3

Model-Based Architecture Concepts
for Autonomous Systems Design and Simulation

Bemard P. Zeigler and Sungdo Chi
Al-Simulation Group
Department of Electrical and Computer Engineering
University of Arizona
Tucson, AZ 85721

Abstract

This chapter presents a coherent methodology to integrate planning,
operation, and diagnosis within autonomous systems. After briefly reviewing
the functional aspects of high autonomy, we describe a systematic methodology
to integrate these aspects within a model-based architecture. Such an architecture
is based on suites of models developed to support the various functional aspects
or tasks. A general approach to task-based model development is then
summarized in a Hierarchical Encapsulation and Abstraction Principle (HEAP)
and this principle is illustrated in the planning, operations and diagnosis task
domains.

1. OVERVIEW

To cope with complex objectives, an autonomous system requires integration of
symbolic and numeric data, qualitative and quantitative information, reasoning and
computation, robustness and refinement, discrete event system specification and
continuous system specification. In general, the Al approach is too qualitatively
oriented to handle quantitative information very well. For example, classic Al
planning approaches [1,2,3] do not consider the timing effects, which should be of
primary concern in representing our dynamic world. On the other hand, control
researchers have a fairly narrow view-point, so that they mainly focus on refinement
rather than robustness of a system [4], and they usually consider only the normal
operational aspects of a system [5,6]. However, autonomous systems have to deal
with abnormal behavior of a system as well. Thus, it is crucial to have a strong
formalism and an environment that allows coherent integration of symbolic and
numeric information in a valid representation process to deal with our complex
dynamic world.

58 INTELLIGENT AND AUTONOMOUS CONTROL

1.1 Model-Base Autonomous System Architecture

Figure 1.1 presents a model-based autonomous system architecture to integrate
decision, action, and prediction components. The architecture features a model base
at the center of its planning, operation, diagnosis, and fault recovery strategies. In
this way, it integrates Al symbolic models and control-theoretic dynamic models into
a coherent system,

Approaches to design various autonomous component models for planning,
operation, and diagnosis have previously been developed in their respective research
fields so that there are many overlaps as well as inconsistencies in assumptions.
In an integrated system, such components cannot be considered independently. For
example, planning requires execution, and diagnosis is activated when anomalies are
detected during execution.

SYSTEM
INTERFACE

PLANNING, SCHEDULING, AND REASONNG CONTROL AND SENSING

v

Figure 1.1. Autonomous System Architecture and its Model Base Class

Model-Based Architecture Concepts 59

Planning is defined as “Reasoning about how to achieve a given goal.” It
employs a suitable model to map a connecting sequence of states from an initial state
to a goal state within a normal operation envelope. Once a plan is set up, it
should be faithfully executed. “Execution with verification” maps from the input
command and its expected normal responses to success/failure. As long as the
execution is successful, it continues until the goal is achieved. = However, if it
fails, the diagnosis function will be activated. Diagnosis is defined as “discovering
the cause of a failure.” It maps back from one or several observed symptoms to
one or several plausible anomalies that may have caused the observed symptom(s).
Having identified the causes, the autonomous system should be able to recover, i.c.,
plan a path from the faulty state of the real system to a normal state on the original
plan.

1.2 Model-based Planning

There are two major approaches to task planning: one considers planning as searching
and the other considers planning as a representation problem. The former deals with
the initial planning problem where no prior experience is employed. In contrast, the
latter, so-called case-based planning, views planning as remembering, i.e., retrieving
and modifying existing plans for new problems [7].

In our model-based approach, planning is achieved by pruning a System Entity
Structure (SES) to select Pruned Entity Structures (PES) from alternatives [8].
Although space limitations preclude a detailed review of the SES concepts and the
associated simulation environment, we present an example in the Appendix. Further
detail is available in [9]. The PESs are in turn transformed into simulation model
structures for execution, The non-experienced initial planning, which means the
pruning of SES alternatives, can be achieved by using a rule-based approach.
Every action (or state) node has several rules associated with system constraints, pre-
conditions, and post-conditions. The resultant PES is saved with an index into
an Entity Structure Base (ENBASE) for reuse. In contrast with non-experienced
planning, the experienced planning is done by retrieving PESs from the ENBASE.
The planner first retrieves a plan that might be used to achieve a given goal, or
generates a new trial plan from partial plans if no existing plan is suitable. This
candidate plan is then projected forward via simulation by attaching component
models in a model base (MBASE), where low level planning is embedded.

Once an execution model is synthesized, a lower level planner produces a goal
table that is a list of 4-tuples: state, goal, command, and time-to-reach-goal. From
these, a time optimal path from an initial state to a goal state is readily derived.
Since discrete event models embody timing it is natural to base optimal sequencing
on predicted execution time. The planner works by developing paths backward
from the goal until the given initial states (possible starting states of the given
system) are reached [8,9].

1.3 Model-based Operation

The event-based control paradigm realizes intelligent control by employing a discrete
eventistic form of contro! logic represented by the DEVS formalism [10,11]. In
this control paradigm, the controller expects to receive confirming sensor responses
to its control commands within defined time windows determined by its model of the

60 INTELLIGENT AND AUTONOMOUS CONTROL

system under control. An essential advantage of the event-based operation is that
the error messages it issues can bear important information for diagnostic purposes.

The operational model used by event-based operation has a state transition table
that is abstracted from a more detailed model that represents both normal and
abnormal behavior. The state transition table keeps a knowledge of states,
commands, next states, outputs, and time windows. The window associated with a
state is determined by bracketing the time-advance values of all transitions associated
with the corresponding states in the more detailed model. This divergence arises
due to variations in parameters and initial states considered to represent normal
behavior.

The operator uses the goal-table from the planner and the state-table of its
operational model to issue commands to the controlled device. When proper
response signals are received the operator causes the model to advance to the next
state corresponding to the one in which the device is supposed to be. The operator
ceases interacting with the device as soon as any discrepancy, such as a too-early or
too-late sensor response, occurs and calls on an associated fault diagnoser.

1.4 Model-based Diagnosis

A model-based diagnoser assumes that its model of the system is correct, and looks
for discrepancies between the behavior of its model and the behavior of the real
system. If such a discrepancy has been detected, it assumes that the system has
undergone some change which is considered a fault. In our approach, the diagnoser
will make use of a fault model to match the observed anomalous behavior of the
system. Diagnosis in the model-based architecture is performed by local and global
diagnosers, to find single or multiple faults using knowledge of structure and
behavior.

By local diagnosis we mean the diagnostic description of a component model:
the local diagnoser looks for a fault that might have occurred within the currently
activated model unit. Once the controller has detected a sensor response discrepancy,
the local diagnoser is activated. Data associated with the discrepancy, such as the
state in which it occurred, and its timing, are also passed on to the local diagnoser.
From such data, as well as information it can gather from auxiliary sensors, the local
diagnoser tries to discover the fault that occurred.

If the local diagnosis fails, the global diagnoser is activated to analyze the
enclosing coupled model . The global diagnostic model is a cause-effect table
obtained by symbolic simulation to generate all fault-injected trajectories that reach
states exhibiting the detected symptom. Faults injected in such trajectories represent
candidate diagnoses [12,13].

2. ENDOMORPHIC SYSTEM CONCEPT

Endomorphism refers to the existence of a homomorphism from an object to a
sub-object within it, the part (sub-object) then being a model of the whole [9]. As
illustrated in Figure 2.1, in order to control an object, a high autonomy system needs
a corresponding model of the object to determine the particular action to take. The
internal model used by the system and its world base model are related by abstraction,
i.e., some form of homomorphic (i.e., endomorphic) relation. The inference engine
asks its internal model for the necessary information for interacting with the real
world object. By “world base model” we mean the most comprehensive model of

Model-Based Architecture Concepts 61

the world available to the system whether it exists as a single object or as a family of
partial models in the model base.

ABSTRACTION

REAL WORLD OBJECT

Figure 2.1. Endomorphic System Concept

3. ENGINE-BASED DESIGN METHODOLOGIES

Typical expert systems comprise a domain-independent inference engine and a
domain-dependent knowledge base. The inference engine examines the knowledge
base and decides the order in which inferences are made. The engine-based modelling
approach provides a clear separation between the domain-dependent model base and
the domain-independent inference engine. It facilitates the automatic generation of a
model base using endomorphisms. Figure 3.1 shows the engine-based modelling
concept and examples of autonomous system components realized using the concept.

4. HIERARCHICAL DEVELOPMENT OF INTELLIGENT UNITS

The autonomous system components described above have to be coupled within
a unit in order to interact with each other. We use the term “intelligent unit” to
denote the smallest unit that encapsulates all engine-based components as depicted in
Figure 4.1.

62 INTELLIGENT AND AUTONOMOUS CONTROL

110

b

Engine-based
MOCEL Modelling Concept
- Domain dependent - Domain independent
PLANNING Planning
Py MODEL Structure
’i
,,.' Goal Table
o
o
o CONTROL Operation
& ‘....‘ MODEL Structure
World o State Transition
Base Table
Model e,
ve,, 1
., -.| DIAGNOSTIC DIAGNOSER Diagnosis
%, MODEL Structure
e,
".. Cause-effect
“ Table
o] Fecovey FECOVERER Recovery
...... abstraction 7 MODEL Structure
= interrogation

Fault Recovery

Table

Figure 3.1. Engine-based Modelling Concept for Endomorphic System Design

To cope with complex problems, an autonomous system requires multiple
intelligent units coupled in a hierarchical fashion. Models in the hierarchy must have
valid abstraction relations to each other. Figure 4.1 illustrates an autonomous
system development based on hierarchical abstraction and integration. Intelligent
units at the leaf nodes of the execution structure employ internal models directly
abstracted from the world base model. Units at higher levels employ internal
models that are abstractions of coupled models composed of immediately inferior
internal models. Model-base development will be further considered after the
following framework for autonomous system generation has been presented.

5. METHODOLOGY FOR AUTONOMOUS SYSTEM GENERATION

The overall methodology for autonomous system generation in a model-based
simulation environment is shown in Figure 5.1.

The task formulation module receives an objective. It then retrieves an SES
from the ENBASE and generates a plan structure by using the goal sub-SES of the
SES (for initial planning) or partitioned PESs (for experience-based planning). A
simulation structure is obtained by synthesizing the models in MBASE, where
models can exist in advance or be generated antomatically.

Model-Based Architecture Concepts 63

HIERARCHICAL EXECUTION STRUCTURE

Where,

1U: Intelligent Unit

PIE: Planner (Planning Inference Engine)
OIE: Operator (Operating inference Engine)
DIE: Diagnoser (Diagnostic Inference Engine)
RIE: Recoverer (Recovery Inference Engine)
PM: Planning Model

OM: Operational Model

DM: Diagnostic Model

RM: Recovery Model

RULE-BASED MODEL
I 3

DISCRETE EVENT MODEL
J

CONTINUOUS MODEL

(Possible Abstraction Sequence)

Figure 4.1. Hierarchical Abstraction and Integration of High Autonomy System

The initial environment for generating an autonomous system can be obtained
using the layered development concept of DEVS-Scheme [9]. The first layer is the
Lisp-based, object-oriented programming system that provides the foundation on
which the system is built. The next layer is the SES/MB system where the
behavioral and structural models can be built and saved in the MBASE and ENBASE,
respectively. Models in MBASE are base models as well as internal models
abstracted from base models.

5.1 Phase I: Plan generation
Once the basic environment is built, the next phase is the planning structure

generation. When receiving a goal command, the task hierarchy is generated in a
top-down fashion (task decomposition) as shown in Figure 5.2(a).

64

INTELLIGENT AND AUTONOMOUS CONTROL

Structure

Replaﬂ Retrieve
l Pruning Task External
Fomulation task
Planned
Structure
Synthesis
Execution |

i

Finish

Where,

SES: System Entity Structure
PES: Pruned Entity Structure
MBASE: Model Base

ENBASE: Entity Structure Base

Figure 5.1. Autonomous

5.2 Phase II: Model construct

-
<
| " Save states Save PES
(resource (experience
states update)
Save change)

System Generation Methodology

ion

The next phase is the model base construction illustrated in Figure 5.2(b), where the
necessary models can be retrieved from MBASE or automatically generated from the
lower level models. This multi-layered hierarchical model generation and
abstraction can be done in a bottom-up fashion. The resultant structure represents the
domain dependent knowledge base structure.

5.3 Phase III: Engine attachment/integration

By attaching domain independent engines such as a planner, an operator, a diagnoser,
and a recoverer which are able to interrogate corresponding models, we have a multi-

Model-Based Architecture Concepts 65

agent structure. Now by coupling those agents, we can obtain the autonomous
system architecture shown in Figure 5.3(c).

(- HIEF;\FX}HY 1
4

planning layer

(a) PHASE | f—L—}

D TN
bapas Capad
S S I TR S K
FTRTATYT Y TR
teanat seend raran Ll
EXECUTION
SEQUBENCE
HIERARCHY
Y recovery layer
I//diagnozais layer
operation layer
= planning layer
(b) PHASE Il
LAYE]
Jp EXECUTION
\.
HEIXRCHY)
)
L
(c) PHASE il
LAYE&
\
. J

Figure 5.2. Autonomous System Generation Procedure

66 INTELLIGENT AND AUTONOMOUS CONTROL

6. TASK-BASED MODEL DEVELOPMENT

So far we have given a general outline of the model-based approach to high
autonomy system design. Crucial to the success of this approach is the development
of models and associated engines to support the various tasks. This section further
elaborates on the endomorphic system approach that has emerged in our research. Due
to space limitations we cannot illustrate with actual examples but theses are available
in great detail in two doctoral theses relating to our application to space laboratory
automation [14,15].

The general approach to task-based model development is summarized in the
Hierarchical Encapsulation and Abstraction Principle (HEAP) illustrated in Figure
6.1. We start with an interface specification (illustrated by a pair of arrows in the
figure). This is a set of input and output port types that we wish all our models to
have for a given task. A Basic Model, B, is a model that has such an interface and
therefore can be coupled to other Basic Models of the same class. Such a Basic Model
can also be interrogated by a suitable Engine, E, to execute the task. However, the
engine-model interaction is mediated by a different interface, that may, or may not,
include elements of the model-model interface (Figure 6.1(a)).

The two sub-classes of Basic Model are Atomic and Coupled. Hierarchical
construction is based on a modular synthesis process in which several basic models
are coupled together through a compositor, C, such that the result has the required
interface specification (Figure 6.1(b)). This Coupled Basic Model is a valid Basic
Model, i.e., it can be coupled to an Engine of type E, and with other Basic Models,
in the same manner as any Atomic Basic Model. A class of basic models is said to
be closed under coupling if any of its members can be coupled together to form
coupled basic models with the same interface characteristics. A coupled model may
be abstracted to produce an Abstraction that has the the same input-output port types
as its components. There is no requirement that the information flowing in such
ports be of the same level of resolution as in the original. Indeed, a proper
abstraction is obtained when this information is expressed using descriptors that are
at once more coarse and more extended in space and/or time than provided by those of
its components. An example will make this clearer in a moment.

As shown in Figure 6.2, hierarchical construction is possible for classes that
have the closure under coupling property. This is so since any Basic Model
component of a Coupled Model can itself take the form of a Coupled Model. This
leads to a recursive expansion that can be terminated by selecting Atomic Models.
Paralleling the hierarchical model structure is a hierarchy in which Engines are
attached, one-to-one, to the Basic Models. Such engines may also be linked to each
other resulting in a hierarchy of control.

Model-Based Architecture Concepts

11 Interface

A]
D N S

@

Abstraction

: 'I’I’.’I// >

El

o]
w
@

Composition
LEGEND:

B: basic model

C: compositor ll Ll ll
CB: coupled basic model
E: engine 8 B B

.'11."1";(',

(a). The Hierarchical Encapsulation and Abstraction
Principle

(b). Model Hierarchy and Associated Engine Hierarchy

. o a wwe 'Y * 9 wu R . 2 AT a2 _a®* YR.* " 1 LTITT AT

67

68 INTELLIGENT AND AUTONOMOUS CONTROL

E agent

Planner
....... »

task
information

C

subtask selection
and sequencing

task
information

task
information

B B
agent capacity agent capacity
model model

task information:

inital world state set --> final world state set
L]

inital world state set --> final world state set
Figure 6.2. HEAP Applied to Hierarchical Agent
Synthesis (Planning)

execution
information

t * |

coordinator] Nesesssdesansnd

c

coupling

execution execution

information
B B
agent operations agent operations
model model
4 ¥
. \
4 ', oy s
[N . '.' 0
%, ‘-_. o' o
., >, \d o

e .

-
e y®
aienL,. -
- e rvnry S

..
eay,
AL PSRN

execution information:

initial world state set --> final world state set
initialization/completion
time window

Figure 6.3. HEAP Applied to Hierarchical Agent
Operation

Model-Based Architecture Concepts 69

6.1 HEAP Applied to Planning as Hierarchical Agent Synthesis

Figure 6.3 illustrates the application of the hicrarchy encapsulation and abstraction
principle to planning. Planning is viewed as Agent Synthesis, i.e., the output of a
planning process is an agent capable of achicving a given goal. The Basic model, B
is an agent capability model which provides a task information as its output interface
to the next higher level. The task information is a set of capabilities, each one
being a pair (initial world state set, final world state set). This means that the agent
is capable of transforming the world from a state in the initial set into a state in the

final set.” The sets are described in a language suitable to the current level of
abstraction. For example, a robot may have the capability to move a bottle from one
table to another. At this level, the capability description might be: (initial:
on(bottle,tablel), final: on(bottle, table2).

The Planning Engine is given a goal described as world state transformation in
the same language as the task information offered by its attached agent capability
model. Its job is to select a capability from the agent's information matching the
goal specification.

A coupled model results from combining the capabilities of the component agent
models in plausible compositions. The component capabilities may be described in
a language that offers greater refinement in describing a world state. For example,
the decomposition of moving a bottle from one table to another might involve lower
level agents, such as grippers that work with the location of the bottle on a table-
centered co-ordinate system, and movers that work with the position of the table in
room co-ordinates, and so on. Since the descriptor ontable is at lower level of
resolution then spatial co-ordinates the resulting coupled model is in fact an
abstraction, A.

The choice of description for the ground Atomic level must match the level of
task granularity that itself matches the capabilities of the “off-the-shelf” hardware
available. Closure under coupling requires that A is again a task capability model
that can be employed by a Planning Engine to satisfy a given goal. We employ an
System Entity Structure (SES) to represent the hierarchy corresponding to Figure 6.2
that results from application of HEAP to planning. Pruning of the SES yields, in
general, a hierarchically structured agent capable of satisfying the given goal. More
details are available in [14].

6.2 HEAP Applied to Hierarchical Agent Operational Modelling

We use a second application of HEAP to model the operation of a hierarchical agent
as shown in Figure 6.3. Here, the Basic Modcl, B, is an agent operations model
which provides the following output as interface to the next higher level: a) the world
state transformation is can perform (selected from its information in the planning
stage), b) specification of the internal state it must be set into in order to carry out
this transformation, c¢) specification of the output that will signal the completion of

*A capability is a generalization of the standard notions of pre-, and post-, conditions for
actions. The initial world state set includes any preconditions needed for the agent to initiate
is operation, but also includes other information such as initial values of world state
variables that will be transformed in the action. The latter may be represented symbolically,
rather than as fixed constants, so that effect of the action can be described in the final world
state set, which is equivalent to a postcondition.

70 INTELLIGENT AND AUTONOMOUS CONTROL

its task, and d) a time window in which the completion of the task should occur
under normal operation. At the atomic level, we include “off-the-shelf” hardware in
our set of agents, so that completion is signaled by designated sensor states. At
supra-atomic levels, the agent must generate a message when it reaches a terminal
state to indicate completion.

Coupling in this case is the sequencing of agents (chosen in planning). An
Abstraction, A is the operations model whose output interface is computed as a result
of this sequencing of the component operations models. More specifically, its
world state transformation is the composition of those of its components in the
specified order. Its initialization is that required to set each of its components into
their specified initial states. Its completion signal is that of the final component. Its
time window is obtained as an aggregation of those of its components.

A Coordinator Engine interrogates its associated agent's operations model to
control execution of the actual agent. Consider a hierarchical model and its associated
control hierarchy of Coordinator Engines. At any supra-atomic level, upon receiving
an initiation request from its superior, a Coordinator Engine requests that the
Coordinator Engine of the first (in the planned sequence) sub-agent issue the
initialization protocol to that sub-agent (obtained from the latter's model) to set it
working. The higher level Coordinator Engine awaits the first agent's completion
signal. If this signal arrives in the model-designated time window, the Coordinator
Engine requests initiation of the second sub-agent, and so on. If at any point the
expected completion signal does not occur within the expected time window,
execution is stopped and control is transferred to the diagnosis sub system. If the
completion signal of the last sub-agent in the sequence is received as expected, the
Coordinator Engine passes this signal upwards to its superior, if one exists.More
details are available in [15].

6.3 HEAP Applied to Hierachical Agent Diagnosis

The HEAP applied to the diagnostics sub-system takes a similar form (Figure 6.4).
Here the Basic Model is a model of abnormal agent behavior (in contrast to the
operations model which is based on normal behavior). Each such model contains two
kinds of subcomponents: generators of breakdown events that can occur and with
each such event, the effects that it causes. The hierarchy of such models parallels that
of the hierarchy of operations model. That is, there is a breakdown/effects model
corresponding to each normal operations model that tells how the behavior of the
latter would change under each of the breakdown events. The coupling of such
breakdown/effects models propagates the effects of breakdowns in one components to
downstream components (feedback of effects is not prohibited in this analysis). The
abstraction, A, must represent such overall breakdown-to-effect mappings in the
more abstract language of the next higher level. How to perform such abstraction is a
focus of our current research.

A Diagnoser Engine interrogates a breakdown/effects model to discover the
possible breakdowns that could result in a given set of symptoms. This assumes that
a subset of effects can be detected by the agent's sensors. The Diagnoser Engine
accepts as diagnostic hypotheses the set of breakdowns which lead to detectable
effects that match the given symptom set. At the atomic level, these hypotheses
can be tested directly against the real world state. At the supra-atomic level, each
hypothesis identifies a set of possible abnormal components and with each, the
hypothetical breakdown event that occurred. To test such an hypothesis, the

Model-Based Architecture Concepts 71

Diagnoser Engine activates Engines associated with each of the proposed abnormal
components to generate and test, in similar fashion, a set of lower level hypotheses
consistent with the proposed breakdown. More details are available in [14].

7.

diagnosis
information

diagnosis adiagnosis
information information
B B
agent diagnostics agent diagnostics

modael model

o'

................

diagnosis information:

breakdown / effects

Figure 6.4. HEAP Applied to Hierarchical Agent
Diagnosis

CONCLUSIONS

The main characteristics of the developed model-based architecture are as follows:

The time-based formalism (DEVS) provides coherent integration between
symbolic and numeric models.

The SES/MB environment provides a hierarchical modularity, reusability, and
testability.

Model-based deep reasoning supports a powerful diagnostic capability.

The endomorphism concept supports intelligent unit design and a consistent
model base.

The engine-based design builds a domain-independent architecture instantiated
with compiled models for application under real time constraints.

The intelligent unit encapsulates various autonomous components such as
planning, operation, diagnosis, and recovery coherently to cope with complex
problems.

72 INTELLIGENT AND AUTONOMOUS CONTROL

* Model-based planning supports the reusability of experienced plan structures.

* The event-based control logic guarantees robustness, reduced sensor complexity,
and increased diagnostic capability.

The framework has been implemented in a simulation study of space-borne
laboratory automation as a proof of the concept. Current research secks to apply the
methodology to an(actual) experimental laboratory prototype of an oxygen generation
plant that would eventually operate on Mars. Such work presents the challenge of
transferring concepts that have been proved in a simulation environment to real world
operation. Progress made in this research is described in [16].

APPENDIX: Space Laboratory Automation Example of System
Entity Structuring

This example is based on a project to develop a technology that will allow
carefully designed and specially constructed laboratory robots to perform many
routine tasks in a space laboratory under remote supervision from the ground.
Therefore the robots must be able to perform simple operations autonomously, and
communicate with the ground only at the task level and above [17]. Such robots
should be able to judge the adequacy of a proposed action plan on the basis of
expectations of its effects on the laboratory, materials, instruments, etc. For this
purpose, it is important that simulation models at various levels of granularity can
be automatically generated at run time from a set of generic master models [4].

In designing the robot models, we assume that necessary mobility, manipulative
and sensory capabilities exist so that we can focus on task-related cognitive
requirements. Such capacities, the focus of much current robot research, are treated
at a high level of abstraction obviating the need to solve current technological
problems.

A.1 SES Representation of a Space Laboratory

The laboratory environment illustrated in Figure A.l is realized on the basis of
object-oriented and hierarchical models of laboratory components within DEVS-
Scheme. Laboratory configurations will be determined by issuing commands that
invoke a pruning operation of the entity structure knowledge representation. The
laboratory model is designed to be as generic as possible. However, as stated
earlier, the focus will be upon fluid handling in microgravity, which presents a
variety of problems that are unique to space.

Figure A.2 illustrates the System Entity Structure (SES) for the laboratory
environment. The Space Station Laboratory (SSL) entity is decomposed into its
structure knowledge part and its experiment (goal) knowledge part; STRUCTURE
and EXPERIMENT. The former relates to the execution structure which is
concerned with how to construct the system, while the latter relates to the goal
structure which is concerned with how to achieve a desired goal efficiently. After
pruning the STRUCTURE, the entity structure is transformed into a hierarchical
model containing controlled models at two levels. Each of the entities will have
one or more classes of objects (models) expressed in the underlying simulation
environment to realize it.

Model-Based Architecture Concepts 73

The EXPERIMENT contains a three level abstraction hierarchy distinguishing
between high-level task planning models (HM), middle-level task planning models
(MM), and low-level task planning models (LM) that are associated with so-called
model plan units (MPUs): HMPU, MMPU, and LMPU in the STRUCTURE part,
respectively, which are the cognitive control elements of the system. Each level
is designed to represent experimental knowledge needed to decompose a given task
into a composition of subtasks.

EXPERIMENT TABLE

MXER HEATER

STORAGES

TOOL BOX

ORAGE1
SYRINGEH

NGES
SYRINGEA

Figure A.1. Space-borne Chemical Laboratory View

E2

SIEIE
3|2

é
=

The SPACE and OBJECTS decomposed from STRUCTURE are designed for the
_ simulation-oriented knowledge representation (Figure A.2). The SPACE is
 basically a modelling artifact -- necessitated by the object-oriented, modular
" modelling paradigm -- to conveniently represent knowledge of where objects are and
with whom they can communicate and interact.Motion and communication of
ROBOTs are managed by the SPACE as shown in Figure A.3. When a ROBOT
moves around, its MOTION system sends its new location and direction to the
SPACE which keeps track of the ROBOT's positions and directions. When a
ROBOT wishes to communicate with other ROBOTS, it sends message via ils
SENSE system to the SPACE which relays the message only to those ROBOTs
within the range of the sender. The range is determined by the channel on which
the message is sent. Thus different transmission media and sensory modalities can
be modeled, such as light and vision, sound and hearing, pressure and touch, etc.

Since the SPACE has complete knowledge of locations, it can detect collisions
between ROBOTs. SPACE is viewed as a kind of resource shared by its occupants
so that collisions represent attempts to occupy the same space more than once at the
same time. The SPACE can report such an event but do nothing to prevent it.
However, the SPACE may be given greater intelligence to co-ordinate the ROBOTS,
for example to prevent collisions, and to perform other space resource management
tasks. In this case, it assumes the role of an “actual” system component, at least in
part.

74

INTELLIGENT AND AUTONOMOUS CONTROL

— 0:SSL pem 8:STR — e ROBOF
SSL
I STR
ssl-dec l ROBOT
str-dec
sl ! rob-dec
= 0 E QU Py SPACE BRAIN MOTION SENSE
EQUP 1)
] OBJECT brain-dec
equip-spec "
obj-spec SELECTOR
MPUs
MIXER [
HEATER MPU
STORAGE Eauip
WASTE
e &8:MPU
MPU
]
mpu-spec
| |]
HMPU MMPU I.NlrU
mmpu-spec Impu-lspec
1
OBJGETTING INJECTNG ! V,Sl',,\ J
ADDING L CO-OPERATION TASK
OBJPLITING EINISHING ACT|'|°N i
SAMPLING 1- coop-spec
WASHING MIXING s p.f
HEATING I T 1 i |
MOVE PG PWACE assis oFeR
—9:TASK —o:SYRINGE
TA?K SYRINGE
task.dec
inge- syrin-size-spec
CoMM T OPEFO?TDN syringe-spec y P!
oper-dec SMALL
SYRIN-O SYRIN-EX SYRIN-D MEDIUM
OPERATOR DW)‘ID@ l
op-ldoc di-?ec syrinl-dec
| 1 | i | T T T
EQUP CONTRL EQUP DIAGN MOTION SENSE SYRIN-IM SYRIN-E
- 6:HM — 0:MM — :LM
MM
oxp;dec im-spec
| mm-dec mm-spec
™ P 1l
I MOVE SYRINGE
LMs OBJ-GETTING INJECTING PLLUG MIXER
hm-dec hm-spec i OBJ-PUTTING ADDING PLACE HEATER
LM SAMPLING FINISHING ASSIS STORAGE
MMs MiX1 MIX2 WASHNG MIXING OFER WASTE
il HEAT1 HEAT2 HEATNG VISUAL
MM DILUTE1 DILUTE2

Figure A.2. Partitioned SES of Robot-Managed Fluid Handling Laboratory

Model-Based Architecture Concepts 75

* Space Station Laboratory

BRAIN1

Figure A.3. Robot System Organization Example

Each OBJECT is specialized into ROBOT and EQUIP. Each ROBOT is
decomposed further into MOTION, SENSE, and BRAIN. The EQUIP is a generic
entity for the laboratory equipment that is modeled much in the same way as the
ROBOT. However, EQUIP has no BRAIN, and its MOTION and SENSE
subsystems are always passive. Note that OBJECTS are also defined as a multiple
entity. Therefore, any number of OBJECTS may be generated, and with the pruning
discussed earlier, we can have any desired number of ROBOTs and EQUIPs in the
laboratory.

Each Robot's Cognition-system (BRAIN) is also implemented as a controlled
model containing a SELECTOR as its controller, and several MPUs as its
controllees.

The SELECTOR provides the communication channel between the SENSE
subsystem and the MPUs. Essentially it is a bi-state (open/closed) device whose
state is determined by the MPU responses. In its closed state, it passes on the
incoming sensory inputs to the activated MPU. Upon completion of the activated
plan or upon receiving a discrepancy alert, it switches to the open state in which
MPUs may vie for activation.

The MPUs are specialized into HMPUs, MMPUs, and LMPUs, respectively,
corresponding to the EXPERIMENT abstraction hierarchy previously
mentioned. HMPU is a high level MPU that manages the actions of the middle level
MMPUs, each of which performs the same function with respect to the low level
LMPUs. The latter employs event-based control logic to interact with the real
world. These three types of MPUs are represented at the same level in the entity
structure but conceptually they reflect the hierarchical decomposition structure of the
EXPERIMENT models.

The LMPUs comprising the robot's brain are of two kinds: those specialized for
carrying out specific tasks, and those specialized for more general tasks involving
communication, motion, vision, cooperation, etc.

76

INTELLIGENT AND AUTONOMOUS CONTROL

TASK_LMPU: is a LMPU specialized for executing a particular task (i.e., is
further specialized in the SES). When help or visual identification of an object
is needed in performing this task, it relinquishes control to the ASSIS_LLMPU or
VISUA_LMPU, respectively. A detailed discussion of the decomposition of
the TASK_LMPU is given in [14].

ASSIS_LMPU: is a LMPU specialized for the task of requesting help from other
robots. When it is activated, it initiates a COMM_PROTOCOL which
tries to make contact with ROBOTs within its range and engage one that can
provide the needed assistance.

OFFER_LMPU: is a LMPU specialized for the task of dealing with incoming
requests for help emitted from ASSIS_LMPUs of other ROBOTs. ~ When
activated, it decides if help can be offered, and if so, engages in a dialogue with
the ASSIS_LMPU of the help-secking ROBOT and sets up a rendezvous. It
relinquishes control to the ACTION_LMPU to bring the ROBOT to the
requestor's work site.

ACTION_LMPU: is a LMPU specialized for directing the motion subsystem to
bring the ROBOT to a given destination or position. It requests the current
motion state from the MOTION component, and sends it new parameters
(direction, speed, and time-step) for traveling to the vicinity of the destination.
Once there, it directs the MOTION component in physically contacting the
object or ROBOT at the destination. The touch channel is used for judging
when contact has been established. Three ACTION_LMPUs are being
implemented so far;, MOVE_ACTION_LMPU for robot walking,
PLUG_ACTION_LMPU for pull/push motion, and PLACE_ACTION_LMPU
for put/get motion.

VISUAL_LMPU: is a LMPU specialized for the task of visual identification of
objects. It relinquishes control to ACTION_LMPU to bring the ROBOT to
new locations when different viewing distances and perspectives are needed.
Once there, it resumes control to accept a visual image and to identify objects by
consulting its built-in recognition system[15].

This concludes the description of the structural and experimental decomposition

of the space-borne fluid handling laboratory environment as described by its SES.

ACKNOWLEDGEMENTS

This research is supported by NASA-Ames Co-operative Agreement No.NCC 2-

525, “A Simulation Environment for Laboratory Management by Robot
Organization” and UA/NASA Space Engineering Research Center Project “High
Autonomy Intelligent Control of an Oxygen Extraction Plant.

Model-Based Architecture Concepts 77

REFERENCES

(1

2

{31

M1

(51

(6l

M
(8l

91

(10]

[11]

2]

[13]

[14]

Nilsson, N.J., Principles of Artificial Intelligence, Tioga Pub. Co., Palo
Alto, CA, 1981.

Sacerdoti, E.D., A Structure for Plans and Behavior, Elsevier North-Holland,
Inc., 1977.

Steel, S., “Topics in Planning,” in Lecture Notes in Artificial Intelligence, J.
Siekmann eds., Springer-Verlag, 1987.

Wang, Q. and F.E. Cellier, “Time Windows: An approach to Automated
Abstraction of Continuous-Time Models into Discrete-Event Models,” Proc.
on Al, Simulation, and Planning in High Autonomy Systems, Tucson,
1990.

Lioyd, M., “GRAFCET - Graphical Function Chart Programming,” Proc. of
the Conf. on Programmable Controllers ‘85, pp. 51-56, London, Olympia,
July, 1985.

Struger, O.J., “Programmable Controllers - Past and Future,” Proc. of the
Conf. on Programmable Controllers '85, pp. 1-6, London, Olympia, July,
1985.

Hammond, K.J., Case-Based Planning, Academic Press, 1989.

Chi, S.D., B. P. Zeigler, and F. E. Cellier, “Model-based Task Planning
System for a Space Laboratory Environment,” Proc. of SPIE Conf. on
Cooperative Intelligent Robotics in Space, Boston, Nov., 1990.

Zeigler, B.P., Object-Oriented simulation with Hierarchical, Modular Models:
Intelligent Agents and Endomorphic systems, Academic Press, 1990.

Zeigler, B.P., “DEVS Representation of Dynamical Systems: Event-Based
Intelligent Control,” IEEE proc. Vol.77, no.1, Jan.1989. pp.72-80.

Chi, S.D. and B.P. Zeigler, “DEVS-based intelligent Control of Space
Adapted Fluid Mixing,” Proc. of 5th conf. on Artificial Intelligence for Space
Applications, May, 1990.

Zeigler, B.P. and $.D. Chi, “Symbolic Discrete Event System Specification,”
IEEE Trans. on System, Man, and Cybernetics, Vol. 22, No. 4, July, 1992.

Chi, S.D. and B.P. Zeigler, “Model-based Hierarchical Diagnosis for High
Autonomy System,” submitted to Jour. of Intelligent and Robotic Systems,
1992,

Chi, S.D. Modelling and Simulation for High Autonomy Systems, Ph.D.
Dissertation, Univ. of Arizona, 1991.

78 INTELLIGENT AND AUTONOMOUS CONTROL

(15] Luh, C.J., Abstraction Morphisms for High Autonomy Systems, Ph.D.
Dissertation, Univ. of Arizona, 1992.

[16] Cellier, F.E., A. Doser, G. Farrenkopf, J. Kim, Y. Pan, L.C. Schooley, B.
Williams, and B.P. Zeigler, “Watchdog Monitor Prevents Martian Oxygen
Production Plant From Shutting Itself Down During Storm,” Proc.
ISRAM'92 -- ASME Conf. on Intelligent Systems for Robotics and
Manufacturing, Santa Fe, N.M., November 8--11, 1992 (invited paper).

[17] Albus, J.S., H.G. McCain, and R. Lumia, NASA-NBS Standard Reference
Model for Telerobot Control System Architecture (NASREM), NBS Technical
Note 1235, Robot Systems Division, Center for Manufacturing Engineering,
National Technical Information Service, Gaithersburg, MD, 1987.

