheses is accomplished by the HC task, and the evaluation of the
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hypotheses is carried out by the SPM task. This very close integration between these two
tasks is indicated by the heavy grid box in Fig. 4.1.

4.1.3 Diagnostically Focused Simulation (DFS):

Referring once again (o the diagnostic framework shown in Figure 4.1, there is a task
sequentially following HC/SPM which we refer to as DFS. The purpose for DFS Zrows
from the recognition that HC and SPM tasks are unable by themselves to resolve m ultiple
interacting malfunction hypotheses [28]. It is well-known that process mal{unctionscan
interact via stream integration, control loops and sink-source relationships. These kinds
of interactions can lead to scenarios such as an equipment malfunction in one partof the
process causing an equipment item in a far removed part of the process to also malfunc-
tion.

Knowledge organized using functional systems/subsystems, f; aultcategories, etc. in HC
is particularly effective for robustly identifying single malfunctions and independent
multiple malfunctions. For these situations, no further problem solving is necessary. In
the case of multiple, interacting malfunctions, however, resolution requires consider-
ation of the process topology and reasoning along the structural paths that potentially
link two or more malfunctions. Since HC does not explicitly reflect process structure,
the objective of DFS then is to provide the means by which reasoning about structure can
be brought to the diagnostic process. As a task, DES is responsible for identifying the
structural paths which could link multiple malfunction hypotheses, propagating causal
effectsalong this path, and then establishing or rejecting interactions based on a compari-
son of the simulated process behavior with that observed.

The input information to the DFS task is provided by the diagnostic results from the HC
and SPM tasks. At the conclusion of HC, there is a diagnostic assessment in the form of
ahierarchy of established and rejected malfunction hypotheses as illustrated in Fig.4 4.

Hypothesis A H ’pO{hesis D
{Rejected) {13 jected)
Hypothesis B (B Ron e
{Established} Porsible
i Hypothesis F 5% 4
Igrhoec[g;gal {Ii}’cjected} Lnteraction

Hypothesis Geg——
Hypothesis C< {Established]
{ELstablished) Hypothesis H

{Rejected}

Fig. 4.4 : Possible interactions between hypotheses

If multiple malfunctions are identified, as in Fig. 4.4, then the possibility of their interac-
tion must be resolved. *

DFS is used on an as-needed basis which is determined by the HC results. If DFS is
needed then the task carries through several key problem-solving elements in order to
resolve interacting malfunctions. Referring to Figure 4.4, the established tip—level hy-
potheses are each associated with specific malfunctioning modes, e.g. plugged valve,
*There are a number of these kinds of HC patterns that can result and are indicative of dif-
ferent kinds of interacting malfunctions
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leak in pipe, etc. To resolve a possible interaction, DFS first establishes a simulation
agenda comprised of these malfunction modes that may be linked. The agenda lists the
malfunctions that will be imposed on amodel of the process and propagated to see if the
simulation can re—create the behavior indicated by another malfunction hypothesis.
Constraining the use of simulation only to the limited malfunction modes identilied by
HC is important in computationally solving the problem in a reasonable amount of time.

Efficiency is further enhanced by constructing the simulation model in detail only for
the parts of the process that need to be simulated. As illustrated in Fig. 4.1, it is only
necessary to run detailed (component-by—component) simulations for the process sub-
systems associated with the two hypotheses. All other systems in the plant indicated by
rejected hypotheses are operating normally and can be simulated using broadly-defined,
system—level models.

With the run time generation of the simulation agenda and appropriate model abstrac-
tions, the DFS task then checks 10 see that a causal path does indeed exist. If there is no
path then there is no interaction. If a path does exist then a causal simulation is executed
and the system behavior, resulting from the malfunction is determined. The simulated
results are then compared with the observed behavior. If the simulated symptoms match
the observed symptoms then there is an interaction. The direction of causal propagation
establishes which of the interacting malfunction hypotheses is the root cause. If there is
no match then the conclusion is that the malfunction hypotheses are independent. Figure
4.5 shows a flowchart for the DFS task problem-solving.

Inone view, DFS acts as the interf{ace between the compiled problem solving of HC/SPM
and qualitative simulation. As an integrated approach, DFS brings together multiple
sources of knowledge, a situation-specific interpretation of diagnostic results and a
balance between the use of run—time simulation and compiled problem-solving in diag-
nosis.

4.2 The Auxiliary Tasks

4 2.1 Qualitative Interpretation of Numeric Data

Critical to the successful on-line implementation of knowledge-based systems (KBS)
is the conversion of numeric plant data into diagnostically useful values. We refer to this
task as “Qualitative Interpretation” (QI) [29]. While data interpretation and hypothesis
evaluation are often not distinguished, we recognize strong differences in them by
defining QI and HC as separate IPTs. Examples of QI include descriptions of process
elements or variables as normal, abnormal, high, low etc., trends in state variables as
increasing, decreasing, etc., classifications of patterns as cycling, pulsing, etc. and land-
mark identification (times corresponding to initiation of events).

QI performs two critical roles from the overall KBS perspective:
(1) it provides the interface between a digital process data acquisition system and the

KBS, and
(2) it performs an important data reduction function.

Instead of having todeal witha large amountof temporal sensor data, QI generates uscful
symbolic abstractions which support efficient reasoning about interesting qualitative
states of a process.

QI may be categorized into two classes: (a) context—free and (b) context—dependent.
Context-free QI is the simplest form in that only sensor data associated with the primary
process variable is required; there is no external context which must be considered in



414 INTELLIGENT AND AUTONOMOUS CONTROL

Diagnostic
3 resulls indicating
HC/SPM a potential
secondary
interaction

Physical
Environment

Construct Simulation Agenda
Construct Multilevel Model
Establish Interaction Conduit
Instantiate malfunction
Propagate effects using
qualitative reasoning

Results of the
malfunction
simulation

Diagnostic
HC/SPM |— results based on
simulation

Comparg
Not the same

Malfunction
Interactions

Malfunction
_ Interactions
[D>

Fig. 4.5 : Evaluation of potential interactions

order to arrive at the appropriate QI. A single time series of data from a particular sensor
isnecessary and sufficient to draw a qualitative conclusion. Trend and landmark identifi-
cation are examples. Context—dependent QI refers to those interpretations where consid-
eration of additional information is required beyond the sensor data for the process
variable of interest. An important example is normality identification. The additional
information needed may correspond to time traces of other process variables, knowled ge
of the type of feedstock being run, condition of mechanical equipment, ctc. Fig. 4.6
illustrates the context—dependent QI problem, where the normality of coolant flow can
be judged only by considering all three variables — reactor temperature, coolant flow
and cooling water supply temperature — simultaneously.

There are three critical aspects to the QI problem which point to the methods that are
appropriate. First, we fundamentally view QI as a pattern recognition problem. It is this
problem-solving mechanism that distinguishes QI from other IPTs. This characteriza-
tion is motivated by the nearly universal presence and use of trend recorders and/or
graphical displays in control rooms. Secondly, the dynamic nature of processes demands
that the pattern recognition process associated with QI be adaptive. Sensor patterns are
affected by production rates, quality targets, feed compositions, equipment condition,
etc., all of which change frequently. A sensor pattern interpreted as “normal” one time
may be correctly interpreted as “abnormal” at another time. Thirdly, the expertise for
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Fig. 4.6 : A typical sensor pattern as displayed on a strip chart recorder

performing QI (from experienced plant operators) exists or can be collected in the form
of labeled sensor patterns of known interpretations. For the purposes of automating the
QI process, the availability of these sensor patterns makes supervised learning an attrac-
tive mechanism for addressing the adaptivity requirement. In light of this characteriza-
tion, the key attributes that any general purpose QI mcthod should have are: (i) robust
pattern recognition capability, (ii) ability to incorporate contextor reference information
for resolving context—dependent QI and (iii) adaptive characteristics which allow the
method to learn from existing labeled sensor patterns.

The scope of the QI problem spans a wide spectrum in terms of complexity. The simplest
forms of context—free QI (increasing, decreasing, etc.) do not necessarily require sophis-
ticated pattern recognition methods. From a machine standpoint, context-{ree QI is
probably most efficiently addressed using traditional signal analysis techniques. On the
other hand, context dependent QI requires more sophisticated techniques especially in
situations of variable context such as transient periods associated with start-up and
shutdown, often changing process conditions or a variable environment. Statistical
methods including limit checking, EWMA muodels, Shewhart charts as well as other
statistical quality control (SQC) methods can have serious limitations under these vari-
able, context—dependent circumsiances.

In comparison to Bayesian approaches, backpropagation neural networks and fuzzy sets,
classification of sensor patterns based on clustering or proximity measures has emerged
from the various pattern recognition methods as the method of choice for the process QI
problem [29]. As shown in Figure 4.7, this method utilizes the structure of the patterns
to perform pattern recognition. The underlying assumption of the clustering approach
is that patterns in acommon pattern class exhibit similar features and that this similarity
can be quantified using an appropriate proximity index. Using this concept, a given
pattern is assigned to the class of patterns to which it is most similar.

With respect to the QI problem, clustering approaches have the advantage of providing
the capability of dealing with limited and poorly distributed pattern data, a common
situation with process operations. Rather than attempting to partition the entire data
interpretation space using linear discriminants, or probability distribution [unctions,
clustering—based methods simply identify the structure based on the available pattem
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data. This also leads to the ability of the approach to classify novel patlerns as “don’t
know,” a very important property for QI integrated into a diagnostic approach.

4.2.2 Sensor Validation

Diagnosis in process plants makes extensive use of data provided by sensors. Like any
process equipment, sensors are also susceptible to failures. However, unlike other
equipment, sensors also provide the means of observing the state of the operation. From
a diagnostic standpoint a faulty sensor can be a root cause or it can result in a faulty
reading which can cause errors in the diagnostic conclusions. The aim of the sensor
validation task is, therefore, 1o identify sensor errors as malfunctions and provide correct
values so that a diagnosis corresponds to the true behavior of the operation.

Faults in sensors include readings that are:

(1) outside the sensor/process limits

(2) changing at a physically improbable rate
(3) stuck at some constant value, or

(4) biased.

The first three kinds of faults encompass gross mechanical/electrical operation of sen-
sorsand are relatively easy to detect by some form of limit checking. However, identifi-
cation of sensor bias usually involves the use of other sensor data and process models.

Sensors (all into different categories based on how their information is used. Shum, et
al. [31] have identified two broad categories of sensors used directly in the diagnostic

activity: Type I sensors lead to direct control actions, either automatically through the

process control system or through operator action. Sensors used to provide only state’
information are grouped together as Type II sensors. With the view that detection and

diagnosis are two separate reasoning activities, there are also sensors that arc monitored

continuously for detecting any abnormalities in the plant and triggering diagnosis. A

single sensor may be used for more than one purpose and may, therefore, fall into more

than one categcry.

The kind of sensor fault and the sensor category play important roles in deciding when
validation is necessary, the rigor required and the means of resolving conflicts. Fig.4.8
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In Fig. 4.8, preliminary validation of sensors includes identification of inoperative
sensors. Preliminary validation is applicd to all sensors and involves comparison of
sensor readings to fixed or rate of change limits. Following this, rigorous validation of
‘detection sensors’ is performed to identify and reconcile bias. The present view is to
use gross error detection techniques [31].

Once diagnosis has been triggered, sensor validation and HC become closely integrated
tasks as shown in Fig. 4.1. Inaclassification hierarchy, Type I sensors appear explicitly
as malfunction hypotheses (nodes in the hierarchy). This recognizes the fact thata Type
I sensor can itself be a source malfunction. In other words, a Type I sensor failure leads
10 erroneous control actions, which in turn can lead to other undesirable operating
conditions in the plant. Forexample, in the feed system hierarchy, shown inFig. 4.2, the
malfunction hypotheses “Feed meter”” and “Thermocouple” appear explicitly. Type II
sensors, on the other hand, are used only in the evaluation of a hypothesis. They do not
appear explicitly as hypotheses in the hicrarchy since they cannot be source malfunctions
and since their failures do not lead to other operating problems in the plant. The validity
of these Type 11 sensor readings is nevertheless important because they provide essential
information for progressing the diagnosis.

With sensors organized as hypotheses in HC (Type I'sensors) or as SPM features (Type
11 sensors), the validation mechanism is driven by the HC search strategy. When a
particular malfunction hypothesis is evaluated, the sensor readings used are requested
from adata base. Thisrequestactivates the validation procedure only for sensor readings
associated with the malfunction hypothesis under consideration. The validation proce-
dure makes use of a variety of relations to identify error and to generate alternate valucs.
These relations reflect a variety of sources including redundant sensors, reliability histo-
ry of sensors, analytical computations based on process models and other sensor dala,
empirical correlations, or qualitative process relationships. The dataare either validated

¥This figure includes only an illustrative portion of the knowledge-based diagnostic frame-
work shown in detail in Fig. 2
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or the hypothesis is marked as ‘suspect’ for possible re—consideration. The overall effect
of various data which cannot be validated is to alter the HC search strategy.

4.2.3 Hypothesis Assembly

Process diagnosis relies not only on sensor data but also on product quality data as
symptomatic information. Unlike sensor data which provide localized views of the
operating state of the process, product quality deviations provide a broader, more ab-
stract view. Directional and magnitude changes in a set of product quality attributes
typically provide a basis for identifying a set of deviating operating parameters that
account for the observed product quality deviations. While product quality can certainly
deteriorate as a result of equipment malfunctions it can also deteriorate due to changing
external conditions like weather or feedstock variations. In such cases, the identification
of inappropriate operating parameter settings for the new conditions is useful as a
starting point for further corrective action, :

Ineither case, each product quality attribute may be suggestive of one or more operating
parameter deviations. The IPT, therefore, becomes one of constructin g the bestexplana-
tion for product quality deviations in terms of operating parameter deviations. Because
multiple parameter deviations are assembled into a global explanatory hypothesis, this
IPT is referred to as ‘Hypothesis Assembly’ [22].

The primary task of identifying which malfunction correctly applies 10 the current
situation, i.e. the HC task, is achieved by weighing the conclusions made {rom compo-
nent pieces of evidence. In the case of sensor-related evidence, such conclusions relate
observed symptoms directly to a malfunction. In the case of product quality related
evidence, conclusions are first drawn about operating parameter deviations, which can
then be used to draw conclusions about an equipment or inappropriate parameter setting
malfunction.

Hypothesis assembly provides a qualitative way of considering a set of product quality
deviations and constructing a plausible explanation in terms of operating parameter
deviations. It is accomplished by considering relevant operating parameters which can
partially explain observed magnitude and directional changes in the product quality
auributes. Because assembly is carried out as an auxiliary task to HC, the complexity of
considering all possible combinations of product quality attributes is reduced by focus-
ing only on the operating parameters which affect a particular malfunction hypothesis.
In other words, the distributed nature of the malfunction hierarchy is used to determine
a small, relevant set of these parameters. The assembly mechanism is then called upon
to determine what combination of parameters best accounts for the observed data. Even
with the reduction in complexity afforded by the HC backbone, pre—-enumeration of all
possible product quality deviation patterns poses a combinatorial problem. The assem-
bly module provides a way of reasoning about the observed deviations at run time.

For the FCC unit, let us consider a simple situation where HC/SPM invokes the hypothe-
sis assembly task [22]. Assume that for some hypothesis being evaluated the observed
symptoms are:

(a) high regenerator temperature,

(b) low conversion,

(c) high ratio of hydrogen to carbon (H/C) on spent catalyst, and
(d) high cokemake

Fig. 4.9 illustrates the operating parameters that account for the observed Symptoms.
‘Low reactor temperature’, or ‘low stripping steam rate’ can singly explain both ‘low



Framework for Knowledge—-Based Diagnosis in Process Operations 419

Low Octane

Low olefin content

Low reactor temperature i
High coke make

Low stripping steam rate High H/C ratio

Low conversion

Abnormal Operating parametcﬂ explains | Product Qualityl

Fig. 4.9 : Explanatory relations for hypothesis assembly

conversion’ and ‘high coke make’. However, ‘high H/C ratio’ can be accounted for only
by low stripping steam rate. The assembly process first selects those operating parame-
ters that are indispensable or essential for the composite explanation. For this example,
low stripping steam rate is selected first. What the composite explanation can account
for is compared with what needs to be accounted for, Following this, it further checks
the composite operating parameter explanation for any superf{luous parts. This cycle is
repeated until the list of product quality changes (o be explained is exhausted. In this
example, since low stripping steam rate can account for the other product quality data
also, assembly terminates with low stripping steam rate as the only piece of evidence to
be used in the evaluation of the hypothesis under consideration.

-Additional complexity existsin the assembly process because changes in product quality
attributes are the result of changes in several operating parameters, which may not
necessarily be independent. The types of operating parameter interactions include those
in which (a) one causes or implies another; (b) one is incompatible with another; and (c)
one is an explanatory alternative to other parameters which can also potentially account
for the same product quality change. As illustrated in the above example, knowledge
required for hypothesis assembly includes an enumeration of all the relevant operating
parameters, the product quality changes they can potentially account for, and the interac-
tions, implications and incompatibilities among those parameters.

5. INTEGRATION OF IPTs FOR THE DIAGNOSTIC
FRAMEWORK

The above task decomposition of the diagnostic activity provides a problem—solving
{ramework which facilitates the problem analysis, knowledge acquisition, system devel-
opment and maintenance of the knowledge base. Fig. 4.1 shows how the various tasks
are integrated to achieve the overall diagnostic goal.

HC/SPM and DFS form the core diagnostic tasks in the overall framework. HC and
SPM, two highly integrated tasks, control the course of diagnostic reasoning and dircct
the search towards a solution. The overall performance and efficiency of the system is
largely dependenton them. Given the scope of diagnostic problem solving, HC and SPM
comprise the expertise for making the diagnostic problem practically ractable. DFS is
called upon as needed to achieve a higher level of diagnosis by resolving malfunction
hypothesis interactions. It provides the means of appropriately constraining the usc of
simulation which can be computationally explosive in diagnosis. The qualitative inter-
pretation, sensor validation and hypothesis assembly tasks augment the role of HC/SPM
by providing information in forms useful for diagnosis.
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The interaction between HC/SPM and the other auxiliary tasks essentially takes place
at the level of individual hypotheses (nodes) in the classification hierarchy and in the
context of establishing or rejecting those hypotheses. HC systematically generates
malfunction hypotheses for evaluation. SPM matches the symptloms to the features of
a malfunction hypothesis to evaluate it and provide a measure of confidence in that
hypothesis. The symptoms themselves may not always be available in a diagnostically
uselul form from sensor readings; hence the data interpretation task infers diagnostically
useful data from raw numeric sensor data. Belore the data are interpreted and supplied
to the HC/SPM task, sensor validation may be invoked to validate some or all of the
sensor readings. In an analogous way, product quality data needs to be interpreled for use
by HC/SPM. The task is quite different, however, than interpreting numeric sensor data.
Hypothesis assembly is invoked to generate the composite evidence patiern that best
explains all the data, while making sure that there are no superfluous evidence patterns
in that composite.

6. CONCLUSIONS

This chapter has described a conceptual framework for knowledge-based diagnosis in
chemical process plants. The framework consists of an integrated set of well-defined
information processing tasks. Each of these tasks has its own distinct form of knowledge
organization and problem-solving mcthodology. Some of the tasks are knowledge—
based in nature, some are numeric, while others involve pattern recognition. The task
viewpoint thus explicitly recognizes the diversity of problem solving found in the diag-
nostic activity and serves as the basis for integrating appropriate technologies.

From an implementation viewpoint, the conceptual framework forms the basis of an
effective programming environment for building diagnostic KBSs for continuous pro-
cesses. A task-based programming environment not only facilitates the building of
system but also provides a high level of modularity and transparency to the user. Each
task isembodied as a programming module which explicitly captures both the problem—
solving methodology (inference strategy) and knowledge organization. This offers the
builder of a KBS the advantage of using the [ramework, wherever it is applicable,
withouthaving to encode the underlying problem-solving strategy for each new applica-
tion — i.e. only the domain specific knowledge needs to be encoded for any new
application. Consequently, attention during implementation can be focused more on
domain details and less on program development. For example, once the “establish—re-
fine”” methodis programmed and a way of representing malfunction hypotheses asnodes
in a hierarchy is available, the template can be used over and over again.

From a broad perspective, the structured framework takes full advantage of the diverse
types of knowledge available in the domain for problem-solving power. Knowledge
may be compiled, model-based, qualitative and/or quantitative. The task—based archi-
tecture provides a natural basis for integrating symbolic, neural reasoning and conven-
tional numeric approaches into the diagnostic KBS. Furthermore, the framework offers
the developer the potential to extend the scope of applicability by allowing the integra-
tion of auxiliary functions (such as sensor validation, qualitative interpretation and
hypothesis assembly) into the main activity of diagnosis.
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