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Abstract

In this chapter, intelligence is embedded in control via a special hierar-
chical organization based on the physical structure of the system. The
organization is inherently object-oriented, and the control and the knowl-
edge are distributed throughout the hierarchy. The hierarchy provides a
multi-resolutional, distributed and overlapping representation of the sys-
tem, where each node of the hierarchy contains some level of mathemat-
ical description, intelligence and local (sub)optimal control. Theoretical
foundations of these intelligent controllers are presented in an aziomatic
approach which mathematically describes the hierarchy, its functionality
and the control process. This approach also provides formal definitions
for concepts such as abstraction, summarizing and decomposition.

1. INTRODUCTION

In recent years, the incorporation of intelligence into control systems has been
focused on two major approaches. One of these approaches organizes the intel-
ligence in planning, reasoning and control hierarchically. The other approach
creates intelligent response through a union of stimulus-response controllers.
Although each approach has certain advantages, a deeper understanding of
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planning and reasoning can be obtained from the hierarchical approach with
greater ease, [1].

Hierarchical organizations can also be classified by the method by which
they have been generated. One very popular method is to explore the func-
tionality of the system, and to form the hierarchy based on the functional
decomposition of the goals to be accomplished. In this chapter, this type of
hierarchy will be referred as the function-based hierarchy. The other method
is based on the objects associated with the physical structure of the system.
These objects may be components of the system, or they may be combinations
of parts of the system. To be general, throughout the chapter, this type of
object-oriented hierarchy will be referred as the structure-based hierarchy.

In control, function-based hierarchies have been utilized for more than a
decade with great success, [2-12]. There are numerous examples where con-
trols show intelligent decision making capabilities to accomplish desired goals.
Implementational details of these hierarchies are provided in various chapters
of this book. However, most of these hierarchies lack strong mathematical
bases, and analytical results about their properties and behaviors may be only
partially obtainable, [13].

In this chapter, a structure-based hierarchy will be described, its mathe-
matical foundation and theory will be presented, mathematical bases of loosely
defined concepts, such as abstraction, decomposition, etc., will be given, and
intelligent distributed controllers will be introduced. Feedback methods for
real-time execution will also be discussed. Examples will be provided to demon-
strate the development of the structure-based hierarchical controllers.

2. STRUCTURE-BASED HIERARCHY

To obtain a structure-based hierarchy, we will concentrate on physical systems.
At this point, the desired behavior of the system and its functionality are
not considered. This starting point is the major difference between function-
based and structure-based hierarchies. By concentrating on the physical system
initially, a very large set of its functionality could be explored later. In contrast,
function-based hierarchies concentrate initially on the goal to be accomplished
by a system, which enables exploration of a large set of systems for a limited
number of goals.

2.1. Obtaining the Nodes of the Hierarchy

The first step in a structure-based hierarchy is to identify the nodes. Since this
hierarchy is based on the physical system, the nodes are composed of portions
of the physical system. An initial set of system components or portions is
assumed to be available. This set could consist of the control designer’s choice
of actuators, sensors, or it could consist of arbitrary three dimensional slices
of the system. Obviously, in the arbitrary-cut case, insight about the system
components will be lost.
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Mathematically, the given system is represented by Lo, and the initial sets
by {Zi}icz+, where Z* is the set of all positive integers. Usually, the set
{Zi}icz+ is finite. The cases in which the set is infinite, the hierarchy may
have infinitely many nodes.

Usually initial choices have less than necessary nodes to design the hier-
archy. However, as you will observe later, the initial choice determines the
granularity of the hierarchy and is important.

To obtain more nodes for the hierarchy, at least the unions, intersections
and complements of the sets {E;};cz+ need to be included. Since, topological
properties and measurability of the spaces obtained by these sets will be also
needed, more general sets need to be defined. Let Ty be a topology in X
such that {E;};cz+ € Txy. Therefore, the initial choice, all finite intersections,
and unions of the initial choice are open sets in £o. Also, we form the Borel
set By in ¥g, and denote the sets in Bz by X,. The inclusion of measurability
enables us to be able to define mappings which would map open sets to open
sets. The open sets in By will form the nodes of the hierarchy.

2.2. Organizing the Hierarchy

After the possible nodes of the hierarchy is determined, the second step is
to connect these nodes in a coordinated way. The connection of these nodes
will be done in such a way that the system will be described repeatedly in
different detail in the hierarchy. The advantages of this type of an organization
are many. First, it enables different system and environment representations
to exist simultaneously. Second, it permits various levels of time granularity
and a planning horizon. Third, it provides deep reasoning! and planning.
And finally, it improves failure detection and handling techniques. Some of
these advantages will be clear as the development of the hierarchical controllers
progresses in the next few sections. Moreover, this concept is further explored
in [14].

To be able to formally describe this type of hierarchy, first define an index
set to describe the relations among the nodes.

Definition 2.1: ZI™ is a set of node indices, such that

{i|X; is a -nth supernode of £, }, n€ Z~
M= (s}, n=0 ,
{i| Z; is a nth subnode of £, }, nezt

where a nth supernode of ¥, is a node which reaches £, via n links of the
directed graph, and similarly a nth subnode of ¥, is a node which is reached
from ¥, via n links.

Here, Z~ represents the negative integers. Finally, the type of hierarchical
connections is described through the following definition using an axiomatic
approach.

1 As in Artificial Intelligence context.



82 INTELLIGENT AND AUTONOMOUS CONTROL

Definition 2.2: A directed graph with no structural loops, whose nodes are
the open sets in By, is said to be structurally coordinated, if it satisfies the
following Structural Coordinability Axioms.

Structural Coordinability Axioms

1. Yo#0, and Z([)—l]:(l).
2. I,NE;#0, Vjeril

3. %,C U %,
jert!

4. T € Spmars Vj:Ij[}]:O),
where S, € S={S|S={%;|ie{0,1,.. .},
Yi’s are distinct } },

and ?max > ?, VSeS.
Here, 3 represents the cardinal number of the set S.

There may be numerous structurally coordinated hierarchies derived from
the same initial choice of sets, and one may be faced with a choice. This choice
will be considered in greater detail in the next section, where functionalities
are assigned to the nodes.

Although, the Structural Coordinability Azioms do not provide a unique
organization for a given initial choice of sets, they structure the hierarchy in a
very interesting way. First of all, as a result of the first axiom, the single-node
representation of the whole system is placed at the top. This top node indeed
gives the least detailed representation of the system with the largest horizon
and the most coarse time granularity. The second axiom guarantees a common
portion between a node and any of its subnodes. Moreover, the third axiom
ensures that the collection of the subnodes of a node should be at least as
large as the node itself. These two axioms shape the hierarchy to represent the
whole system over and over again with greater detail. As a result, the time
granularity gets finer as the horizon or scope gets shorter. Finally, the last
axiom forces the tip level to consist of the maximum number of disjoint nodes.
Therefore, the tip level has the most detailed representation possible given the
initial choice of sets.

The following theorems further explore the consequences of the Structural
Coordinability Azioms. The proofs of these theorems are included in the ap-
pendix.

Theorem 2.1: The whole system is described completely at the tip level, i.e.,

o= | I

jzM=0
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Figure 2.1: Fischertechnik® robot arm.

Theorem 2.2: The tip level has the finest decomposition, i.e.,

£iNTj=0 or LNY;=%;, VS €Bs and Vj:I!1=0.

Theorem 2.3: Any two nodes which are not subnodes of each other and have
some common portions have to have common subnodes in which the common
portion Is included, i.e.,

L,NZ #0, tgIll vnez

k
zESOX:tgLszm..) Ekamlyplvqlx"'ymkapkqu€Z+
i=1

m € IPINTI) vi=1,. .k

2.3. Applying the Hierarchy

A robotic manipulator is a good example for the application of a structure-
based hierarchy. Physically, it is complicated enough; functionally, it may
exhibit intelligence; and it is also a challenge to control. A robotic manipulator
could be simple in appearance like the the fischertechnik® robot arm, shown
in Figure 2.1, or it could be more complicated like the Intelledex manipulator,
shown in Figure 2.2.

Depending on the initial choice, many structurally coordinated hierarchies
can be obtained from these systems. Examples for each of the robotic manip-
ulators are given in Figures 2.3 and 3.4. In these figures, the dashed boxes
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Figure 2.2: Intelledex Model 605T robotic manipulator.

represent the initial choices. However, it should also be noted that even with
the same initial choice set, a different hierarchy may be obtained depending
on the choice of the other nodes. Indeed, the structural coordinability axioms
do not even force us to include the sets of the initial choice in the hierarchy.
This issue of obtaining multiple structurally coordinated hierarchies will be
discussed further in the next section, where functionalities are assigned to the
nodes.

3. FUNCTIONALITY ASSIGNMENT

A structurally coordinated hierarchy requires functionality and a control pro-
cess to accomplish a desired goal. In this section, a method to embed func-
tionality which will be the basis for the control process of the next section will
be developed.

Initially, one might think that the assignment of functionalities to each of
the nodes of the hierarchy is fairly easy. This would have been easy, if one didn’t
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Figure 2.3: One possible structurally coordinated hierarchy for the Fischer-
technik® robot arm.

have to communicate or delegate work throughout the hierarchy. Realizing
that the job is two-fold: the first being the local functionality assignment, the
second the communication among the nodes; one approach is to separate the
two and to solve one problem at a time.

3.1. Incorporating Intelligence to the Nodes

To represent the knowledge at a node, i.e., to assign its functionality, describe
its accomplishable tasks, and the methods or procedures to accomplish them.
This approach introduces two important concepts: tasks and procedures. In
accomplishing these tasks, procedures frequently use outputs of sensors or mea-
surements, and they are restricted by some constraints and perhaps limited
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Figure 3.4: One possible structurally coordinated hierarchy for the Intelledex
Model 605T robotic manipulator.
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by some sort of resources. Therefore, the use of procedures introduces three
more concepts: measurements, constraints and resources. These concepts will
be the primitives on which the intelligence within the nodes of the hierarchy
will be built. These primitives also incorporate the four of the seven basic
elements, actuators, sensors, sensory processing and world modeling, of the
model mentioned in [15]. Moreover, they are totally consistent with the nested
multiresolutional approach discussed in [14], since the nodes of the hierarchy
are organized in a multi-resolutional fashion.

To communicate or delegate work throughout the hierarchy, another con-
cept will be used; the concept of setting goals for the subnodes. Goals and a
few other primitives will be part of the control process in the next section.

Before all the six primitives are related with each other, brief descriptions
with respect to the node s are given below.

Goals (G,) are assertions which represent the end result to be obtained at
node s.

Tasks (7,) are elementary job descriptions at node s.

Procedures (II,) are methods of accomplishing tasks. The procedures are
separated into two groups depending on their applicability.

1. Local Procedures’, (Il;o) are those procedures which are locally ap-
plicable at the node s.

2. Subprocedures, (1,4 ) are those procedures which are applicable by
subnodes.

Measurements (M;) are the available information from sensors. The mea-
surements are also separated into two types.

1. Local Measurements, (M) are the measurements available locally
at node s.

2. Other Measurements, (M,;) are the measurements of other nodes.
Notationally, the jth node’s measurements, which are available to
the sth node, are denoted by M,;.

Constraints (T,) are task restrictions or exemptions. They are separated
into two types as well.

1. System Dependent Constraints, (I'so) are the type of constraints
which depend solely on the system. They do not change with the
environment or the goals. An example is the maximum torque lim-
itation at a joint of a manipulator due to its construction.

2In the earlier publications, including [16], all of the primitives, which are referred as
Local here, were referred as Current.
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2. System Independent Constraints, (I's_) are the type of constraints
which does not depend on the system but depends on the environ-
ment or on the assigned goals. The angular limitation of a manip-
ulator due to an obstacle is a system independent constraint.

Resources (Y,) are task restrictions or exemptions which are related to the
use of procedures. Similar to measurements, resources are also separated
into two groups:

1. Local Resources, (Ys5).
2. Other Resources, (T,;).

As obvious from the above descriptions, some of the primitives are separated
into two types. Let us consider them one by one, and explore the need to have
different types of those primitives.

Procedures, as described above, are methods to accomplish tasks. As an
example, if the task at a node is to apply a certain voltage to a port until a
sensor reading reaches a given value, and if the node is capable of applying
that voltage; then that procedure is called a local procedure. It merely means
that the node can handle the task itself without asking help or delegating the
job to another node. All the procedures at the tip nodes should be of this type,
since they have no other node to delegate.

However, some of the tasks at the higher levels of the hierarchy may not
be accomplished at that node. An example is the task of increasing the angle
a certain amount at a joint of a manipulator. A higher node may have this
task, and it may also have the knowledge that in order to increase the angle
by that certain amount, five volts should be applied to the input port of the
relevant motor, until eighty-five pulses are counted at its output port. The
node realizing this solution, perhaps through one of its procedures, may not
be able to apply the voltage itself directly, but it might also know that one of
its subnodes is capable of doing just that. The procedure which encapsulates
all this information is called a subprocedure.

The need to have subprocedures is essential in order to increase the process-
ing speed of decision making in the hierarchy. Lack of this information would
result in long search methods for even a simple task, and it would be against
the intent of a hierarchy. This information may be incorporated as part of
the subprocedures, or routines may be implemented for procedure inheritance
which handles different representations among connecting nodes.

The real trade-off is in the completeness and reliability of this informa-
tion. All the mathematical formulations presented in this section are based on
the assumption that this information is complete and totally reliable. Correc-
tions due to incomplete and incorrect information are incorporated during the
replanning and failure handling stage.

Measurements are also separated into two types depending on their origin.
The first type is the local measurements. It consists of all the measurements
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locally available at each node. For the second type of measurements, the as-
sumption is that measurements from other nodes may also be available at a
node. This assumption is to remedy one of the disadvantages in controlling
a non-centralized system. In a non-centralized system, all the information is
usually not available everywhere, so control actions would have to be based
on partial information. Enabling access to measurements everywhere elimi-
nates this disadvantage and provides the same performance with the ease of a
hierarchical design.

Although resources are similarly separated, the resources of other nodes
will only be used for failure handling. Initially, the resources are assumed to
be allocated at each node, but as the goals are communicated, they may also
be upgraded.

The separation of constraints is a little bit different than the other sepa-
rations. The system dependent constraints are static and fixed, and they are
always applicable. On the other hand, the system independent constraints are
dynamic constraints which change as the environment and goals change. The
system independent constraints are usually associated with goals, tasks or pro-
cedures. They may define working spaces of goals and tasks. They may inhibit
the activation of certain tasks providing an asynchronous behavior. They may
also restrict application of certain procedures for certain tasks. The importance
of constraints will be more clear when the control process is discussed.

At every node, there are some tasks, procedures, constraints, measurements
and resources as part of its knowledge-base. Most of the primitives contain
variables whose values will be supplied by the control process. In this chapter,
the act of supplying specific values to variables will be referred as instantiation,
and a primitive whose values are all instantiated will be referred as an instance.
The contents of these primitives are given in more detail below.

Each task has a list of the following elements:

1. Variables to be instantiated.

2. Names of procedures which may accomplish it under certain constraints.

3. Routines which will decide the applicability of procedures under current

constraints.

4. Routines which will instantiate applicable procedures.

Depending on the constraints, there might be more than one applicable pro-
cedure, and all of them should be instantiated for the same instance of a task.
A selection process is needed to pick one, and this process is explained as part
of the control process in the next section.

Procedures have the following elements:

1. Variables to be instantiated including the name of the task instantiating

them.

2. Routines which apply control actions, or routines which decompose the

instantiating task into smaller components for the subnodes.

3. Routines which recheck the constraints, and the use of resources.

As a result of the association among tasks and procedures, different instances
of the same procedure might be activated for a task or for a bunch of tasks.
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As mentioned earlier, the ordering of these procedures is achieved through the
inclusion of constraints.

Constraints either exist independent of the tasks and procedures as most
of the system dependent constraints do, or they are incorporated with them.
The constraints, which are independent of tasks and procedures, are for the use
of all the primitives and processes in the node. The other constraints, which
are incorporated with the tasks and procedures, are for the specific primitives,
and they are mostly derived due to the instantiation of the primitive. As an
example for the latter case, think of the motion of the manipulator around
an object. Assume that to accomplish the motion, a joint has to move thirty
degrees in the positive direction first, and then after another joint reaches a
precomputed value, it should move ten degrees in the negative direction. To
accomplish these tasks, two instances of the same procedure might be chosen;
one with +30°, and the other with —10° for the angle variable. To accomplish
the sequential behavior, a constraint in the second instance of the procedure is
to be included, such that it doesn’t initiate the motion, until the constraint is
satisfied. The request for the status of the constraint variable may be performed
by a routine in the procedure utilizing the other measurements primitive.

Measurements contain actual sensor values of the system. Measurements
requested from other nodes, i.e., other measurements, are obtained via dynam-
ically generated “smart” links. The links arc established, when there is need,
and they only relate the requested measurements. These links have only the
local knowledge of the nodes they are linking. However, they are smart enough
to translate one knowledge representation to another. In the example of the
two instances of a procedure above, the second procedure with the constraint
establishes a link to check the status of the other joint. These links also in-
corporate the seventh element, global memory/communications of the model
mentioned in [15].

3.2. Formalizing Node Functionalities

Up to this point, only the pragmatic approach was discussed in describing func-
tionality of nodes. Formal mathematical descriptions of these primitives are
less intuitive, and they are based on the relations discussed above in the loosest
sense. For example, as far as the mathematical representations are concerned,
it is irrelevant where and how the measurements are obtained. The important
mathematical property is the existence of an applicable procedure which will
work under available constraints, measurements and resources. By including
other measurements and “smart” links, an applicable procedure which utilizes
the new measurements may be created, or the number of applicable procedures
may be increased.

To be able to formally define the relations of primitives among the nodes
of the hierarchy, domains of the primitives and some mappings are needed to
be defined.

The domains for the primitives are defined first. Initial sets of all the
primitives are chosen similar to the initial set of the structural coordination.
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However, unlike the initial set of the structural coordination, the initial sets
of primitives might not always lead to an acceptable functionality distribution
in the hierarchy. Usually, this failure of acceptable distribution is due to the
omission of some primitives, specifically some tasks and procedures. Therefore,
all practically possible sets in the initial choice will be assumed included. As
with all the axiomatic approaches, a method to generate initial sets of the
primitives can not be proposed, but whether or not an acceptable functionality
distribution is achieved for a given set can be checked.

For the initial sets of primitives, the sets of all the initial choices of unin-
stantiated goals, tasks, procedures, measurements, constraints and resources at
node s are denoted by the sets { G% }icz+, { 7% }iez+, {11 icz+, { M! }icz+,
{T¢}icz+ and { Y% }icz+, respectively. Then, all the primitives with all of
their possible instances in the sets: Gg, Ts, IIs, Mg, I's and Yg® are in-
cluded.

Furthermore, topologies in |J, {G% | G¥ € Gs}, U AT¥ | T € Ts},
UdT2 | T2 € T}, U, { M3 | MZ € Mg}, U,{T% | [? € Ts}, and
Ul Y5 ] T2 € X } are denoted by TGS, TTS, THS, TMS, Trs and T-rs,
respectively, such that the sets in Gg, Ts, IIs, Mg, I's and Yg are distinct
by definition. The ath elements of TGS, TTS, TI'IS’ TMS, Trs and T-rs

are denoted by G":, Tf‘, ﬁ‘:, Mf‘, I‘;" and Yf, respectively.
Finally, some mappings relating the primitives are defined.

Definition 3.3: A Refining Mapping from a node s to its subnode t, ] is a
mapping from the space of tasks and constraints of node s to the space of tasks
and constraints of node t, i.e.,

T xTry = Tr XTr, 1€ M

Definition 3.4: A Procedure Association Mapping at node s, P} is a mapping
from the space of tasks, constraints, measurements and resources to the space
of procedures of the node s, I.e.,

3 . —
P; ‘TTSXTFSXTMSXTTS THS'

Definition 3.5: A Task Accomplishment Function, A*" is a function from
the space of tasks and constraints of a node s and procedures, measurements
and resources of its the (sub)nodes to {0,1}, ie.,

sn .,
A 'TTSXTI‘SX{THtXTMtXTTt}tEIE"] —>{0,1},
so that for a set V, ; € foTrsx{fIf‘xTMt XT‘I‘t}teI‘""

AV, ) = 1; if H,ﬁ‘ ’s accomplish Tf‘ given other primitives,
Y71 0; otherwise,

where n is either 0, or 1.

3In the earlier publications, these definitions are slightly different
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Definition 3.6: A Goal Decomposition Mapping at a nodet, Al is a mapping
from the space of goals and constraints of node t to the space of tasks and
constraints of the same node, i.e.,

Al T XTpr — T XTp .
AR Rl T ,*'T,

Definition 3.7: A Goal Formation Mapping from a node s to its subnode t,
&} is a mapping from the space of tasks and constraints of node s to the space
of goals and constraints of subnode 1, i.e.,

¥ Tp xTr, = TG XTr, tel

In the definitions of mappings, names like “refining”, “procedure associa-
tion”, “goal decomposition” and “goal formation” are used. These names are
for reference purposes only. A mapping is not required to perform the function
that its name implies, just because it has named that way. Indeed, in the
definitions, only the spaces of the mappings are described. If the only restric-
tions were the above definitions, any mapping with the matching domain and
range would have been acceptable. So, some restrictive requirements should
be imposed on these mappings, such that they are forced to function the way
their names imply. The following definition imposes those requirements.

Definition 3.8: A structurally coordinated hierarchy is said to be functionally
coordinated, if there exists mappings and primitives, as described above, which
satisfy the following Functional Coordinability Axioms.

Functional Coordinability Axioms

¢; and 1/)5_1 are both continuous.
v (0)=0.
VV3€0><TFS’ '(/):(V.g)GQXTFt.

IR SR

vvsa"/sﬁ € TTSXTFS’
YI(VEUVE) =g (Va U (V)F), veerll
5. YV VPeTp xTp,,

Y VNV =i (VN (VF), viezll
6. VV.eTp xTp,: Wi(V)=0<=se{u|IH =0}
7. T‘,a :(D(:)P,’(T;’xvs):(b, VV’ETPSXTMSXTTS'
8. VIS ;é@, VV,,ETTSXTI‘SXTMSXTIS: I3 EPJ(V,)
= AY(I1*xV;) = 1.
9. VV"ETI‘SXTMSXTTS’ and VT:‘QT;Y?S@;

P ((Teu Tf)xv;) C P (Tng,)
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c P (@2 nT))xV,) -
10. VV&ETTSXTI‘S> and Yt € M. Y5(V,) #0
<3V, € ™, *Tx, : 1> € P (v (V,)xUy),

and ASY(V,x{0&xU,}, .m)=1.

tezll
11. AS = Identity mapping.

12. The following diagram commutes.
b
TTSXTI‘S > TTtXTrt
o7 Al
TGt X Trt

The functional coordinability axioms provide restrictions to shape the rela-
tions of primitives among themselves. Most of the axioms express the notions
described earlier mathematically.

The first six axioms define some properties of the refining mapping. Here
is a partial list.

1. Neighborhoods of task-constraint pairs are mapped to neighborhoods of
task-constraint pairs of the subnodes*.

2. No task-constraint pairs are refined from an empty task-constraint pair.

3. Unions and intersections of task-constraint pairs can be taken before or
after refinement.

4. Only the tip nodes have no further refinement.

The refining mapping is well behaved for the unions and intersections of
task-constraint pairs. As an example, consider two task-constraint pairs, which
adjust the angle of a robotic joint under different constraints. The forth and
the fifth axioms guarantee the existence of a third task-constraint pair, which
changes the angle under both of the constraints, gets refined to the combination
of the refinements of the first two pairs.

The restrictions on neighborhoods of task-constraint pairs are especially
important for different instances of a task. For example, assume two instances
of a task, which change an angle of a robotic joint by 20° and 40°. Assume also
that they are refined to subnode tasks which apply 5 volts to the joint input
for 1second and 2seconds, respectively. Then, it is desirable to refine an angle
changing task into another instance of the voltage applying task. However,

4 Although the statement about mappings of neighborhoods is mathematically incorrect,
it is the closest informal description of this property.
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this desired behavior is only local. Extension requires more structure on the
space of tasks and constraints than defined here.

The refining process terminates at the tip nodes, not before. This require-
ment in the sixth axiom intends to force the relations of the primitives to
extend the full depth of the hierarchy. Although, mathematically, it is possible
to have identity mappings instead of refinements, this should be avoided in
practice. The next four axioms restrict the relations among procedures and
task-constraint pairs.

The procedure association mapping is restricted in the following manner.

1. It associates at least one procedure for each task and one task for each

procedure.

2. Any procedure associated with a task accomplishes the task.

3. Any procedure which accomplishes two tasks at the same time, also ac-

complishes each of the tasks.

4. Any procedure which accomplishes a task, also accomplishes any portion

of the task.

5. For every refinement of a task-constraint pair, there exists a procedure,

and its accomplishment is foreseen from the refining node.

6. If the accomplishment of a task-constraint pair can not be foreseen, then

there should be no further refining.
Some of these restrictions are for good book-keeping, such as requiring a pro-
cedure to be associated with a task. Some restrictions require the inclusion of
procedures with related tasks. And some others enforce the knowledge about
the capabilities of the subnodes to be complete.

The last two axioms relate goal primitives to the others. Since refining
mappings refine tasks of a node to tasks of its subnodes, goal formation and
decomposition should be consistent with this refinement process. Finally, to
start up the refinement, the goal decomposition at the top level is assumed to
be trivial.

The most important result for a structurally and functionally coordinated
system is in the following theorem.

Theorem 3.4: For any given G§ € T G,., at every node s, there exists some

V, € TMS XTrs xT-rS, such that G§ can be accomplished by local procedures
in a structurally and functionally coordinated system.

"The proof of this theorem is also included in the appendix.
The next step is to describe the control flow associated with a structurally
and functionally coordinated system.

4. CONTROL PROCESS

In this section, a control process based on the functionality assignments de-
scribed in the previous section will be defined. The process will require a
structurally and functionally coordinated system. Here, the control process



Design of Structure-Based Hierarchies 95

will be assumed identical at every node to enable a uniform treatment. How-
ever, as long as input-output relations of nodes are preserved, any type of
control process including conventional, Petri net, fuzzy logic and neural net-
work controllers can be utilized.

4.1. Describing the Control Flow

The only primitives transmitted down in the hierarchy are goals, constraints
and resources. From a broader point of view, all the other primitives are merely
internal values. To be able to process these transmitted primitives, the first
step is to decompose them into task-constraint pairs. The goal decomposition
mapping described above are for this purpose, and it incorporates the fifth
element, task decomposition of the model mentioned in [15]. Part of this step
is also to determine the applicable procedures under the limitations of con-
straints, resources and available measurements. Here, it is possible to obtain
more than one applicable procedure set. As a result, a selection process is
needed. In the next step, this selection is performed according to some crite-
ria. Once a selection has been made, local procedures and subprocedures are
obtained. Local procedures are applied as soon as their constraints are satis-
fied. Subprocedures have to go through another process to form new goals for
the subnodes. This process is represented above by the goal formation map-
ping. At this final step, nodes form goals, constraints and resources for the
subnodes, such that accomplishments of all the goals of the subnodes imply
the accomplishment of the initial goal of the node.

Before, more details about the process is given, a schematic representation
of the control process is given in Figure 4.5. The process is identical at every
node, and in the figure the process is shown for a single node only. The stiffness
and cost values attached to the transmitted primitives will be explained later.

The knowledge at a node is divided into two types. The first type consists of
the knowledge about the capabilities of the node itself and its subnodes. This
knowledge is given to the structure a priori in terms of the primitives, such as
tasks, procedures and constraints, and their relations with each other, such as
associating procedures with tasks. The completeness of this knowledge is very
important to cover almost all the functionalities of a given system. Details of
this type have been given in the previous section.

The second type of knowledge consists of the knowledge which utilizes the
first type. The goal decomposition, selection of a procedure set and the goal
formation are as a result of the second type of knowledge.

4.2. Formalizing the Control Flow

The knowledge to decompose goals into task-constraint pairs may become very
complicated. Incorporating some sophisticated reasoning process is one possi-
bility. On the other hand, it can be as simple as using look-up tables. Perhaps
the most efficient approach is to use more elaborate methods at the higher
levels of the hierarchy, and simpler methods at the lower levels. A somewhat
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Figure 4.5: Control process diagram for each node.
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different approach is needed to form the goals for the subnodes. The subproce-
dures, which are selected to accomplish the tasks, actually contain information
about the subnodes’ tasks. Therefore, most of the reasoning has been done,
before the goal formation process starts.

The selection of procedures among a large number candidates requires a
stage of optimization. Generally, a decentralized cost criterion is minimized or
maximized, [17,18]. This function can be total energy, entropy or a combination
of physical quantities, provided that an extremum exists. It can even be the
sixth element, value judgment of the model mentioned in [15]. However, in
order to have a reasonable selection, the importance and the priorities of certain
primitives should be specified. For example, a constraint on the maximum
allowable grasping tension at the end-effector of a robotic manipulator can be
relaxed, if the manipulator is handling a metal block. On the other hand, the
constraint has to be observed strictly, if it is handling an egg. In the selection
process discussed here, a criterion will be assumed to be provided, such that a
minimum exists.

To represent the strictnesses of goals, tasks and constraints, a set of stiffness
constants, CG;, CT.. and CF; are defined for the initial primitives Gi, Tsi and
I, respectively, such that ¢ € {0} UR* U {oo}, where Rt is the positive real
numbers. For essential primitives, ( = oo, and strictness decreases as ( — 0.
When relative orders of primitives are not so obvious, a finite number of values
or even fuzzy qualifications may be used for the (’s.

The initial resources and measurements have to be associated with another
kind of constant to represent the cost of using them. These are called cost
constants, and they are denoted by 7y, and 1) for resources and measure-
ments, respectively®. Again, real values are assumed for these constants, such
that ) € {—c0} UR U {co}, where R represents the real numbers. Here, 7 =0
represents no gain or loss, 7 > 0 a decrease In resources or a penalty for using
measurements, and 77 < 0 an increase in resources or an encouragement to use
measurements.

The introduction of these constants may help selection within a node, but
they need to be incorporated with the formal definitions. The stiffness and
cost constants are initially assigned only to the initial sets of the primitives.
These definitions should be somehow extended to the other elements of the
topologies. The following definition provides these extensions.

Definition 4.9: Given the stiffness and cost constants for the initial sets; the
stiffness constants for goals, tasks and constraints are defined by

CU, = SgP{CV,,XUs (Vs)}>

5In earlier publications, different versions of stiffness and cost constants were referred by
o and B3, respectively. However, since o and (3 are used for the elements in various topologies
in this chapter, and the definitions differ slightly, new variables are introduced to prevent
any possible confusion.
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for all U, In TGS or TTS or TPS, and V; in Gg or Ts or T's, respectively,
where

_J1 HUNV #£0
XU(V)“{ —oo FUNV =D

The cost constants for resources and measurements are defined by
Ny, = SSP{UVSXUS(Vs)}v

for all U, in TMS or T-rs, and V, in Mg or Yg, respectively. The stiffness
constant pairs in the product space TTS XTrs are defined by

o, = (sup {6v. X, (Vox2)), up G, Xo, (VX W2)}),

for all U in TTSXTFS’ Vs in Tg, and W, in Csg.

4.3. Obtaining Consistent Local Decisions

Another important consideration is to obtain a consistent propagation of the
stiffness and cost constants. To achieve this consistency, some restrictions on
these constants have to be imposed. The requirements for this consistency are
described in the next definition.

Definition 4.10: A structurally and functionally coordinated hierarchy is said
to be functionally consistent, if it satisfies the following Functional Consistency
Axioms.

Functional Consistency Axioms

1] . —
1L veezll: Cys(Faxi?) 2 Chaxis = Sup | Cpymt (Foxf):
u€Zl,”

2. Vs MM =M = . 2 Nggs-

3. Vt,SZT?nT?:T?:)T]Y?ZT]Tf.

The functional consistency axioms are only guidelines to check the assign-
ments of the stiffness and cost constants. In order to completely make the
hierarchy optimize consistently, more restrictions should be imposed on the
individual minimization criteria. Since our intent is to be flexible, no more
restrictions will be imposed here.

In a functionally consistent system, the task-constraint pairs obtained from
the task refining mappings must have equally or more strict stiffness constants.
Moreover, the task-constraint pairs which may be refined from different super-
nodes must be assigned the most strict stiffness constants. These two require-
ments are from the the first functional consistency axiom. The second and the
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third axioms consider the cases where a measurement or a resource is utilized
in more than one node.

Up to this point, a nominal control process is described. This process
completely depends on the correctness and the completeness of the knowledge
incorporated. The planning portion may lack the consideration of uncertaini-
ties and unpredictable changes. To remedy this situation, practical issues in
local and global feedback methods will be considered in the next sections. For-
mal descriptions of these methods are rather complicated, and they will not be
included here.

5. LOCAL FEEDBACK METHODS

Local feedback methods consist of control strategies which utilize available
measurements in real time. Local methods are confined within each node,
and excluding measurements, there is no cooperation or information exchange
among nodes. Because of all the desirable properties of feedback, the type of
procedures, which utilize measurements, should be preferred whenever possible.

Some systems come with adequate measurements to apply feedback con-
trollers, some do not. For example, the fischertechnik® robot arm has semi-
accurate measurements of joint angles. On the other hand, its end effector has
no pressure sensor, so even a fragile object has to be grasped without feedback.
For the occasions when feedback is not possible, there is always a higher risk of
failure. As a result, some other issues, such as failure detection and handling
become important. These issues will be discussed later.

Some local procedures, which implement feedback, frequently use measure-
ments from other nodes of the hierarchy. Whenever such a measurement is
used, a smart link between the nodes should be established. This link would
be temporary, and it would be disconnected by the node requiring the mea-
surement. The link should also be smart enough to seek, interpret and relate
the information at a detail meaningful to the node. The location of an object
to be picked up by a robotic manipulator is a good example. The top node
or any other high level node may need to know the location of the object in
relation to the end effector. However, the exact coordinates involve too much
detail for that node. So, a vicinity or a general direction would be desirable,
and the link is expected to provide it.

A structurally coordinated system forms a hierarchy by definition, but in-
clusion of smart links may induce temporary loops into the system. The loops,
on the other hand, do not introduce cyclic delegation of tasks during planning,
since the links only transfer measurements.

6. GLOBAL FEEDBACK METHODS

Global feedback methods consist of strategies that adjust the planning methods
according to the current status of the plan. This type of feedback involves
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information exchange among nodes, i.e., they are “inter-node” feedback control
strategies.

Similar to classical feedback methods, the global feedback process observes
the output, and it supplies the necessary changes in planning to eliminate
the unplanned behavior. On the other hand, unlike the classical feedback
methods, the planned behavior and the observed output do not belong to the
same class of representations. These different representations necessitate a tip-
up information flow propagating node by node up in the hierarchy, [19,20]. Due
to the nature of feedback not only the successes, but also the failures should be
reported. Therefore, a careful classification of feedback reports and responses
to these reports should be prepared.

6.1. Representing Feedback Information

To span all possibilities, four types of reports, which represents the global
feedback information, are introduced as in [21].

Completion Reports inform a supernode the accomplishment of the goals
originated from that node. They include an optional time stamp, and a
list of procedures which were used to accomplish that goal.

Inclusion Reports are utilized both to initially transmit goals to lower level
nodes and to inform the changes to connecting nodes. These reports add
new goals, constraints or resources, and they also update the existing
constraints or resources. If the reported constraints or resources already
exist, the new values are set, and the change is assumed to be restrictin:
for the constraints or relaxing for the resources.

Exclusion Reports remove the existing goals, constraints or resources due
to the changing circumstances. The meaning of the reports for existing
constraints or resources is the opposite of the inclusion report.

Failure Reports inform the higher level nodes about the failures of goals and
briefly explain the bases of these failures. These reports are issued after
an initial unsuccessful local replanning was performed. They contain
a status field which describes the time element of the failure. For an
expected failure in the future, the status may be a general information,
such as “not-urgent” or a specific time duration, such as “10 hours”.

Under certain circumstances, a constraint or a resource may be both re-
stricting and relaxing. For these circumstances, both inclusion and exclusion
reports are issued with the relevant portions included in these reports.

6.2. Detecting Changes

In order to submit one of these reports, detection methods need to be devel-
oped. Since detection methods depend on the type of the changes, they will
be classified into two types.
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Local Changes are the type of changes which are encountered during real-
time execution. The effects of this type of changes are usually immediate
and detections are made by the relevant nodes. Moreover, the detecting
node decides, if a change is positive or negative. An example of such a
change is the reduction of the maximum angular speed of one of the arms
of a manipulator due to increased friction.

Remote Changes are the changes which are detected by nodes other than
the relevant nodes. Their effects are usually not immediate, but the
relevant nodes should be informed as soon as possible. The simplest
way to identify the relevant nodes is to put marks on the constraints
and resources utilized, during the initial planning process. Later, when
the changes are detected, they are propagated first all the way to the
top node, then throughout the hierarchy, so that the relevant nodes may
be identified from their marks. (Here, an implementation of a black
board architecture might improve the speed of response considerably.)
An example of this type of a change is a decrease in temperature which
might adversely effect the viscousity, thus the speed, of an hydraulic
motor. The effects of this change might not be detected locally at the
motor node, due to the large time-constant of the heat transfer.

6.3. Deciding on a Feedback Strategy

In a hierarchical organization, adjustment to planning methods may also be
accomplished in various ways.

First order replanning is when replanning is performed under the assump-
tion that the hierarchy stays the same.

Second order planning is when replanning techniques include some organi-
zational changes to accommodate a better control strategy, but the new
organization is still hierarchical.

Third order planning is when replanning techniques consider other organi-
zations, such as dynamical and non-hierarchical for the “best” control.

The first order planning is not only the easiest, but it also has the ability to
replan locally whenever possible.

In the optimal case, under any type of change, the replanning process starts
from the top node and proceeds similar to the initial planning process. This
method requires extensive time and work. Moreover, it is also impractical,
if changes occur at irregular intervals during the execution. To eliminate this
type of replanning, a strategy which uses the initial set of tasks may be utilized.
This local replanning strategy is remedial, and it is suboptimal.

The replanning process at a node is triggered by an inclusion or an exclusion
or a failure report. When a node either generates or receives such a report,
it first decides on the character of the report. If the report is decreasing
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the operation boundaries, it is accepted as a negative report, otherwise it is
accepted as a positive report.

6.4. Replanning under Negative Changes

To consider replanning under negative changes, assume a node obtains a neg-
ative report. After obtaining the report, the node first decides if the report
will lead to a failure in any of the primitives or not. This decision is based
on the use of the changed variables by the selected procedures. If under the
new conditions, the task decomposition process gives the same set of tasks,
procedures and constraints, then the inclusion or exclusion report will not lead
to a failure report. Otherwise, a failure report will be issued by that node.

Failure reports can be issued for all the primitives. However, failures in
constraints, resources and measurements are the most common types of fail-
ures. Incorrect estimations, unpredictable events or malfunctions may all be
reasons for these types of failures. Failures in procedures are usually issued as a
result of failures in constraints, resources or measurements. But, these failures
may also be due to incorrect or missing information in the knowledge base.
Failures in tasks generally follow failures in procedures. Incorrect associations
of procedures and incorrect decomposition rules may also lead to this type of
failures. Finally, failures in goals are the most severe failures, and they are as
a result of unresolved failures in tasks.

To observe the replanning process, we start with a negative inclusion or
exclusion report at a specific node. This report might be generated at the
node as a result of a local change or it can be received from another node as a
result of a remote change. Irrespective of the source of the change, a negative
report will cause either a failure in constraints, resources or measurements.

If a failure in constraints is issued, then the next step is to check the stiff-
ness of the constraint. If the constraint has the highest level stiffness, i.e., the
stiffness constant is infinity, then a failure in procedures will be declared. Oth-
erwise, the new constraint will be reported to the relevant connecting nodes,
and no other replanning action will be taken. For failures in resources and
measurements, before checking the stiffnesses, the existence of an alternative
source is checked. If such an alternative exists, then the alternative will be
utilized. It will again be reported to the relevant connecting nodes. If there is
no alternative, then the stiffnesses will be checked, and an identical action will
be taken.

Failures in procedures are issued for three reasons.

1. Failures in constraints, resources and measurements are unresolved.

9. Measured results mismatch with the expected results.

3. A failure in goals is received from a subnode.

The first step after this type of a failure is to check for other procedures which
will accomplish its associated task. Other choices will not give an optimal solu-
tion, but they will accomplish the task. If there is at least one more applicable
procedure which will accomplish the associated task, then that procedure will
be applied. If there is no such procedure, then the stiffness of the associated
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task will be checked. If it has the highest level stiffness, then a “failure in task”
will be declared. Otherwise, it will be reported to the supernodes, and normal
execution will be continued.

Failures in tasks are issued for two reasons.

1. Failures in procedures are unresolved.

2. Completed tasks do not accomplish the decomposed goals.

Under these conditions, the goals, from which the failed tasks were obtained,
will be decomposed again to get different sets of tasks. If this process is suc-
cessful, then the new procedures will be checked. According to this check, the
new procedures will either be applied and reported to the connecting nodes,
or a failure in procedures will be issued. If this process is not successful, then
a “failure in goals” will be issued.

Failures in goals are issued when failures in tasks are not resolved. The
replanning for this type of a failure cannot be handled at this node, and it will
be reported to the relevant supernodes.

Since higher level nodes have a more broader view of the planning process,
some of the resolutions might not be acceptable by them. If this is the case,
higher nodes can issue reports with an interrupt urgency status to get the
attention of the lower level nodes.

During the replanning due to negative changes, there are two interrupt
routines; one of them is soft, and the other one is hard. The soft interrupt is
when new goals from supernodes are received. The receiving node first finishes
up the current pattern and then goes back to decompose the new goals. The
hard interrupt is when the time expires during replanning. If this happens, the
node will stop all the processes, and it will run a retrieval plan. A retrieval
plan is an alternative plan to reach an acceptable state, when the originally
intended state is not achievable by any set of goals. These plans are usually
pre-prepared for a large class of possible cases, and minor adjustments for the
specific case are sufficient. The connecting nodes will also be informed about
this decision.

6.5. Replanning under Positive Changes

The replanning under positive changes is simpler than the one due to negative
changes. The replanning process tries to do better than initially intended.
However, since the original procedures will accomplish the required goals, there
is no real need to try harder for a new set of procedures. This approach
definitely does not utilize the whole potential of the new situation.

When positive changes are measured or received, first the connecting nodes
will be informed. Second, the nominal control process will be restarted this
time with the new information. The starting point of this process will be either
the decomposition of the goals or the selection of sets of tasks, procedures and
constraints depending on the urgency of the replanning.

During the replanning due to positive changes, there is only one hard inter-
rupt routine which is activated when response time expires. When this time
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expires, the replanning process will stop, and the original set of procedures will
be used.

7.

CONCLUSIONS

In this chapter, a different hierarchical organization is introduced. The major
difference of this organization is that it is based on the physical structure of a
system, rather than its functionality. This object-oriented approach has some
unique properties.

Most of the functionality of a system can be utilized under the same
organization.

The hierarchical organization is not restricted to a tree hierarchy, where
every node has at most one subnode.

Decision making and controllers are distributed throughout the hierarchy
for real-time parallel processing.

Overlapping representations of the portions of a system can be incor-
porated, and as a result, many functionalities of these portions can be
explored.

A complete theoretical definitions of mathematically vague notions such
as abstraction, summarizing and functional decomposition are easily ob-
tained.

The organization is modular in such a way that addition of new hardware
does not alter the existing structure.

Failures and replanning can be handled locally as much as possible.

It also has some additional desirable properties.

The hierarchy is applicable to all functional systems.

The design process naturally forms a hierarchy such that the system is
described in increasing detail, and the intelligence decreases from top to
tip.

The system and its functionality are described multi-resolutionally and
possibly redundantly at different detail to provide deep reasoning and
planning
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APPENDIX

In this appendix, the proofs of the theorems are presented.

Proof of Theorem 2.1: The proof has two parts.

1.5, D Uj:I[.”:O ;.
]

2. 20 2 Uzt 5.

The proof of the first part is trivial from the definition of the Borel set By in
Yo, since the open set ¥; C ¥y for all £; € B;. The second part is proven

by contradiction. Assume Xy D UJ. g E;. From the fourth structural coor-
=

dinability axiom, ¥; € S, for all j, such that I][I] =0, and I][-O] # 0, where
S_ .. is as defined in the axiom. Let £, = £, \U Wiy L, € By. Then, from

the definition of £y, Xy, # 0, and £, NE; = 0 for all j, such that I[I] = 0.

Next, define S} ., = max U{Z.}. But S; ., €S, and anax = Smax + 1 which
contradlcts the fourth axiom. O

Proof of Theorem 2.2: Let S_ ., be as in the fourth axiom. From this

axiom, ¥; € S, for all j, such that I][I] = 0. Assume 3X; € By, and
3% € Spaxs such that Z,NE; #0and 5, NE; £%;. Let By, = 5, NE; € By
and X, = 5;\X; € Bz. Then, X, %, #0,Z,UL, =%; and &, ﬂZv __0 Now,

let S} ax = [Smax \ {Zi}U{Zu, v }. But then Sk, € S and Smax Sma
which contradicts with the fourth axiom. O

Proof of Theorem 2.3: Assume E,NE; #0 forat g ") for all integer
n,and L, NE;, € Ul 1 Em, forall k, my, p1, q1, ..., mk, px, @& € 2%, such

that m; € Z¥P) N7 foralli=1, ..., k. Let

JUU U U smes

k€Ztislpe2+ €2+ o eglrlnglal

and £, = E, N %, \ X,. Here, £, # 0, and £, € By as a consequence of
the previous assumptions and definitions. From the previous theorem and the
fourth axiom, 3%, € S such that ¥, N ¥, = ¥,. Therefore, from the

max)’
definition of £,, £, C £, NT,. But then, £,, C &; for any j € ZI"1 # 0, and
for any j € It[nﬂ # 0, where n;, ny € Z%, as a result of repeated applications
of the third structural coordinability axiom. Therefore, 3n, € Z*, so that

w € I where Z0"* = ¢, and 3n, > 0, such that w € ZI™, where

I["'+1] = () which contradicts with the assumption. O

Proof of Theorem 3.4: To prove the theorem, the refining process will be
first considered at one node. Then, the results will be extended for all the
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nodes, since the process is identical at all the nodes. So, assume the nontrivial
case, i.e., G§ # 0. Since, AJ = Identity mapping, Ty’ = G¢. Then, pick a
set Vp € TFOXTMOXTTO, such that there exists Hg € PY(T¢xVp), and

ﬂg # 0. Such a procedure exists from the seventh axiom. Moreover, the pro-
cedure also accomplishes the task with the given primitives as a consequence
of the eighth axiom, i.e., AT x ﬁg xVp) = 1. At this point, if the procedure
is a local procedure, i.e., ¥ (Tgx(Vo N (TFO x0x0))) = 0, then the proof is

concluded. If not, then the tenth axiom guarantees that the accomplishment
of all the refined tasks implies the accomplishment of the original task. Also
from the twelfth axiom, the goal formation and goal decomposition mappings
will obtain the same task refinement, i.e., Al o ®9 (T x(Vo N (TFO x0x0))) =

YHTgx(Vo N (7'1-\0><0><(0))). Therefore, the initial goal is refined and dis-

tributed among the subnodes of the top node. As a result, the process is
advanced one level down in the hierarchy. If all the selected procedures are
local at a level before the tip, the proof is concluded at that level. If not, from
axioms six, seven and eight, there exists local procedures which accomplish the
refined tasks at the tip level. O
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