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Abstract

An expert system Pilot-Aid is envisioned to automate many functional
and low-level decision-making tasks in future high-performance and jet
transport aircraft to help alleviate pilot workload. This chapter
presents a design methodology for the development of multiple
cooperating rule-based systems for the aircraft domain. Nine modular
rule-based systems, collectively called AUTOCREW, were designed to
automate functions and decisions associated with a combat aircraft’s
subsystems. The nine AUTOCREW knowledge bases were designed
individually,; areas of cooperation between the knowledge bases were
identified, and common information was designated as "shared"
information. Software tools were developed to aid in high-level design
of the cooperating ensemble. An interactive graphical simulation
testbed was developed to demonstrate and test the cooperating
AUTOCREW ensemble's performance. Workload metrics were
formulated to quantify AUTOCREW's performance in terms of the
ensemble’s efforts in assisting the Pilot. The workload metrics give
reasonable results for the comparison of workloads among
AUTOCREW's experts, as well as comparative results among task
groups within a single knowledge base. The applicability of the
methods utilized to design AUTOCREW for other applications is also
discussed.
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INTRODUCTION

This chapter describes a general approach to designing and prototyping cooperating
rule-based systems. The approach was applied to the high-level design of an expert
system Pilot-Aid to automate many functional and low-level decision-making tasks
for aircraft operations. The details of the expert system can be found in [1]; this
chapter is intended to point out some of the critical issues associated with the design
of cooperative rule-based systems.

Pilots must make quick decisions and perform a myriad of time-critical tasks
throughout a flight. The pilot bases her decisions on currently available information
as well as her experience and judgment. During some phases of a mission, the
quantity of data and information available may be so great that the pilot becomes
incapable of making timely decisions and performing critical tasks. Pilot workload
studies show that the high-stress, high-workload flight environment results in
reduced pilot performance as well as reduced mission effectiveness [2]. Studies
undertaken for both commercial transport and combat operations suggest that on-
board pilot assistance and selective task automation are highly desirable features for
future aircraft system designs [3,4]. The expected increase in aircraft system
complexity and corresponding increase in pilot workload has motivated
investigations into the potential applications of artificial intelligence (Al) theory in
the flight domain [5-9].

Expert systems, which are computer programs usually developed in a symbolic
processing language such as LISP or PROLOG, have emerged to solve difficult
domain-specific problems. The expert system designer extracts heuristics and
specific knowledge from domain experts. This information is used to formulate a
knowledge base consisting of parameters and rules. An inference engine uses rules
to conduct a search and to set parameters, thereby inferring knowledge about the
problem domain. Expert systems are usually self-contained and are well-suited to a
specific problem area. They are usually designed to operate in a stand-alone
environment.

Expert systems have been developed in the areas of navigation, emergency
procedures, and air traffic control, to name a few [10-13]. The introduction of
multiple system concepts such as global blackboard architectures for information
exchange between knowledge bases has been successful in aerospace
implementations [14]. However, methods in multiple knowledge-base development,
rule-based systems integration, and ensemble prototyping need further research if
complex systems are to be systematically developed for flight domain operations or
other problem areas.

A logical task classification scheme is a crucial factor in the successful development
of multiple rule-based systems. In this research a logical task structure for the
combat aircraft domain was developed, using as the structural paradigm a World War
IT bomber crew [15]. The tasks each bomber crew member performed at each
mission phase were clearly defined. Based on this model, an ensemble of nine
cooperating rule-based systems called AUTOCREW [1] represented as pilot copilot,
navigator, flight engineer, radio operator, spoofer, lookout, attack, and defender was
developed. Each rule-based component figuratively emulates a crew member's task
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responsibilities. The overwhelming advantage of this organization is that each
component system is intuitively obvious in function to the end-user. This facilitates
the integration of the system into human operations.

Since systems designers and pilots think in terms of specific tasks such as navigation,
aircraft systems diagnosis, and flight control, the crew member approach provides
modular rule-based system components. There are two main advantages to
designing modular rule-based systems. The first is transferrability: The crew
structure is applicable to all aircraft types. For a civil transport application, the
combat-specific modules are removed from the ensemble. In addition, modularity
facilitates initial design and debugging, and promotes software reuse and capability
growth. This approach to developing a complex Al-based pilot aid differs from the
approach taken in preliminary descriptions of the Pilot's Associate Program [3,8]. In
the latter, tasks are organized into categories called "Managers". The five
cooperating Managers envisioned for the Pilot's Associate are categorized as
Mission, Tactical, Situation Awareness, System Status, and Pilot-Vehicle Interface
Managers. These classifications are quite broad and require additional breakdown to
make them amenable for realistic development and implementation.

A major challenge in the successful development of multiple rule-based systems is
integrating individual knowledge bases. One of the problems encountered is that
software capabilities for information exchange between the systems are usually
nonexistent -- each system is designed to be seif-contained. This necessitates
redesigning each knowledge base to accommodate the sharing facilities (or "shared”
parameters) that provide the information exchange capability. A better approach
would be to define the ensemble requirements on a macroscopic level before
designing and implementing the individual systems in detail. When functions are
represented on a high level, making changes to the knowledge bases is easily
accomplished.. The identification of shared parameters is easier when less
knowledge-base detail is present. Therefore, this alternate approach provides the
designer with an overview of an integrated system. Once the designer is satisfied
with the prototype functions, cooperation, and logic flow, each knowledge base can
then be developed in detail.

The development of software tools and techniques that aid in ensemble design,
prototyping, testing, and evaluation is an important factor in the design of multiple
rule-based systems. In this research, scarch-effort metrics called rule and parameter
fractions are defined to quantify and compare knowledge-base workload distribution
among component systems. Search effort information can help identify workload
situations for which additional computer resources are required. These metrics can
also be used to help identify task groups for which separate knowledge bases should
be developed. In keeping with the high-level development philosophy discussed
above, the designer should be free to focus on the overall system requirements and
important elements of the prototype design and be less involved with implementation
details. Definition of the knowledge-base functions, logic, and inter-system
cooperation areas is the designer's priority. Prototype development tools should
assist the designer in accomplishing this goal. A simulation testbed was developed
to visually demonstrate intersystem cooperation and pilot-system interaction. The
simulation testbed also provides the vehicle for knowledge-base logic verification.
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AUTOCREW DEFINITION

Nine multiple cooperating rule-based systems for the combat aircraft environment
were developed and implemented in the AUTOCREW expert system. Each
component rule-based system is based on a typical World War II bomber crew
member having specific task responsibilities. The Pilot must identify with the task
performed by the on-board aid, so a crew-model design of component knowledge
bases is commensurate with the Pilot's experience and training. As crew members
are modelled, flight personnel can readily assist in the design, implementation, and
testing phases of complex knowledge bases. In most cases, the human expert can
outline the details of task performance and can inject heuristics and insight into
problem-solving logic. A natural task classification scheme is an important factor in
the success of complex knowledge bases. The AUTOCREW task architecture is
motivated by these issues.

The block diagram in Fig. 1 depicts the integration of AUTOCREW within a Pilot-
vehicle framework. The AUTOCREW crew members are responsible for
performing tasks and controlling functions associated with the aircraft and on-board
systems. The modelled crew members are COPILOT (flight control, aircraft
performance, Terrain Avoidance/Terrain Following (TA/TF)), ENGINEER (aircraft
system diagnosis, reconfiguration, emergency procedures), NAVIGATOR
(navigation sensor management, navigation error state estimation, dynamic route
planning), COMMUNICATOR (radio/data operations), OBSERVER (weather, air
traffic, inbound armament lookout and alarm, Information Friend or Foe (IFF))
ATTACKER (offensive weapon control, stores management, target
acquisition/prioritization), DEFENDER (defensive weapon control, stores
management), and SPOOFER (Electronic Measures (EM) and Electronic Counter
Measures (ECM)). The ninth rule-based system (EXECUTIVE) coordinates
mission-specific tasks and has knowledge of the mission plan. For the configuration
shown in Fig.1, the human Pilot of the aircraft acts in the capacity of mission
coordinator. She monitors the AUTOCREW systems and attends to mission
planning and problems brought to her attention by the AUTOCREW components.
The Pilot communicates with AUTOCREW via a common input device such as a
keyboard, voice input, or touch screen. The AUTOCREW crew members
communicate with the Pilot via graphics and text displays. The Pilot has full control
of the aircraft and its on-board systems. AUTOCREW can provide automatic
assistance when selected.

The AUTOCREW knowledge bases were developed and implemented
independently. Since this research focused on the design of cooperating rule-based
systems at a macroscopic level, it is sufficient initially to incorporate a general
structure into each knowledge base, outlining only major tasks. Each major task, in
turn, may be further divided within a more detailed knowledge base. These smaller
sub-tasks are embedded within a less-detailed knowledge-base structure, thereby
enhancing organization and clarity. During the preliminary design phase of any
complex operational system, ensemble modules would most likely be developed by
several systems groups. A clear, effective way in which these groups communicate
their knowledge-base designs is necessary. Communication of knowledge-base
structure and function using graphical symbology assists in identifying areas of
knowledge-base cooperation very quickly, whereas task schedules are less effective
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in communicating overall system contents. The AUTOCREW components were
designed using a graphical symbology, as is shown below. It also is shown that the
high-level contents of each AUTOCREW component provide sufficient results for
demonstrating task coordination among the nine systems.

COPILOT o : FLIGHT CONTROL
ENGINEER : SUBSYSTEM DIAGNOSIS |-
NAVIGATOR HYBRID NAVIGATION |
COMMUNICATOR RADIO/DATA LINK :
OBSERVER WEATHER/AIR TRAFFIQ:
ATTACKER . :
OEFENDER FIRE CONTROL #1
SPOOFER N FIRE CONTROL #2
EXECUTIVE | G | raDIATION EMISSION
e Ian 'AIRCRAFT/ONBOAR
TOCREW EXPERTS: U oYSTEMS
KEYBOARD
D INPUT
] - PILOT

>|LOT/AUTOCREW INTERFACE Lt

Figure 1. AUTOCREW Configuration
With Pilot/Aircraft Integration.

Each AUTOCREW component is implemented as a knowledge base. A knowledge
base is defined as a software structure that describes a system's functions and the
logical relationships between the system's tasks. The relationships may be specified
by production rules (IF - THEN statements); the production rules incorporate the
AND/OR characteristics of the knowledge-base task relationships. A graphical
representation of the knowledge-base structure was used to provide a first glance
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overview of the system's functions. Communication of knowledge-base structure
and function using graphical symbology assists in identifying areas of knowledge-
base cooperation very quickly, whereas task schedules are less effective in
communicating overall system contents. The basic building blocks of the
knowledge-base graphical representation are shown in Fig. 2. Rectangular boxes
represent knowledge-base parameters and ovals represent rules. Parameters describe
factual information about the domain, whereas rules describe the procedural
relationships between parameters. The "state" of a parameter is denoted by its value.
Parameter values reside in slots within a parameter box in Fig. 2. Lines connecting
parameters via rules form the procedural relationships between parameters. An AND
relationship is denoted by a joining arc between parameters. For example, Rule RO1
in Fig. 2a is read "IF the the value of parameter 1 is TRUE, AND the value of
parameter 2 is value 2 THEN set the value of parameter 3 to TRUE." Each rule
structure contains a premise and an action. The premise is the group of conditional
clauses contained in the "if" part of the rule; the action is the group of statements that
follow the "then" part of the rule. Shared parameters were identified throughout the
design process. These "global" variables are used 10 exchange information between
knowledge bases. A change in value of a shared parameter in one knowledge base
induces search activity within another knowledge base. Hence, dynamic changes in
the aircraft environment are reflected and handled appropriately within each
AUTOCREW knowledge base. The graphical symbology used to represent the
AUTOCREW knowledge bases can be found in [1]. The AUTOCREW system
contains over 500 parameters and over 400 rules.

Knowledge Base Development of AUTOCREW Components

Although each AUTOCREW knowledge base is quite detailed, a common task
organization and rule-based structure provides a logical framework. The graphical
representation of this common task organization is shown in Fig. 3. As scen in Fig.
3a, there are five main task groups in each AUTOCREW crew component; 1) tasks
executed during an attack on the aircraft, (2) tasks executed during aircraft
subsystem emergency or potential threat situations, (3) additional tasks ordered by
the EXECUTIVE, (4) tasks executed on a routine (during each search cycle) basis,
and (5) mission-specific tasks which for the most part are executed once and which
require a high degree of cooperation among the various systems. The assistance-to-
attack and emergency-strategy tasks are executed only when search concludes that
the situation warrants these actions. The routine and mission-specific tasks are
executed upon each search cycle. When the search within each of the four task
groups is completed (denoted by the AND relationship in Fig. 3a), the top-level
parameter is set, and the cycle repeats. It is important to note that the order of
execution of the four main task groups is designed intentionally. For example, if the
aircraft is under attack, the situation warrants the immediate execution of aircraft and
pilot-assistance measures. These tasks should be performed first before action is
taken to recover from any other aircraft system emergency. The principle reason for
this is that the Pilot usually has less time to react to an aircraft attack than to a
subsystem alert or emergency situation. In a well-organized and highly-parallel
software/hardware architecture, many emergency conditions could be addressed
simultaneously. The reality of having to perform time-critical tasks in a life-
threatening situation strongly motivates parallel task organization within each
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component rule-based system. If a rule-based system is designed in a serial
architecture (serially executing tasks), the order in which tasks are performed may be
a critical design issue, as exemplified in the air combat domain.

Mission-specific tasks are further divided into groups appropriate to each mission
phase. This research focuses on the general Defensive Counter-Air (DCA) scenario.
Briefly, the mission is to defend an area from aircraft attack by threatening and/or
engaging incoming enemy attack aircraft. The four phases of the DCA mission are
shown in Fig. 3b; The parameter, MISSION-SPECIFIC TASKS COMPLETED,
in Fig. 3b is set to TRUE when any set of the mission phase tasks are complened (the
OR relationship in Fig. 3b). Once again there is a deliberate order to the mission
phase tasks. The pre- fllght phase is dedicated to system checks and procedure
reviews. The launch phase is concerned with those functions performed during and
immediately after take-off. The attack phase of the mission deals with flying to the
target area, acquiring and prioritizing the targets, preparing the offensive fire control
system, and engaging the targets. Finally, the recovery phase pertains to the aircraft's
return to base, approach, and landing tasks.

The information used in the development of the AUTOCREW knowledge bases was
obtained from [16-18] in addition to many articles related to air combat in various
trade publications [1]. Although the knowledge bases do not contain the detail that
would be present in a fully-developed operational system, the skeletal contents
exemplify the general types of tasks one would expect in a real system. As noted
above, the purpose of this research is to illustrate an approach to designing a multiple
cooperating knowledge-based system. Details of the AUTOCREW COPILOT
system will first be discussed, followed by a discussion on implementation details,
prototyping tools, and test scenarios.

Description of AUTOCREW COPILOT

The COPILOT is responsible for flight control tasks throughout the mission. The
NAVIGATOR and COPILOT are the most closely tied systems; the COPILOT
follows the route plan generated by the NAVIGATOR, and the NAVIGATOR takes
into consideration the aircraft's performance when planning a route. The COPILOT's
knowledge base is found in Figs. 4-6.

Assistance to Attack

If the OBSERVER detects an inbound enemy, the ENGINEER determines the
aircraft's performance capabilities, and the COPILOT recommends (and/or selects)
the appropriate evasive maneuver, as shown in Rule C04 in Fig. 4 {19]. From Rule
CO5 it is seen that when the ATTACKER acquires an enemy target, the
NAVIGATOR generates a route to that target, and the COPILOT then determines the
appropriate steering commands.

If enemy aircraft are detected by the OBSERVER, the NAVIGATOR generates an
alternate route to or away from the danger area depending on the mission plan and
Pilot, and the COPILOT generates the appropriate steering commands and control
strategy to achieve the new route (Rule CO8).
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Figure 4. Skeletal Knowledge Base of
AUTOCREW Member COPILOT.

Routine Tasks

The COPILOT's routine tasks consist of management, monitoring, and planning.
From Rule C19 in Fig. 4, the COPILOT checks the aircraft's fuel and thrust
management strategies (20]. Using the ENGINEER's fuel consumption estimates
(Rule C20), the COPILOT can adjust the throttle power and control surfaces to meet
the mission requirements. If the NAVIGATOR dynamically changes the flight plan
or the Pilot requests a flight control mode change, then by Rule C21 the COPILOT
generates another flight profile in response to the flight plan/mode change. If it is
determined to operate in TA/TF mode, the COPILOT slaves the TA/TF radar to the
autopilot (Rule C23).
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Pre-Flight Mission Phase Tasks

The COPILOT maneuvers the aircraft into runway position upon receiving a taxi
clearance through the COMMUNICATOR or Pilot as seen in Fig.5, Rule C26. The
COPILOT's pre-flight tasks are completed when it has completed taxiing, and when
the NAVIGATOR has generated the takeoff/departure course.

Launch Mission Phase Tasks

Not surprisingly, flight control tasks are the most numerous tasks executed during the
launch phase. Hence the COPILOT becomes the most critical AUTOCREW
component during this phase. From Fig. 5, the COPILOT ensures that the aircraft is
in proper position on the runway upon receiving the COMMUNICATOR's tower

clearance for takeoff message. The COPILOT then computes the refusal® and

rotation’ speeds (Rule C29). The COPILOT waits until the ENGINEER evaluates
the engine instruments and decides if the engines are operating safely. The Pilot then
selects the flight control mode (manual, or according to the nav plan), and commands
the takeoff when ready.

As she monitors the aircraft's speed progress, the Pilot gives the lift-off decision
(Rule C30). With the NAVIGATOR's departure course established, the COPILOT
maintains directional control, establishes the climb angle, reconfigures the gear and
flaps, and establishes the climb speed (Rules C33 and C32). When the prespecified
transition altitude is passed, the COPILOT sets the altimeter (Rule C34). Continuing
its tasks, the COPILOT follows its pitch steering commands. Tactical formation and
cruising speed are established, and the level-off is completed. The above description
assumes that the COPILOT's knowledge base is controiling the takeoff functions.
However, all, none, or part of these tasks can be executed by the COPILOT,
depending on the flight control mode selected by the Pilot. It is envisioned that a
COPILOT knowledge base can operate in several advisory and control modes.

Atack Mission Phase Tasks

The COPILOT's functions during the attack phase are (1) to steer the aircraft to the
engagement zone (intercept), (2) to follow the Pilot's attack maneuver commands
(attack), and (3) to breakaway from the attack upon weapon delivery. These events
are described in Fig. 5 beginning with Rule C36. When the ATTACKER has
acquired the target data and the EXECUTIVE receives final command information,
the COPILOT establishes the intercept flight profile and recommends preliminary
breakaway headings.

The minimum speed the aircraft must be travelling at a computed location on the runway for a
safe takeoff to be performed. If the aircraft speed is less than the refusal speed, the Pilot has
enough runway to abort the takeoff. Some factors that are taken into account in computing
this speed are aircraft type, air temperature, runway length, and runway land gradients.

The speed at which the aircraft pitches upward on takeoff. The aircraft continues to

increase its speed at the pitch angle until sufficient lift is acquired for the aircraft to
become airborne.
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Meanwhile, the NAVIGATOR has generated a detailed attack route and the Pilot
decides to accept or reject the attack. If the Pilot decides to continue the attack, the
COPILOT flies the intercept profile and attack geometry (Rule C37 and C38). When
the COMMUNICATOR authenticates the engagement order and the ATTACKER's
weapons are armed, the COPILOT establishes the final attack airspeed, and monitors
the aircraft steering commands (Rule C39 and C40). After the ATTACKER has
released the weapons, the COPILOT commences its defensive maneuver away from
the weapons and enemy aircraft (Rule C42). If the weapon requires infrared "target
illumination" to guide it towards the target, the COPILOT implements the
appropriate control maneuver. Finally, when the EXECUTIVE and Pilot decide to
breakaway from the battle area, the COPILOT follows the preplanned breakaway
headings.

Recovery Mission Phase Tasks

Just as the COPILOT is the most important controller during the launch phase, it
plays a key role in the recovery phase. Figure 6 shows the graphical representation
of the COPILOT's recovery tasks. After breaking away from the battle area, tactical
formation is first re-established. If the ENGINEER determines that the aircraft is
capable of safely returning to base, the COPILOT determines the optimum flight
profile (altitude, speed, etc.) and selects the appropriate autopilot submodes (Rules
C45-C48). The Pilot receives and acknowledges penetration instructions when she
reaches "friendly" airspace. The COPILOT commences the descent and sets the
radar altimeter for low height warning, by Rule C51. The penetration formation is
then established, and the flaps are set for approach (Rules C49 and C50). The
COPILOT then minimizes the aircraft's maneuverable speed and levels-off. On final
approach, the COPILOT establishes the aircraft's final airspeed, keeping the aircraft
in close formation while monitoring all flight control parameters (Rules C53 - C55).
With the airbase located via the OBSERVER and NAVIGATOR, the COPILOT
computes an estimated touchdown point and determines the required rate of descent
(in conjunction with instrument landing system guidance). With the velocity vector
thus maintained and landing checks completed by the ENGINEER, the COPILOT
performs the flare out upon touchdown (Rules C56 - C58). The COPILOT then
maintains directional control and spacing between aircraft on the runway, and taxis
to the aircraft's final parking position (Rules C59 and C60).

Emergency Procedures

One of the most appropriate applications for an Al-based pilot aid is the
implementation of emergency procedures [3,10-12]. The Pilot may not be able to
react fast enough to an emergency or may fail to recall some important steps in
implementing recovery measures.

The ENGINEER component of AUTOCREW is responsible for monitoring,
recognizing faults, and reconfiguring the aircraft's subsystems. The ENGINEER is
also responsible for declaring a subsystem emergency and implementing emergency
procedures. However, the remaining AUTOCREW components can perform
additional tasks to assist the aircraft in recovering from the emergency. This section
describes some of the tasks that AUTOCREW would perform in the event of
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Figure 6. COPILOT Recovery Mission Phase Tasks

(1) enemy aircraft detected, (2) pilot incapacitation, and (3) engine fire. In a fully-

developed operational system, the emergency procedures described in operational
manuals would be automatically implemented.
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Enemy Aircraft Detected

The OBSERVER's detection of enemy aircraft triggers multiple tasks to be
performed by AUTOCREW in response to the emergency. If the mission phase is
not attack, the DEFENDER immediately responds to the enemy detection by
preparing the defensive fire control system. The ATTACKER prepares for a
potential engagement with the enemy aircraft by pre-selecting an appropriate weapon
and determining the target's coordinates. The SPOOFER consults with the
EXECUTIVE about electronic coumtermeasures (ECM)-deployment strategy, while
the COMMUNICATOR sends the detection messages to the Pilot's wingmates.
After the initial detection, the OBSERVER tracks the enemy aircraft's movement and
computes the time to intercept. In order for the COPILOT to choose the appropriate
control strategy (Rules CO7 and CO8, Fig. 4) for evasive action, the ENGINEER
computes the aircraft's performance capabilities while the NAVIGATOR determines
the closest airfield and potential recovery route. Finally, the EXECUTIVE
formulates an immediate plan and reconsiders the mission priorities in response to
the unexpected enemy aircraft. Some of the information the EXECUTIVE considers
in its replan recommendation are the offensive and defensive capabilities of its own
aircraft, and an intelligent estimate of the enemy aircraft's tactics and motives.

Pilot Incapacitation

If a pilot is incapacitated due to a temporary blackout, AUTOCREW responds by
placing all systems on automatic as dictated by the EXECUTIVE. AUTOCREW
maintains control of the aircraft and "buys time" until the Pilot recovers. The
ENGINEER continually monitors the Pilot's vital physiological signs. Some
suggested physiological response data that potentially could be used in a loss of
consciousness (LOC) expert system are (1) head position, (2) eye movement, and (3)
blood pressure [21]. The LOC expert system would be embedded in the ENGINEER
knowledge base. The LOC expert would sound an alarm if results showed a loss of
consciousness or other form of incapacitation, and AUTOCREW would operate in an
automatic mode until the Pilot recovered [12].

In order to respond to this emergency, the AUTOCREW knowledge bases execute
the following tasks: The ENGINEER increases the Pilot's oxygen supply; the
OBSERVER determines an unoccupied altitude [20,22]; the COPILOT descends to
this altitude, reduces airspeed and extends its flaps (Rule C12 in Fig. 4); the
NAVIGATOR finds the closest friendly airbase, locates friendly aircraft in the area,
and generates a recovery route [23]; the COMMUNICATOR sends a message to
ground control and the Pilot's wingmates informing them of the emergency; and
finally, the EXECUTIVE determines the aircraft's recovery capability, decides
whether an emergency landing is warranted, and orders additional AUTOCREW
tasks. In the event the Pilot does not recover sufficiently to continue the mission, the
EXECUTIVE could work with ground control to bring the aircraft to base
autonomously (Rules C15 - C16 in Fig. 4).

Engine Fire

In the event of an engine fire, the ENGINEER closes the fuel feed pumps and shuts
down the engine. The COPILOT selects an appropriate control strategy based on the
expected power output (Rule C14 in Fig. 4), wind conditions, and expected aircraft
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performance. AUTOCREW would then implement additional tasks to assist in
recovering from the engine fire, as outlined in the aircraft's operational manual.

AUTOCREW Knowledge-Base Cooperation

As described in the previous section, AUTOCREW makes considerable use of
shared parameters. Shared parameters facilitate task synchronization and
cooperation between multiple rule-based systems. Table 1 shows a portion of the
shared parameters found in the skeletal knowledge bases of AUTOCREW. This list
does not include the shared parameters found in AUTOCREW's mission-specific
task list. The table shows the knowledge base of origin for each shared parameter,
and the common knowledge bases that share that parameter. The table shows that
the parameters INBOUND ENEMY and ENEMY AIRCRAFT DETECTED
(determined by the OBSERVER), ADDITIONAL TASKS ORDERED, and
MISSION PHASE SELECTED (determined by the EXECUTIVE) are shared by
cach AUTOCREW component. The values of these parameters cause each system to
execute a variety of tasks associated with the command or situation. In this way, a
group effort is made. In considering the design and implementation details of
cooperative rule-based systems, it is important to note that using a table of shared
parameters is very helpful in organizing multiple rule-based systems. The table
offers a first glance, summarized view of all cooperation triggers.

Table 1. AUTOCREW Shared Parameters for
Emergency and Routine Tasks.

KNOWLEGE-BASE KNOWLEDGE BASES
PARAMETER SHARING
ORIGIN PARAMETER
5 &
PARAMETER 5 i i i SR R RV N S
§£ea,§§§§i§ﬁgag Eéé‘
HEEE SRS IR HE U
Bi2ds S8 sgigigizigid 810 id
DEFENSIVE CAPABILITY COMPUTED X X X
, REFENDER SUCCESS X X
. NUMBER TARGETS. QRTARNEQ.... X X35, Xi. %
TARGET PRIORITIZATION COMPLETED X X x|
HOSTILE EM DETECTED X X
ALTERNATE ROUTE CENERATEY X X
ROUTE TO TARGETS GENERATED o 'Y X
NAV.STATES DETERMINED 5% X X
INAV MODE RECONFIG. RECOMMENDED Iy
FCS MODE HR. S X
INBOUND ENEMY X X:iX:iX:iX:iX X:iX X
WEATHER HAZARDS DETERMINED X X X
UNOCCUPIED ALTITUDE DETERMINED X X
SUBSYSTEM FAILURES FOUND b X
EMERGENCY PROCEDURES TMPLEME X XXX
K8 CAPRBIHES COMPUED i %
RECEIVE COMMAND DATA X X X: x
RECEIVE WEATHER UPLINK X X
.COMDATA HEALTH DETERMINED, X
MISSION EM STRATEGY X X X
[ MISSION BHASE SELECTER N X XDE XXX KAKR
EXECUTIVE RESPONSE TO DEPLOY. X] P oix:i
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Summary of Development Methodology for Cooperating Systems
The methodology used in developing AUTOCREW is summarized as follows:

1) Divide each knowledge base into major task groups as shown in Fig. 3.
Specifically, identify situations that need immediate attention, task groups
requiring routine execution, and specialized task groups.

2) Order the task groups identified in step 1 above from-most important to least
important based on the time-critical nature of the task group. The inference
engine chosen to infer parameter values influences the software placement in
the knowledge base.

3) Break the major task groups into subtasks. The detail of subtasks built into
the knowledge bases are based on the amount of detail necessary to
communicate the system's functions. This is left to the designer's discretion.

4) Identify the areas of cooperation between knowledge bases. Cooperative and
synchronized tasks are specified as shared parameters within the cooperating
systems.

5) The functional relationships (AND/OR) between parameiers in the
formulation of rules should be made throughout the design process.

AUTOCREW IMPLEMENTATION

Effective demonstration, testing, and evaluation are important factors in the design of
AUTOCREW. Cooperating knowledge bases can be designed on a high level to
communicate the overall functionality and interactive aspects of the multiple
experts. This section describés the implementation details used in the development
of the AUTOCREW prototype. Several useful prototyping tools were developed to
keep the multiple system design on a high level. A simulation testbed was developed
to demonstrate and test the cooperating AUTOCREW ecnsemble's performance.
Workload metrics were formulated 1o quantify AUTOCREW's performance in terms
of the ensemble’s efforts in assisting the Pilot. The combination of high-level
prototyping tools and workload evaluation measures greatly reduces the time
required to demonstrate and test a multiple system design, and simplifies the
interpretation of simulation results.

The Princeton Rule-Based Controller (PRBC) Development System was used to
implement the AUTOCREW knowledge bases. It is a unique software architecture
for combining procedural and symbolic processing for rule-based system
development [14]. The PRBC system is written in the IQLISP computer language
[24], and many of the PRBC library functions resemble IQLISP functions. Calls to
procedural Turbo PASCAL routines [25] (or any valid PASCAL code structure) can
be embedded within the PRBC rule syntax. Listing 1 shows the PRBC knowledge
base implementation for AUTOCREW's COPILOT, in a surface-to-air missile
(SAM) attack (refer to Fig. 4 for graphical representation).
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Listing 1 AUTOCREW COPILOT Listing for SAM Attack
Emergency
[RULE_CO3
[PREMISE ‘(SAND ($EQ EVASIVE MANEUVER FOUND 'TRUE)
($EQ FLIGHT CNTRL_STRAT GENERATED
"TRUE) ) ]

[ACTION ‘($SETQ COPILOT_ASSISTANCE TO ATTACK
"COMPLETED) ]
1
[RULE_CO04
[PREMISE ‘($AND ($NOT (SEQ INBOUND ENEMY 'NONE))
($SEQ A/C_CAPABILITIES_COMPUTED 'TRUE)) ]

[ACTION ‘((SPASCAL "fndng evsve mnvrs;")
(SSETQ EVASIVE MANEUVER FOUND 'TRUE)) ]
]
[RULE_CO5
[PREMISE ‘' ($SAND (SEQ NUMBER_TARGETS_ OBTAINED 'KNOWN)
(SEQ ROUTE_TO_TARGETS GENERATED 'TRUE)) ]

[ACTION ‘( (SPASCAL “generate_ flt_cntrl strat;")
($SETQ
FLIGHT_CNTRL_STRAT_GENERATED)) ]
]

The IF-THEN parts of the rules are represented by the PREMISE-ACTION pair in
Listing 1. In RULE_CO04, the Pascal procedure "fndng_evsve_mnvrs;" is called
when enemy aircarft are detected and the Pilot's aircraft capabilities are determined.
The COPILOT's assistance to an attack is completed only when an evasive maneuver
is found and the flight control strategy is generated (RULE_CO03). The PASCAL
routine to generate a flight control strategy is called when the number of targets is
obtained and the trajectories of the inbound aircarft are known. Referring to Table 1
we see that this portion of the COPILOT's knowledge base is made up of several
shared parameters: INBOUND ENEMY detected by the OBSERVER,
A/C_CAPABILITIES COMPUTED determined by the ENGINEER,
NUMBER_TARGETS_OBTAINED determined by the ATTACKER, and
ROUTE_TO TARGETS GENERATED determined by the NAVIGATOR. Th1s isa
good example of how shared parameters are used to invoke a cooperative ensemble
response.

Implementing a knowledge base in the PRBC environment is achieved in two steps.
The first step involves defining the parameters and rules in terms of PRBC syntax, as
exemplified in Listing 1. Once the parameter-rule relations are implemented the
knowledge base's logic flow is tested in the PRBC LISP environment using PRBC's
inference engine. The PRBC Development System inference engine uses a goal-
directed, depth-first search inference engine 1o operate on a knowledge base. In
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depth-first search, the left-most branch of an and/or graph is searched first. If the
value of a goal parameter is required, the inference engine proceeds downward and
to the right of the knowledge base, until enough information is inferred to determine
the value of the goal parameter. The designer monitors the search logic via messages
written to the screen. If the logic flow is not correct or other modifications need to
be made, the designer reiterates the process until the knowledge-base search results
are satisfactory. Only the logic flow is tested in PRBC's LISP environment; the
embedded PASCAL calls are not executed, but instead are written to the screen as
strings. The designer can, therefore, use this information to check the knowledge-
base search logic. The second main step in developing a rule-based system using
PRBC involves knowledge-base and inference engine translation into the final
runtime PASCAL language. The PRBC system translates its special knowledge-
base syntax into Turbo PASCAL code. With the inference engine also translated, the
search logic determined in the LISP environment is readily available in PASCAL.
The embedded calls to PASCAL routines are placed within the translated rules and
are executed through control of the inference engine's search process. Since dual
versions of the inference engine exist in both LISP and PASCAL, search logic can be
tested in either the LISP or PASCAL development languages.

Simulating Rule-Based System Cooperation on a Single-Processor
Computer

AUTOCREW simulations were run on a single-processor IBM PC-AT computer. In
order 1o simulate multiple-system cooperation, a hierarchical framework containing
all nine systems was constructed. This was achieved by combining the systems into
one process containing nine independent knowledge bases. A sequential search on
the top-level parameter was performed for each AUTOCREW component in a
predetermined order.

In a single-processor implementation, all nine knowledge bases were initialized.
Search begins with the goal of obtaining a TRUE value for the top parameter,
PROCESS ONE COMPLETED; this occurs when the top parameters of each of the
nine rule-bases is set to TRUE. On each pass through each knowledge base, search
and task execution are performed for the five sub-goals as appropriate (refer to
Figure 3): Assistance to Attack, Emergency Strategy Implemented, Additional Tasks
Implemented, Routine Tasks, and Mission Phase Specific Tasks. Upon completing a
pass through each knowledge base, all parameters are re-initialized, and the search
commences again. The process is repeated until all nine systems have completed all
of their tasks for the final phase of the mission (Recovery phase).

Prototype Rule-Based System Tools

The PASCAL procedures embedded within the rule structure may not exist in the
designer's PASCAL library. The designer can place PASCAL procedure names in
the knowledge base to describe tasks that will be developed and implemented at a
later time. Unfortunately, when the knowledge base is translated into PASCAL, the
compiler expects the PASCAL procedures to exist. Upon compiling the translated
knowledge base, compile-time errors will occur if the referenced PASCAL procedure
code does not exist. Two very useful LISP tools were developed in this research to
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overcome this problem and help the designer to quickly prototype and analyze a
functioning rule-based ensemble.

The first utility, called the PASCAL Routine Parser (PRP) identifies and isolates
PASCAL procedures residing in the knowledge base that do not exist in a PASCAL
library. Knowledge-base strings containing PASCAL code are parsed to formulate a
list of PASCAL routine names. This list is then compared to procedure names found
in the designer's PASCAL library. If any names in the list match the ones in the
designer's procedure file, they are deleted from the list. The final list, then, contains
only those PASCAL routines not found in the designer's library. The second LISP
utility called the PASCAL Tag Generator (PTG), uses the list of unknown routines to
generate PASCAL code shell procedures. The shell procedures are named after the
unknown routine names found in the knowledge base. These PASCAL shell
procedures are generated from the unknown routines found by the PRP. For the
purpose of AUTOCREW, a one-line executable statement is written by the PTG in
each generated procedure. This statement sends a message to the simulation graphics
monitor (discussed below), displaying the name of the PASCAL routine (e.g. the
name of the task to be executed) in the display area of the AUTOCREW expert that
would execute the task. The set of compiler-ready PASCAL code is written to a file
that is included in the final runtime PASCAL system file; hence all PASCAL
procedures (including shells) embedded within the knowledge base are identified,
coded, and ready for simulation. Using Listing 1 to illustrate the PRP/PTG process,
the PRP would determine if the two PASCAL procedure calls
"fndng_evsve_mnvrs;" and "generate_flt_cntrl_strat;" already
existed in a specified PASCAL procedure library. If not, it would store these
procedure names in a file. Then the PTG would write a PASCAL shell for each
procedure as shown in Listing 2, and append them to the designer’s library file.

The philosophy behind rapid prototyping tools is to provide a quick overview of the
design without burdening the designer with excessively time-consuming details. In
this application, if the designer is only concerned with the general nature of the
ensemble, she should not be involved with the details until changes to the knowledge
bases produce satisfactory results. In this way, the designer gets a realistic view of
the ensemble component integration. The PRP and PTG prototyping tools are good
examples of design aids that assist in high-level systems definition.

Listing 2 PTG-Generated PASCAL Procedure Shells

procedure fndng_evsve mnvrs;
begin
write_to_screen(‘fndng_evsve mnvrs;’,
l,new_line(copilot),copilot);
end; {fndng_evsve mnvrs; }
procedure generate_ flt cntrl strat;
begin
write to_screen(‘generate flt cntrl strat;’,
l,new_line(copilot),copilot);
end; {generate_flt_cntrl strat;}
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Simulation Testbed

The simulation testbed for AUTOCREW resides on an IBM PC-AT computer. In
order to simulate the dynamic flight environment realistically , an interactive testbed
was devised using the computer keyboard as the simulation controller. Coded
keystrokes control the values of several knowledge-base parameters, thereby
allowing the designer to test search activity interactively by changing parameter
values. Hence, the designer can control and verify the knowledge-base logic flow
and change the simulation on-line. This method is most representative of the actual
dynamic flight environment. When all possibilities have been tried, the designer can
make suitable adjustments to the knowledge base and continue.

The AUTOCREW display used for engineering development is shown during an
inbound SAM simulation (Fig. 7). There are nine window areas, one for each
AUTOCREW member. Messages are sent to the Pilot from AUTOCREW and
displayed in the appropriate window area. The most useful messages during
preliminary design of multiple cooperating expert systems are those that tell the
designer which tasks would be performed in the fully developed system, as discussed
in the previous section. When an AUTOCREW member requires attention, the
window area assigned to the AUTOCREW member flashes, the task to be performed
is displayed, and a unique audible tone is generated for that crew member. Although
an operational AUTOCREW would surely use graphical representation of
AUTOCREW activities and data, the simulation testbed gives the designer a good
idea of crew member cooperation and PiloyAUTOCREW interaction in the early
development stages.

AUTOCREW WORKLOAD METRICS

The comparison of task workloads between multiple rule-based systems facilitates
the design of systems having equally distributed tasks.  For example, if
AUTOCREW's ENGINEER has twice as many tasks to perform as the
NAVIGATOR, then subdividing the former's tasks into two independent systems
may be warranted. The idea of equal workloads among several rule-based systems is
consistent with optimal usage of computational resources. In this research, workload
metrics were quantitatively described by two search effort metrics called Rule and
Parameter Fractions. The Rule Fraction may be viewed as a metric describing the
complexity of the decision-making process in terms of subtask breakdown, while the
Parameter Fraction is a reasonable measure of the guantity of tasks performed. In
order to compare workload characteristics between several knowledge bases for a
given mission phase, the Rule and Parameter Fractions are defined as:

Total Rules Fired During Mission Phasexs
Total Mission Phase Rules in All Knowledge Bases

Rule Fractionkg =

(M

Total Parameters Set During Mission Phasexs
Total Mission Phase Parameters in All Knowledge Bases

2

Parameter Fractiongg =
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confrm weapon MISSILE #1
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Figure 7. Engineering Development Display of Inbound
SAM Simulation At Detection Time.

where the subscripts KB in the numerators denote the rules fired and parameters set
in the knowledge base of interest. These workload metrics were used to show the
workload distribution among the AUTOCREW components for several mission and
emergency scenarios  The results are shown in Figure 8. The ENGINEER,
COMMUNICATOR, OBSERVER, NAVIGATOR and EXECUTIVE have the
largest number of routine tasks to perform during each search cycle. During the pre-
flight phase, the ENGINEER, COMMUNICATOR, and NAVIGATOR are the
busiest components, as each prepares the aircraft for takeoff. About 40% of the all
the launch phase tasks are performed by the COPILOT, as shown in Fig. 8b, while
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the next largest task load is executed by the COMMUNICATOR and ENGINEER
(each having 17% of the total launch workload). Most of the attack phase work is
done by the ATTACKER (33%), EXECUTIVE (26%), and COPILOT (15%) as
shown in Fig. 8b, whereas the recovery phase is dominated by the COPILOT's
(35%), ENGINEER's (18%), and COMMUNICATOR's (12%) activities.

Most of the workload during an inbound weapon attack or when an enemy aircraft is
detected is performed by the DEFENDER (about 30% in Fig. 8b). The
ATTACKER's workload also increases at this time, as it monitors the
DEFENDER's firepower capability. In the event the ATTACKER is needed to
continue to defend the aircraft, it assumes the same tasks as the DEFENDER. There
is evidence of more SPOOFER decision-making when an enemy aircraft is detected
than when the OBSERVER detects an inbound weapon. This is due to its ECM
strategy consultation with the EXECUTIVE, as noted above. The COPILOT's
workload also increases during these two emergency conditions; in both scenarios,
the COPILOT selects an appropriate evasive maneuver. These selections are based
on the aircraft capability information provided by the ENGINEER. The
EXECUTIVE's workload also increases at this time to assist the Pilot in making
decisions. When the Pilot is unable to make any decisions due to incapacitation, the
EXECUTIVE becomes the primary decision-maker, as shown in Fig. 8a. The
COMMUNICATOR's workload increases approximately 20% above its routine tasks
to relate the Pilot's circumstances to her wingmates. The NAVIGATOR's and
COPILOT's specific tasks in this situation correspond to a workload increase of 16%,
as shown in Fig. 8b. The ENGINEER's major task during this scenario is in the
detection and evaluation of the Pilot's state of incapacitation; these tasks result in a
10% workload increase.

AUTOCREW SIMULATIONS

Simulation and comparative workload results for an inbound SAM attack on the
aircraft are shown.

Referring to Fig. 7, the OBSERVER initially reports "all clear” as external sensors
have not detected anything. The message is repeated upon each sensor sweep until a
simulated SAM detection occurs. Then, the OBSERVER'S parameter INBOUND
ENEMY changes from NONE t0 SAMS. In the simulation, the inbound direction
displayed with the "SAMS!!" message is a randomized integer value of the
OBSERVER's parameter INBOUND DIRECTION. The SAMS value of INBOUND
ENEMY triggers search activity within the DEFENDER knowledge base. The
DEFENDER asks the Pilot to initiate the defensive fire control sequence by
confirming the enemy. The DEFENDER then engages the tracking radar; the fire
control system locks onto the SAM and computes the expected SAM trajectory. The
COMMUNICATOR reports the SAM attack to the Pilot's wingmates and the control
base. The DEFENDER calculates the Circular-Error-Probables (CEP) of the on-
board defensive weapons to find the best one for SAM destruction. In addition, the
DEFENDER attempts to classify the SAM using signal information obtained from
the OBSERVER and its own sensors. Knowledge of the SAM classification and
defensive weapon CEPs aids in the DEFENDER's selection of the best and next-best
weapons. Once found, the Pilot is asked to confirm the recommended
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weapon (MISSILE #1). If the Pilot inputs NO, then the next-best weapon is
presented. In the event that the Pilot has armed the system and not disagreed with
the selection within a given time, the DEFENDER selects the weapon and proceeds
with the fire control sequence.

While the DEFENDER performs these tasks, the COPILOT defines and performs an
evasive maneuver, subject to the Pilot's approval. The SPOOFER selects and
deploys electronic countermeasures appropriate to a SAM, and the OBSERVER
attempts to determine the SAM launch site. The COMMUNICATOR displays SAM
confirmation messages from the Pilot's wingmates. The ENGINEER continues to
monitor the aircraft systems and evaluates the aircraft's capabilities for the
COPILOT. The NAVIGATOR locates the nearest friendly air bases and searches for
friendly aircraft to provide possible fire support against the SAM site. Since the
aircraft is proceeding to the target area as planned, the ATTACKER continues
preparing for mission target engagement. The EXECUTIVE's responsibilities are to
analyze the current mission status and to prioritize and coordinate AUTOCREW
tasks. The EXECUTIVE orders additional AUTOCREW tasks to assist in mission
status assessment and in achieving mission goals.

The messages in the DEFENDER's display area "t rckng_scnng_enmy”,
"fire cntrl lckd on","enmy trjctry_ cmpt"”and "comput ing_cep"
are PASCAL procedures that would contro} and perform their implied tasks. These
messages were generated by the PASCAL Tag Generator during knowledge-base
development in the LISP environment. The PASCAL routines that perform these
tasks remain to be developed. Hence, the cooperating rule-based system designer

gets a realistic overview of AUTOCREW functions before developing the details.

This simulation illusirates AUTOCREW's cooperative task activity and team
synchronization capability. Shared parameters achieve appropriate task scheduling
during each mission phase. This simulation was generated from high-level
definitions of the nine AUTOCREW knowledge bases implemented in the PRBC
development environment and using the PRP and PTG protyping tools. The
simulation shows how a potentially complex set of cooperating rule-based systems
can be prototyped at a high-level, and tested for satisfactory logic flow prior to
developing tasks in detail.

Comparison of Scenario Workloads

Search effort metrics also enable the designer to compare ensemble workloads for
different scenarios. The increase in AUTOCREW workloads for three scenarios
were compared with normal cruise task loads. The three scenarios were: 1) Cruise
mode with inbound SAMs, 2) Attack mode with inbound SAMs, and 3) Cruise
mode with inbound SAMs and an incapacitated Pilot. The results are shown in Table
2.



396 INTELLIGENT AND AUTONOMOUS CONTROL

Table 2 Scenario Workload Increase Comparisons

SCENARIO WORKLOAD INCREASE, %
Tasks Decision-Making

Cruise Mode @ —eeeeen el

Cruise Mode/Inbound SAM 26.3 28.1

Attack Mode/Inbound SAM 77.2 75.2

Cruise Mode/Inbound SAM 39.5 38.6

& Incapacitated Pilot

From the table, an inbound SAM attack increases AUTOCREW's work output
approximately 30% during normal cruise. If the aircraft is enroute to the air-to-air
battle area, and preparing for engagement when the SAM is launched,
AUTOCREW's work output increases by approximately 75% above a normal task
load. This workload increase is performed in a very short period of time, so that the
ratios of tasks executed over time (task rate) and information processing over time
(information processing rate) are very high. These results are much higher than
those for the scenario in which an inbound SAM attacks the aircraft while the Pilot is
incapacitated, as shown Table 2. In comparing the first and third scenarios in the
table, there is an additional increase of 10% in AUTOCREW's effort to keep the
aircraft and decision-making processes under control. However, the latter results are
still much lower than the results for the inbound SAM during the attack phase. The
preliminary results obtained in Table 2 are reasonable because they reflect relative
workload conditions that the Pilot faces during these mission scenarios. Therefore,
these results can be used quantitatively to identify the critical task and decision-
making areas for Pilot workload alleviation.

CONCLUSIONS AND FUTURE DIRECTIONS

This chapter outlines a general approach to designing and prototyping multiple
cooperating rule-based systems. It demonstrates that high-level component design
and implementation identifies ensemble requirements and facilitates system
integration. The general approach used in the AUTOCREW application could be
used in other areas where cooperative expert systems are needed. Examples include
real-time monitoring and control of equipment in medical applications (e.g., during
surgery), telecommunication network applications, manufacturing operations,
nuclear power plant operations, and autonomous systems for space exploration.

Further research could be done in the area of "modes of autonomy". As illustrated in
this chapter, the AUTOCREW ensemble assists the Pilot in accomplishing the
mission by functioning in advisory and workload alleviating capacities. The Pilot's
authority over the system is demonstrated by her continuous interaction with the
ensemble and her ability to control the system’s logic flow and task execution
functions. The approach taken in the design of AUTOCREW achieves a variety of
aatonomous control modes. It is envisioned that an intelligent pilot aid would be
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designed to function autonomously in the event the Pilot is unable to command the
aircraft. However, it is also envisioned that in normal operations, the Pilot is the
mission director and has complete authority to perform all tasks when she is capable
of doing so. For example, in a normal operational mode, the Pilot would command
AUTOCREW 1o execute lower level tasks. When the Pilot is in a high workload
mode, the Pilot could command AUTOCREW to execute higher level tasks. A
complete ensemble knowledge-base design is very powerful in that each knowledge
base can be accessed in a multitude of ways, to provide a variety of advisory and
control modes suitable to the Pilot and appropriate to the mission situation.

The AUTOCREW research showed that software tools played a key part in the
successful high-level design of a complex Al-based ensemble. For example, the
PASCAL Routine Parser and PASCAL Tag Generator saved much development
time, and the graphically-represented AUTOCREW knowledge bases aided in the
identification of shared knowledge base parameters. The simulation testbed was
very useful in prototype testing. Future directions in Al-based ensemble design
research should include development of additional software tools to help the designer
focus on the important aspects of the system requirements.

A code-to-graph generator tool would have saved much development time. By
generating graphical knowledge bases from AUTOCREW LISP code (such as shown
in Fig. 4), the tool would make the design process self-documenting, saving weeks of
painstaking drawing. Computer Aided Software Engineering (CASE) technology is
a good candidate for graphically specifying and communicating system
requirements, before software development commences. The graphical
representation of knowledge bases is advocated because it provides an at-a-glance
overview of the system contents. This is especially important when multiple
cooperating systems are developed by several design teams and are subsequently
integrated into a single complex operational system. Since the individual systems
cooperate with each other, each design group must clearly communicate the
knowledge-base contents so that shared information is readily identified.

The simulation testbed used to evaluate AUTOCREW's performance could be
enhanced by augmenting the graphics with speech synthesis capability. Presently,
messages that indicate which tasks are executed by each AUTOCREW knowledge
base are written to nine different window areas, each associated with an
AUTOCREW expert. During logic testing of inter-system cooperation, the messages
are written o the screen very quickly. Designers would find it advantageous to have
each system communicate the message in audio, with each knowledge base
characterized by a different "voice".

Finally, it is important to investigate the problems associated with multiple
cooperating systems using multi-processors. AUTOCREW was simulated on a
single-processor IBM PC-AT computer. Simulations gave a realistic view of how
the knowledge bases cooperate and share information. However, multiple systems
are destined for mutli processors; Reference 26 discusses how three rule-based
systems that perform cooperative tasks and share data were successfully
implemented on three processors. These methods need to be applied to the
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AUTOCREW system, in order to evaluate its performance in a more operationally
realistic environment.
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