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Abstract

An important capability of an intelligent system is the ability to im-
prove its future performance based on experience within its environ-
ment. The concept of learning is usually used to describe the process
by which this capability is achieved. The present chapter will focus on
control sysiems that are explicitly designed to have and to exploit this
capability. In this context, the control system can be viewed as a
(generally nonlinear) mapping from plant outputs to actuation com-
mands so as to achieve certain control objectives, with learning as the
process of modifying this mapping to improve future closed-loop sys-
tem performance.

The information required for learning, that is, the information required
to correctly generate the desired control system mapping, is obtained
through direct interactions with the plant (and its environment). Thus,
learning can be used to compensate for a lack of a priori design infor-
mation by exploiting empirical information that is gained experien-
tially. In this setting, the principal benefit of learning control is its
ability to accommodate poorly modeled, nonlinear dynamical behav-
ior.

Contemporary learning control methodologies based on this perspec-
tive will be described and compared to traditional control approaches
such as gain scheduled robust and adaptive control, as well as to earlier
learning control paradigms. The discussion and examples that follow
will identify both the distinguishing characteristics of learning control
systems and the benefits of augmenting traditional control approaches
with learning capabilities.
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1. Introduction

Control systems for autonomous vehicles must maintain closed-loop system in-
tegrity and performance over a wide range of operating conditions. This objective can
be difficult to achieve due to a number of circumstances including the complexity of
both the plant and the performance objectives, and due to the presence of uncertainty.
From a design standpoint, these difficulties may result from nonlinear or time-vary-
ing behavior, poorly modeled plant dynamics, high dimensionality, multiple inputs
and outputs, complex objective functions, constraints, and the possibility of actuator
or sensor failures. Each of these effects, if present, must be addressed if the system is
to operate properly in an autonomous fashion for extended periods of time. Although
learning control systems may be used to address several of these design difficulties,
the main focus of this chapter will be the accommodation of poorly modeled nonlin-
ear dynamical behavior. The reasons for this special emphasis are straightforward,
and are outlined in the next section.

Most, if not all, researchers in the intelligent systems field would accept the general
statement that the ability to learn is a key attribute of an intelligent system. Even
so, very few would be able to agree on any particular statement that attempted to be
more precise. The stumbling blocks, of course, are the words “learn" and (ironically)
"intelligent." Similarly, it is difficult to provide a precise and completely satisfac-
tory definition for the term "learning control system.” One interpretation that is,
however, consistent with the prevailing literature is that:

A learning control system is one that has the ability to improve its
performance in the future, based on experiential information it has
gained in the past, through closed-loop interactions with the plant
and its environment.

There are several immediate implications of this statement. One implication is that a
learning control system has some autonomous capability, since it has the ability to
improve its own performance. Another is that it is dynamic, since it can vary. Yet
another implication is that it incorporates memory, since the retention of past infor-
mation is critical to the improvement of future performance.2 Finally, to improve
its performance, the learning system must receive performance feedback information
based on the objective function that it seeks to optimize.

2. Learning Control Issues

At this point, a number of questions come to mind. What is the role of learning in
the context of intelligent control? How does it work? Are there alternatives to leam-
ing? How does learning differ from adaptation? How can a learning control system

1. To help focus the discussion that follows, we will limit our discussion to learning for
the control of dynamical system behavior. We will not discuss control of reasoning
processes or learning in artificial intelligence knowledge basis; although both areas of
research are important for the development of autonomous vehicle behavior.

2. The use of memory is a key distinction between leamning and adaptation (Landau
(1979)) as will be discussed in the sequel.
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be realized or implemented? We will consider each of these questions briefly in the
remainder of this section; later, in the sections that follow, we will develop more de-
tailed and complete answers to these same questions.

Role of Learning. Following Tsypkin [20], the necessity for applying learning
arises in situations where a system must operate in conditions of uncertainty, and
when the available a priori information is so limited that it is impossible or imprac-
tical to design in advance a system that has fixed properties and also performs suffi-
ciently well. In the context of intelligent control, learning can be viewed as a means
for solving those problems that lack sufficient a priori information to allow a com-
plete and fixed3 control system design to be derived in advance. Thus, a central role
of learning in intelligent control is to enable a wider class of problems to be solved,
by reducing the prior uncertainty to the point where satisfactory solutions can be ob-
tained on-line. This result is achieved empirically, by means of reinforcement, asso-
ciation, and memory adjustment. A goal of this chapter is to explain the role that
each of these items plays in the formulation of a learning control approach.

Learning Control Basics. The benefits of learning control (given the present state of
its development) can be realized through the automatic synthesis of the mappings
that are used within a control system architecture. Examples of such mappings in-
clude a "control mapping" that relates command and measured plant outputs to a de-
sirable control action, or a "model mapping" that relates the plant operating condition
to an accurate set of model or controller parameters (in the latter example, the learn-
ing architecture is similar to that of gain scheduling, with the proviso that learning
occurs on-line with the actual plant, while gain scheduling is developed off-line via a
model). Learning is required when these mappings cannot be determined completely
in advance because of a priori uncertainty (e.g., poorly modeled nonlinear dynamical
behavior). In a typical learning control application, the desired mapping is station-
ary, and is expressed (implicitly) in terms of an objective function involving the out-
puts of both the plant and the learning system. The objective function is used to
provide performance feedback to the learning system, which must then associate this
feedback with specific adjustable elements of the mapping that is currently stored in
its memory. The underlying idea is that performance feedback can be used to im-
prove the mapping furnished by the learning system.

Relation to Alternative Approaches. There are, of course, several alternative ap-
proaches that have traditionally been used for the accommodation of poorly modeled
nonlinear dynamical behavior. These include gain scheduled robust, adaptive, and
"manual learning” techniques. The relationships between these approaches and the
learning control approach are important and are discussed in the following paragraphs.

3. The term “fixed" is used here to indicate those control systems for which the parameters
and structure are determined in an open-loop (performance independent) fashion.

Examples include fixed gain and gain scheduled controllers. With this terminology, non-
fixed control systems employ performance feedback to adjust the parameters or structure of
the control law. Note that this definition requires a somewhat arbitrary distinction
between the adjustable parameters and states of the controller.
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Robust control system design techniques attempt to treat the problem of model un-
certainty as best as possible in advance, so as to produce a fixed design with guaran-
teed stability and performance properties for any specific scenario contained within a
given uncertainty set. A tradeoff exists between performance and robustness, since
robust control designs are usually achieved at the expense of resulting closed-loop
system performance (relative to a control design based on a perfect model). Advanced
robust control system design methods have been developed to minimize this inherent
performance / robustness tradeoff. Although robust design methods are currently lim-
ited to linear problems, nonlinear problems with model uncertainty can sometimes be
approached by gain scheduling a representative set of robust point designs over the
full operating envelope of the plant, thus decreasing the amount of model uncertainty
that each linear point design must accommodate. Nevertheless, the performance re-
sulting from any fixed control design is always limited by the availability and accu-
racy of the a priori design information. If there is sufficient complexity or uncer-
tainty so that a fixed control design will not suffice, then satisfactory closed-loop
system performance can only be obtained in one of three ways: (i) through improved
modeling to reduce the uncertainty, (ii) via an automatic on-line adjustment tech-
nique, or (iii) through manual tuning of the nominal control law design.

In contrast to the above "fixed" approach, adaptive control approaches attempt to treat
the problem of uncertainty through on-line means. An adaptive control system can
adjust itself to accommodate new situations, such as changes in the observed dynami-
cal behavior of a plant. In essence, adaptive techniques monitor the input-output be-
havior of the plant to identify, either explicitly or implicitly, the parameters of an as-
sumed dynamical model. The control system parameters are then adjusted to achieve
some desired performance objective. Thus, adaptive techniques seek to achieve in-
creased performance by updating or refining some representation, which is determined
(in whole or in part) by a model of the plant's structure, based on on-line measure-
ment information. An adaptive control system will attempt to adapt if the behavior
of the plant changes by a significant degree. However, if the dynamical characteris-
tics of the plant vary considerably over its operating envelope (e.g., due to nonlinear
dynamics), then the control system may be required to adapt continually. During
these adaptation periods, closed-loop performance cannot be guaranteed. Note that
this adaptation can occur even in the absence of time-varying dynamics and distur-
bances, since the control system must readapt every time a different dynamical regime
is encountered (i.e., one for which the current control law is inadequate), even if it is
returning to an operating condition it has encountered and successfully adapted to be-
fore.

The motivation for the gain scheduled approach is the expectation that plant dynam-
ics can be represented by a known, fixed function of a set of scheduling variables. As
the scheduling variables are normally a subset of the variables describing the opera-
tional envelope of the plant, these will be referred to as spatially dependent dynamics.
In contrast, the focus of adaptive techniques is on temporal changes in the plant dy-
namics. As previously indicated, learning (in the context of control) can be construed
as the ability to automatically develop and retain a desired control law for a given dy-
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namical plant, based on closed-loop interactions with the plant (and its environment).
The ability to develop the requisite control law on-line clearly differentiates learning
control approaches from fixed robust design approaches (including those which are
gain scheduled). The ability to retain the control law as a function of operating con-
dition differentiates learning control strategies from adaptive control ones. These dis-
tinctions will be expanded on in the following subsection.

A third approach that has been used in applications with complex nonlinear dynami-
cal behavior is based on a kind of manually executed learning control system. In
fact, this is the predominant design practice used to develop flight control systems for
aircraft. In this approach, the control law is developed through an iterative process
that integrates multiple control law designs to approximate the required nonlinear
control law. This approach often results in numerous design iterations, each involv-
ing manual redesign of the nominal control law (for certain operating conditions),
followed by extensive computer simulation to evaluate the modified control law.
After the initial control system has been designed, extensive empirical evaluation and
tuning (manual adjustment and redesign) of the nominal control system is often re-
quired. This arises because the models used during the design process do not always
accurately reflect the actual plant dynamics. In this process, the role of the learning
system (as described above) is played by a combination of control system design en-
gineers, modeling specialists, and system analysts. An interesting perspective (o
consider is that learning control offers a means of automating this manual design and
tuning process for certain applications.

Adaptive vs, Learning Capabilities. In the discussion that follows we will see that

both adaptive and learning control systems can be implemented using parameter ad-
justment algorithms, and that both make use of performance feedback information
gained through closed-loop interactions with the plant and its environment.
Nevertheless, we intend to clearly differentiate the goals of adaptation from those of
learning. The key differences are essentially a matter of degree, emphasis, and in-
tended purpose. A control system that treats every distinct operating situation as
novel is limited to adaptive operation, whereas a system that correlates past experi-
ences with past situations, and that can recall and exploit those experiences, is capa-
ble of learning. Since, in the process of learning, the learning system must be capa-
ble of adjusting its memory to accommodate new experiences, a learning system
must, in some sense, incorporate an adaptive capability. It should be noted, how-
ever, that the design and intended purpose of a learning system requires capabilities
beyond that of adaptation.

Adaptive control has a temporal emphasis: its objective is to maintain some desired
closed-loop behavior in the face of disturbances and dynamics that appear to be time-
varying. In actuality, the changing dynamics may be caused by nonlinearities, when
the operating point of the system is changing with time (i.e., temporal changes in
the linearized plant dynamics). Because the functional form of adaptive control laws
is generally incapable of representing, over a wide range of operating conditions, the
required control action as a function of the current plant state, it can be said that adap-
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tive controllers lack "memory” in the sense that they must readapt to compensate for
all changing dynamics, even those which are due to (time-invariant) nonlinearity and
have been experienced previously. This inefficiency results in degraded performance,
since transient behavior due to parameter adjustment will occur every time the
(recently) observed dynamical behavior of the plant changes by a sufficient degree.

In general, adaptive controllers operate by optimizing a small set of adjustable pa-
rameters to account for plant behavior that is local in both state-space and time. To
be effective, adaptive controllers must have relatively fast dynamics so that they can
react quickly to changing plant behavior. In some instances, the plant parameters
may vary so fast (perhaps due to nonlinearity) that the adaptive system cannot main-
tain desired performance through adaptive action alone. As argued by Fu [8], it is in
this type of situation that a learning system is preferable. Because the learning sys-
tem retains information, it can, in principle, react more rapidly to spatial variations
once it has learned.

Learning controllers exploit an automatic mechanism that associates, throughout
some operating envelope, a suitable control action or set of control system parame-
ters with the current operating condition. In this way, the presence and effect of pre-
viously unknown nonlinearities can be accounted for and anticipated, based on past
experience. Once such a control system has "learned," transient behavior that would
otherwise be induced by spatial variations in the dynamics no longer occurs, resulting
in greater efficiency and improved performance over adaptive control strategies.

Learning systems can operate by optimizing a large set of adjustable parameters (and
potentially variable structural elements) to construct a mapping that captures the spa-
tial dependencies of the problem throughout the operating envelope. To successfully
execute this optimization process, learning systems make extensive use of past in-
formation and employ relatively slow learning dynamics.

As defined, the processes of adaptation and learning are complementary: each has
unique desirable characteristics from the point of view of intelligent control. For ex-
ample, adaptive capabilities are capable of accommodating slowly time-varying dy-
namics and novel situations (e.g., those which have never been experienced before),
but are often inefficient for problems involving significant nonlinear dynamics.
Learning approaches, in contrast, have the opposite characteristic: they are well-
equipped to accommodate poorly modeled nonlinear dynamical behavior, but are not
well-suited to applications involving time-varying dynamics.

Implementation of Learning Systems. From the previous discussion, it is clear that

a learning system must be capable of accumulating and manipulating experiential in-
formation, storing and retrieving compiled information, and adapting its stored
knowledge to accommodate new experiences. A key implementation point is that a
learning system will require an efficient information storage and retrieval (i.e., mem-
ory) system to retain empirically derived knowledge. One simple way to implement
a learning system is to partition the input-space into a number of disjoint regions, so
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that the current output is determined by "looking up” the output value associated
with the current input region. Many early learning control systems were based on
this type of architecture. Assuming that the learning system output is used directly
for control action, a nonlinear control law can be developed by learning the appropri-
ate output value for each input region, resulting in a "staircase” approximation to the
actual desired control law. The relation between learning and function approximation
is readily apparent in this example. One drawback of this approach is the combinato-
rial growth in the number of regions required, as either the state-space dimension or
the number of partitions per state-space dimension is increased.

More advanced learning systems (particularly for control applications) can be devel-
oped via an appropriate mathematical framework that is capable of representing a
family of continuous functions; this framework can have a fixed or variable structure,
and a potentially large number of free parameters. The structure and operational at-
tributes of a learning system are determined, in part, by the quantity and quality of
the a priori design information that is available, including the anticipated characteris-
tics of the experiential information that is expected to be available on-line. Such ar-
chitectures are often used in contemporary learning control systems. In this case, the
learning process is designed to automatically adjust the parameters (or structure) of
the functional form to achieve the desired input / output mapping. Such representa-
tions have important advantages over simple look-up table approaches; for instance,
continuous functional forms are generally more efficient in terms of the number of
free parameters, and hence, the amount of memory, needed to represent a smooth (or
piecewise smooth) function. Furthermore, they are capable of providing generaliza-
tion (i.e., interpolation between nearby input points) automatically. We will return
to the subject of learning control system implementation in the Contemporary
Implementations section of this chapter.

3. Past Implementations

In this section we briefly review learning control implementations that have been in-
vestigated over the last forty years. As this review is by no means exhaustive, the
interested reader is referred to the survey papers of Sklansky [19] and Fu [9].

The typical early learning control systems subdivided the envelope over which the
system was expected to operate into a set of regions called control situations. Each
control situation corresponded to a different region for the features of the problem un-
der consideration. Features could for example be elements of the state vector or pa-
rameters of the plant model. A feature classifier was used to characterize the current
plant features as belonging to a particular control situation. Then, an admissible
control action was associated with each control situation. The association (or map-
ping) from control situations to desired control actions was the task of the learning
system. The accumulated knowledge of the learning system, embodied in the current
control mapping, was maintained in the memory of the learning system. Based on
this mapping, the current control situation was used to generate a control action,
which was then applied to the plant. Subsequently, performance feedback was pro-
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vided to the learning control system to adjust the control mapping, and hence, the fu-
ture behavior of the system.

The majority of early learning control approaches focused on the development of al-
gorithms capable of selecting the appropriate control action ay from a finite set A of
admissible control actions, for each element s of a finite set S of possible control
situations. The elements of the finite action set often represented binary control sig-
nals suitable for bang-bang control (i.e., A={aj,a2}), although more generally,
they might represent any finite number of distinct control signals or even different
control laws (e.g., different linear state feedback laws). The problem was to
determine (learn) an optimal mapping C*:§ — A based on some predefined objective
function.* Once learned, this control mapping could be used to generate the
appropriate action a; for the current situation s.

With these definitions in mind, the critical learning control research questions of the
1960s included: How should performance be evaluated and communicated to the learn-
ing system? How should an action be selected for each control situation? How
might the action set be improved? How should the control situations be defined or
learned? Each of these issues is examined more closely in the following subsections.

Performance Evaluation and Feedback. The driving force behind the learning process

is a feedback signal that is based on the performance of the closed-loop system, as
measured by some objective function.” Traditionally, the objective functions used in
conjunction with learning control research have belonged to two classes: instanta-
neous and dynamic. An instantaneous objective function is one that can be com-
pletely defined in terms of a scalar function involving only the current characteriza-
tion of the environment and the current inputs and outputs of the plant and the learn-
ing system. In this case, the ultimate goal is to maximize or minimize this function
over the entire input domain of the control mapping by incrementally improving it
with each learning experience. One example of this type is model-following control,
in which the goal is to make the closed-loop system mimic the input-output behav-
ior of a reference model. A common objective function in this case is a norm of the
instantaneous error between the desired and the actual plant outputs. In contrast, a

4. Note that more than one type of optimization problem can be posed. For instance, the
problem might be to determine an optimal mapping based on fixed control action and sit-
uation sets (this is the simplest case), or alternatively, to determine an optimal mapping
based on variable control action and situation sets. In this latter case, an important part
of the optimization problem is to modify the interpretation of the elements of these two
sets, so as to achieve a better overall mapping. For control situations, this is achieved by
modifying the feature classifier, whereas for control actions this is achieved by modifying
the control signal associated with each action.

5. The question of how to specify desired system performance is an important and long-
standing one in the field of control theory. There are a few basic specifications in terms of
linear systems that are widely used because they lead to tractable design problems. The
desire to allow a wider variety of performance specifications (e.g., nonlinear reference
models) to be applied to a wider variety of plants (e.g., nonlinear systems with saturating
actuators) was one of the early motivations for learning control.
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dynamic objective function is a scalar function that cannot be completely defined in
terms of the current environment, plant and learning system information, due to the
fact that the objective function has internal state. An example of such an objective
function is the familiar integral quadratic cost function from optimal control theory.
It should be noted that the learning control problem is considerably more difficult in
the case of a dynamic objective function than an instantaneous one. This is discussed
below.

Given a particular objective function, it is possible to provide different types of per-
formance feedback to the learning system. A common scenario in early learning con-
trol system implementations was the discrete case in which the output of the objec-
tive function was mapped to a binary reinforcement signal. In such situations, the
reinforcement signals could be thought of as being "positive"” or "negative.” Positive
reinforcement was designed to encourage the same behavior in future visits to the
same control situation, while negative reinforcement was designed to discourage that
behavior. Although most early approaches employed binary (or discrete) valued rein-
forcement signals, continuous valued signals could also be used. In either case, per-
formance feedback of this type provides a direct indication of the appropriateness of
the selected control action, but does not provide any (direct) indication as to whether
an alternative control action might be more appropriate. As a result, reinforcement
learning systems lead to stochastic learning rules that are used to search for the best
control action among the set of applicable control actions.

Whether the objective function is instantaneous or involves state, the performance
feedback signal it provides may be separated temporally from the application of the
control signal; this phenomenon is referred to as delayed reinforcement. A classic and
often used example of delayed reinforcement is the problem of balancing an inverted
pendulum on a moving cart. In this problem, the only reinforcement that the system
receives is negative, when the pole falls; at all other times, no reinforcement signal
is provided. This situation gives rise to what is known as a (temporal) credit assign-
ment problem. The crux of this credit assignment problem is to determine the set of
control actions (which were applied in previous control situations) that were ulti-
mately responsible for the failure, so that they can be corrected. An early paper ad-
dressing this type of problem (in a different context) is due to Samuel [17], subse-
quent work includes Michie & Chambers [14], and Barto, et al. [5].

In cases where the reinforcement signal is based on a dynamic objective function, the
appropriateness of a particular control action can no longer be easily ascertained from
the performance feedback signal. The reason for this is that the performance feedback
signal is not necessarily a unique function of the most recently selected control ac-
tion; instead, it may now depend on the entire history of control actions that have
been applied up to that point in time. Therein lies the difficulty, for it is no longer
immediately clear which control action(s) contributed most strongly (and in what di-
rection) to the performance feedback that was received. This is another version of the
temporal credit assignment problem.



246 INTELLIGENT AND AUTONOMOUS CONTROL SYSTEMS

Control Action Selection. There are two aspects to the problem of selecting an ap-
propriate control action. The first involves the use of the control mapping that has
been learned up to that point in time to generate a control action. The second in-
volves the adjustment of the current control mapping, based on the latest performance
feedback information. Stochastic learning methods are required when derivative in-
formation relating the objective function to the control mapping is not available.
When gradient information is available, the desired control mapping can usually be
developed more efficiently, since the derivative information concerning the objective
function provides directional information for improving the outputs of the learning
system. We will refer to this special class of learning control approaches as being
gradient based. In this section, we discuss only the stochastic reinforcement learning
methods. The gradient based techniques are fully discussed in the subsequent sections
of this chapter. The stochastic learning control problem can be treated as a pattern
classification task, in the sense that a large number of possible control situations are
to be classified according to a smaller number of admissible control actions. Two
different implementation techniques will be discussed to exemplify these approaches.

In one approach, see [14], each control situation maintains a probability vector for
the selection of discrete control actions. When the state of the plant enters a control
situation, a control action is randomly generated according to the probability density
function defined over the ensemble of control alternatives for that control situation.
If the chosen control action (eventually) receives positive (negative) reinforcement
then the probability of that action is adjusted to be more (less) likely relative to the
alternative control actions available in that control situation. Thus, a stochastic
competition takes place to evolve the best control action in each control situation.
In addition to the learning issues involved with credit assignment, this stochastic
search approach must ensure adequate exploration of all control actions for each con-
trol situation.

The choice between the alternative control actions represented by the set A can also
be determined through a decision-theoretic analysis if the sample experiences are used
to approximate the joint probability density functions p;(x) for all i, that control ac-
tion @; is correct at position x. Using these estimated joint distributions, decision-
theoretic switching boundaries can be identified, see [19]. Control action generation
is then determined by the location of the current state relative to the current switching
boundaries. The switching boundaries are adjusted automatically as the probability
density functions are updated.

The differences between these two examples are interesting. The former implementa-
tion fixes the control situation boundaries and adjusts the probability of each admis-
sible control action within each control situation. The latter defines the control situ-
ations implicitly as a function of the joint probability density functions p;(x); thus,
the switching curves are not constrained by a priori control situation boundary defini-
tions.
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In both implementations, the finite action set is fixed. This limitation on the output
resolution of the control actions constrains the accuracy of the resulting control law.
These accuracy limitations can be decreased, at the expense of increased memory re-
quirements, by allowing different interpretations of the action set in different control
situations or by allowing new control actions to be added to the action set. Such ad-
justments to the action set were not the main focus of early research efforts. In con-
trast, continuous adjustment of the control actions is a priority for the function syn-
thesis approaches currently being developed.

Controt Situation Definition. In early applications (e.g., [14]), where the interpreta-
tion of each control action and control situation was defined a priori and did not
change during the learning process, the expected input domain of the control law was
partitioned in advance. The boundaries of the control situations described potential
switching curves (lines of discontinuity) in the control mapping. This had the desir-
able effect of considerably simplifying the implementation of a learning control sys-
tem, but had the undesirable effect of limiting its performance in all but the most ex-
ceptional cases. There are several reasons for this. First, an obvious drawback to us-
ing fixed control situations is the inability to resolve learning conflicts in cases
where the performance feedback indicates that a switching curve should (ideally) pass
through a control situation, rather than along its periphery. Second, if nothing at all
is known about the nature of the solution in advance, then a rational approach is
simply to create a uniform (and relatively fine) partitioning of the control mapping
input domain, which implies a relatively large number of different control situa-
tions.® Frequently, however, a significantly better partition exists that exploits spe-
cific characteristics of the problem. In a regulator control problem, for example, con-
trol situations corresponding to plant states far from the setpoint can be large
(coarsely quantized) compared to control situations in which the plant state is close to
the setpoint. Such variable resolution would allow for improved transient and steady-
state closed-loop system behavior in the vicinity of the setpoint. Generally speak-
ing, a learning control system can be more efficient and achieve better performance if
control situations are adjusted on-line during the learning process.

Several techniques were developed to address this need. Waltz & Fu [21] expanded on
a pattern recognition idea by Sebestyen [18] to create a learning control system capa-
ble of refining its control situations. Initially no control situations were defined. As
new experience was obtained during a training session, the idea was to create new
control situations with decreasing radii, as required, in the vicinity of the perceived
switching curves. Thus, memory was not wasted on representing control situations
that might never occur, and increased resolution was expected along perceived switch-
ing curves that emerged as learning progressed. Sklansky [19] reviews two ap-
proaches aimed at providing more general solutions to the problem of learning the
control situations. The first approach, based on decision theory, was discussed in the

6. Worse still, a uniform partition of a multidimensional space grows exponentially with
the number of subdivisions in each dimension, so that even modest problems can require
prohibitively large amounts of memory.



248 INTELLIGENT AND AUTONOMOUS CONTROL SYSTEMS

previous subsection. As a means of overcoming the burden of estimating joint prob-
ability densities, the second approach attempted to explicitly represent control situa-
tion boundaries using linear or nonlinear functions. The boundaries were represented
as parameterized combinations of these functions and performance feedback was used
to adjust the parameters.

Comment. Much of the early research in learning control was shaped by the compu-
tational resources that were available (or likely to become available) at the time (circa
1960). This led to the major limitation of most early learning control approaches —
the need to rely on a representational structure that had a discrete domain and corre-
sponding discrete range. This created many problems, as outlined above, and was
particularly troublesome in situations where the ideal control mapping was actually
better approximated by a smooth nonlinear function having a continuous domain and
a continuous range. Recent work in the area of connectionist learning systems has
provided a new strategy for the development of learning control systems with sub-
stantially improved properties, relative to early learning control systems. A key idea
espoused by this new strategy is that the on-line synthesis of control mappings can
be treated as a type of smooth function approximation problem.

4. Contemporary Implementations

A commonly held notion is that learning results in an association between input
stimuli and desirable output actions. By interpreting the word "association" in a
mathematical sense, one is naturally led to the central idea underlying many con-
temporary implementations of learning control systems. "Learning" can be inter-
preted as a process of automatically synthesizing multivariable functional mappings,
based on a criterion for optimality and experiential information that is gained incre-
mentally over time [3]. Most importantly, this process can be realized through the
selective adjustment of the parameters and structure of an appropriate representational
framework. The advantages of contemporary implementation schemes relative to
those of the past are numerous and will be considered in this section. Key benefits
are derived from the smoothness, generality, and representational efficiency of the
mappings that can be obtained (i.e., learned).

To further develop the central theme of this section, we will proceed by elaborating
on the notion of learning as automatic function synthesis. After a more formal in-
troduction to the concept and its key issues, the applicability of connectionist leamn-
ing systems in this context will be described, followed by other subsections covering
the issues of incremental learning and spatially localized learning. To allow for a
more concrete discussion of the key concepts, we will make use of the following def-
initions. Let M denote a generalized memory device’ that will be incorporated into
a learning system, and let D represent the domain over which this memory is appli-
cable. If ze D, then the expression u = M(z) will be used to signify the "recall” of

7. By generalized, we mean that the usual concept of a discrete input, discrete output
memory has been extended to allow for more general continuous input / output
relationships.



Learning Control Systems 249

item u by "situation” z from the memory M. The desired mapping to be stored by
this memory (via learning) will be denoted by M *. Since the desired mapping is
not usually known, it must be learned. This is the subject of the following
subsection.

Learning as Automatic Function Synthesis. The function synthesis concept is easily

visualized in an idealized situation where M is an infinite capacity memory capable
of storing an independent value of u for each instance of z. As an example, we will
consider a simple associative memory (defined below) problem. Let z(k) be a con-
catenated vector comprised of the current plant state x(k) and the desired plant state
on the next time-step x4 (k+1) (i.e., z(k)=[x(k),xq4(k +1)]), let u(k) (the output
of M) be the control signal applied at time. k, and let the objective function be a
norm of the difference between the desired and actual plant states at time k. In this
example, the purpose of the learning system is to output an appropriate control sig-
nal, given the current state and desired next state of the plant, so as to cause the value
of the objective function to be minimized at the next time instant. Assuming there
is no measurement noise or plant disturbances and the problem is stationary, then
each closed-loop interaction can be interpreted as a learning experience in which the
application of the control signal u(k) to the plant in state x(k) is seen to result in a
change of the plant state to x(k+1). By setting the value of M(z) at
z(k) = [x(k), x(k +1)] to u(k), the learning system will have stored the appropriate
control action for use in the future, whenever the plant state is x = x(k) and the de-
sired next state is xgz = x(k +1). With continued use, many such learning experi-
ences could be incorporated into the memory, allowing the desired function to be
constructed. In this idealized setting M * is accurately represented by M, albeit on a
point by point basis.®

It is interesting to reconsider this example in terms of the material presented in the
previous section. In this case, each control situation has been reduced to a distinct
point (which is only possible given the assumption of infinite memory capacity).
Except for finite state problems, this approach would actually be unusable since the
probability of entering the same control situation twice is effectively zero; hence, the
learning control system would never benefit from its past experience. Nearest neigh-
bor or local interpolation techniques can be used to circumvent this problem — the
idea being that previous learning under similar circumstances can be combined to
provide a suitable response for the current situation. This type of fusion process ef-
fectively broadens the scope and influence of each learning experience, and is referred
to as generalization of the training data.

There are several important ramifications of generalization. First, it has the effect of
eliminating "blank spots” in the memory (i.e., specific points at which no learning
has occurred), since some response (not necessarily the desired one) will always be
generated. Second, it has the effect of constraining the set of possible input / output

8. The general strategy suggested by these remarks is commonly referred to as an
associative memory approach (see [2]).
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mappings that can be achieved by the memory, since in most cases neighboring in-
put situations will result in similar outputs. Finally, generalization complicates the
learning process, since the adjustment of the mapping following a learning experi-
ence can no longer be considered as an independent, point by point process. In spite
of this, the advantages accorded by generalization far outweigh the difficulties it in-
troduces.

For a wide and important class of learning control problems, the desired mapping is
known to be continuous in advance. In such situations, memory implementations
with more efficient recall mechanisms can be proposed. If we are willing to assume
that the desired memory M * is continuous, which is an adequate assumption for
most physical systems, then an approximate mapping M can be implemented by
any scheme capable of approximating arbitrary continuous functions. In this case,
the memory M is implemented as a continuous function parameterized by the vector
6 ;i.e., M =M(z;6). To apply this approach to the architecture of the previous as-
sociative memory example, the value of M(z;0) at z(k)=[x(k),x(k+1)] is set to
u(k) not by adding an additional memory item, but by appropriately adjusting the
parameter vector . As learning experiences become available, the mapping will be
incrementally improved.

By constraining the mapping structure to have a finite number of parameters, while
still requiring an accurate approximation over the entire input domain, each parameter
is forced to affect the realized function over a region of non-zero measure. When a
parameter is adjusted to improve the approximation accuracy at a specific point, the
mapping will also be affected throughout the region of influence of that parameter.
Thus, by constraining the mapping structure the training data is automatically gener-
alized. The nature of this generalization may or may not be beneficial to the learning
process depending on whether or not the extent of the generalization is local or
global. These issues are further discussed in the Incremental Learning and Spatially
Localized Learning subsections.

The point by point storage that was described as a learning process for the associative
memory implementation is not feasible for these parametric function synthesis ap-
proaches. Instead, the parameters are adjusted based on the derivative information for
the objective function. More insight can be gained into gradient learning algorithms
through an application of the chain rule, which yields

A8=-W-oMT/[30-01)oM

where W 1is a positive definite weighting matrix, J is the objective function, M is
the output of the approximating function, and 8 denotes the parameter vector for the
approximating function (the Jacobian dM T/ 20 is defined as a matrix of gradient
column vectors dM; /98, so that dJ/36 = dM* [38-AJ[/oM ). This form of the gra-
dient learning rule involves two types of information: the Jacobian of the outputs of
the mapping with respect to the adjustable parameters, and the gradient of the objec-
tive function with respect to the mapping outputs. The gradient d//odM is deter-
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mined both by the specification of the objective function J and the manner in which
the mapping outputs affect this function—which is determined by the way in which
the learning system is used within the control system architecture. The Jacobian
8MT/ 96 is completely determined by the approximation structure; and, hence, is
known a priori as a function of the mapping input. Note that the performance feed-
back information provided to the learning system is the output gradient oJ/oM .
This gradient vector provides the learning system with considerably more information
than the scalar J in particular, dJ/dM indicates both a direction and magnitude for
Ap (since oM T / d0 is known), whereas performance feedback based solely on the
scalar J does neither.

Notice that, conceptually, the associative memory based techniques offer simple
training with complex recall mechanisms, while the parametric approximation tech-
niques require more complex training but offer simple recall. The actual training al-
gorithms for parametric function synthesis methods are control architecture depen-
dent. Two specific instances are presented in the examples.

Connectionist Learning Systems. Connectionist systems, including what are often
called "artificial neural networks,” have been suggested by many authors to be ideal
structures for the implementation of learning control systems. A typical connection-
ist system is organized in a network architecture that is comprised of nodes and con-
nections between nodes. Each node can be thought of as a simple processing unit.
Typically, the number of different node types in a network is small compared to the
total number of nodes. Common examples of connectionist systems include multi-
layer perceptron and radial basis function networks. The popularity of such systems
arises, in part, because they are relatively simple in form, are amenable to gradient
learning methods, and can be implemented in parallel computational hardware. More
importantly, however, it is well known that several classes of connectionist systems
have the universal approximation property. This property implies that any continu-
ous multivariable function can be approximated to a given degree of accuracy by a
sufficiently large network (see [10], [11]).

Although the universal approximation property is important, it is held by so many
different approximation structures that it does not form a suitable basis for distin-
guishing them. Thus, we must ask what other attributes are important in the context
of learning control. In particular, we must look beyond the initial biological motiva-
tions for connectionist systems and determine whether they indeed hold any advan-
tages over more traditional approximation schemes. An important factor to consider
is the environment in which learning will occur; that is, the information that is
likely to be available to the learning system.

Incremental Learning Issues. Incremental function synthesis using data obtained dur-
ing closed-loop experiments constrains the choice of approximation approaches. In
closed-loop control, the training examples cannot be selected freely, as the plant out-
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puts are constrained by the system dynamics, and the desired plant outputs are con-
strained by the specifications of the control problem. Under these conditions, the
training examples often remain in small regions of the domain of the mapping for
extended periods of time. This training sample "fixation" can have deleterious effects
in situations where parameter adjustments can affect the input / output map globally.
For example, if a parameter that has a global effect on the mapping is repeatedly ad-
justed to correct the mapping in a particular input region, this may cause the map in
other regions to deteriorate and, thus, can effectively "erase” the learning that has pre-
viously taken place. This characteristic of learning control problems has led to the
development and analysis of spatially localized architectures and learning rules.

Spatially Localized Learning. The basic idea underlying spatially localized learning
arises from the observation that learning is facilitated in situations where a clear as-

sociation can be made between a subset of the adjustable elements of the learning
system and a localized region of the input-space. Further consideration of this point
in the context of the difficulties described above, suggests a few desired traits for
learning systems that rely on incremental gradient learning algorithms. These objec-
tives can be expressed in terms of the "sensitivity"” functions | oM i / 00 i |, which are
the partial derivatives of the mapping outputs M; with respect to the adjustable pa-
rameters 6 j. At each point x in the input domain of the mapping, it is desired that
the following properties hold:

« foreach M;, there exists at least one 6 such that the function | om; /98 jl is

relatively large in the vicinity of x (coverage)
« forall M;and 6}, if the function | 9M; /36 | is relatively large in the vicin-
ity of x, then it must be relatively small elsewhere (localization)

Under these conditions, incremental gradient learning is supported throughout the in-
put domain of the mapping, but its effects are limited to the local region in the vicin-
ity of each training point. Thus, experience and consequent learning in one part of
the input domain have only a marginal effect on the knowledge that has already been
accrued in other parts of the mapping. Although sigmoidal networks do not have the
localization characteristic, several other network architectures, including BOXES
[14], CMAC [1], radial basis function networks [15], and basis / influence function
networks [3-4] do have this characteristic.

Spatially localized learning rules capitalize on localization in two ways. First, local-
ization implies that at each instant of time only a small subset of all the network pa-
rameters have a significant effect on the network output. Thus, both the efficiency of
calculating the network output and of updating the network parameters can be im-
proved by neglecting the insignificant parameters. This approach can greatly increase
the throughput of a network when implemented in digital hardware. Furthermore,
since training examples may remain in particular regions of the input domain for ex-
tended periods of time, it is expected that the approximation error will not tend uni-
formly to zero. Instead, the error will be lowest in those areas where the greatest
amount of training has occurred while still large in other regions. This leads to con-
flicting constraints on the learning rate: it should be small, to filter the effects of
noise, in those regions where the approximation error is small; at the same time, it
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should be large, for fast learning, in those regions where the approximating error is
large. Resolution of this conflict is possible by the use of spatially dependent learn-
ing rates.

The memory requirements for spatially localized architectures fall somewhere in be-
tween those of associative memory and non-local function approximation architec-
tures. When we ask for each parameter to have a localized effect on the overall ap-
proximation, we should expect an increase in the number of parameters required to
cover the entire input domain. However, in control applications, training speed and
approximation accuracy should have priority over memory requirements as memory
is inexpensive relative to the cost of inaccurate or inappropriate control actions.

6. Architectures and Examples

The previous sections have discussed several issucs related to the implementation of
effective learning control systems. The purpose of this section is to present example
architectures for the implementation of these systems. For each architecture, we pre-
sent an illustrative example and identify the algorithms necessary for implementing
the training process. Each example is designed to demonstrate the desired principles,
yet be simple enough and include enough detail for interested readers to reproduce.

Example 1. This example demonstrates a technique designed for applications, such
as aerospace or underwater vehicle control, where the linearized dynamics are known
to change significantly as a function of a measurable set of scheduling variables. The
gain scheduling method is the state-of-the-art approach when the underlying system is
well modeled. The present methodology is applicable when the schedule for the lin-
earized dynamics is difficult to accurately predict a priori due to model uncertainty.
The block diagram in Figure 1 depicts the various components of the implementation
we will discuss. If the performance evaluator was not implemented and the learning
system was replaced with a static gain schedule, this block diagram would represent
the usual gain scheduled approach. Alternatively, if the learning system was elimi-
nated and a single (globally applicable) set of control system parameters was adjusted
independent of operating condition, then this block diagram would represent a direct
adaptive control system. The implementation of the entire system represented in
Figure 1, can be viewed as either a traditional adaptive system augmented with mem-
ory or a traditional gain scheduled system augmented with the ability to adjust its

W Learning System =& Performance Evaluator
Variable Control Law \ “ \
Co rParameters

T >| Control Law I > Plant

Reference System

Figure 1. Block diagram representation of the direct learning approach.
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performance on-line.

For this example, the plant is represented as
x(k +1)= A(v)x(k) + B(v)u(k)
y(k) = Cx(k)
where V is the scheduling variable. Specifically, let

[0.665v(v—2) —0.95]

A(v) =
o) 1.0 0.0

e V-1
B(v)= 0'3[ ” *“], C =[1.0,0.0].
I 0.0

For this example, we assume that the dynamics of the scheduling variable v are mod-
eled by

v(k+1)=0.9v(k)+0.1u(k).

Thus, the scheduling variable will change slowly and smoothly, as would be the case
if v represented, for example, the forward velocity of a vehicle. The variable u(k)
will be used in the simulation to change the operating point v(k) of the system.
The assumed range for u is [0,1]. We assume knowledge of the system order, but
assume no knowledge of the plant structure or the manner in which the scheduling
variable affects the dynamics.

The control system goal is to track an input signal, with a specified transient re-
sponse. The desired dynamics for the closed loop system are implemented as a refer-
ence system as indicated in Figure 1, so that an error can be formed at each step for
performance evaluation. We specify the characteristic equation of the linear reference
system by the discrete time pole locations, p = 0.4 + 0.05i, where i represents the
square root of —1. In most real applications, the pole locations would also be sched-
uled since the performance attainable by the system with reasonable actuator com-
mands is not expected to be constant. For simplicity, constant desired pole locations
were used in this example. The numerator of the reference system was selected to re-
sult in a unity gain system with a zero at the origin.

The control law is assumed to have a state feedback structure with variable parame-
ters. The goal of the learning control system is then to identify and store the con-
troller parameter vector as a function of the scheduling variable. The learning system
incorporates a 3 output Radial Basis Function (RBF) network with 31 nodes equally
spaced over the interval [-0.0357,1.0357]. The three network outputs are interpreted
as the first and second state feedback gains and the feedforward gain for the reference
input, respectively. At each time instant the following operations are performed:

« the scheduling variable, v(k), is measured,

« the control gains, K(v(k)), are read from the RBF network,

« the control signal is calculated and applied,
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« the effect of the control is compared with the desired effect via the reference
model

« this error is used to determine a control gain correction vector

« the control gain correction vector is used to improve the radial basis function
approximation.

The performance evaluator is responsible for converting the control loop variables
into the learning system training signal. This is accomplished in two stages. In the
first stage, the Lyapunov argument typical for model reference adaptive approaches is
used to determine the desired correction for the control gains output by the RBF for
the current value of the scheduling variable:

6K (v[k]) = a(error)¢,

where error = x;"¥ —x;), ¢= [xl[k],xz[k],r[k]}T), o is small and positive, and
K (v(k)) are the control law parameters output by the RBF evaluated at v(k). In the
second stage, the RBF output parameters are changed, by gradient descent, to com-
pletely implement the change 6K (v(k]).

Figures 2 a-c illustrate the control parameter schedules (first and second state feedback
gains and the feedforward gain, respectively) learned in simulation trials of this
methodology. In the example, the value of (k) was changed every 60 iterations,
and 50 different values of u were issued. The first three values of (k) were set to
0.1,0.3, and 0.6. The remaining values were generated by a uniform random number
generator; however, as the dynamics of the scheduling variable constrain it to change
continuously, many more training examples are generated for midrange values of
v(k) than for the extreme values. Each figure shows the form of the RBF approx-
imation after 60, 120, 180, and 3000 iterations. The 3000 iteration graph (i.e., final
curve) demonstrates the accuracy with which this methodology was capable of leamn-
ing the desired gain schedule. Note that the approximation error is least for midrange
values of v(k), where the most training examples were generated.

The 60, 120, and 180 iteration curves correspond to the RBF approximations after
training in the vicinity of v equal 0.1, 0.3, and 0.6, respectively. Notice that while
V is near any one of these points, only the control gains in the vicinity of that value
are adjusted. This is the effect of using a function approximation system which has
the spatial localization property. The issues of training fixation and spatial localiza-
tion of training are critical in applications of this type, where we expect prolonged
training at particular operating points within the operational envelope and do not
want training in a particular region to affect previously stored information in other
regions. We also note that training at specific operating points generalizes to the
surrounding regions.

This example demonstrates that augmenting an adaptive system with memory allows
the adaptive mechanism to progress from continually reacting to changing linearized
dynamics to constructing the appropriate control actions for measurable operational
conditions. Various technical issues would have to be addressed to guarantee success
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Figures 2 a-c. The control system parameter schedules learned for Example 2.
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ful on-line operation. These issues include sufficiency of excitation, disturbances,
and model-order errors, etc. They can be accommodated by a supervisory logic sys-
tem as is the case in a conventional adaptive approach [6], [16]. These issues are be-
yond the scope of the present chapter; however, in some instances the learning ap-
proach appears to offer implementation advantages over the corresponding adaptive
approach. For example, in the present type of application an adaptive system would
require persistent excitation to ensure accurate control parameters as the operating
condition changes. The learning system would only require sufficient excitation, dur-
ing some training phase, until the gain schedule had been identified. Similar com-
ments also apply in the following example.

Example 2. Recurrent networks are of interest due to their ability to represent a large
class of dynamic systems. By appropriate manipulations, any recurrent network can
be transformed to the form

50)= s (2060, k), 6) @
where u and y represent the network inputs and outputs respectively, 8 represents the
network parameters, and x represents the state of the recurrent system. Using the
function approximation philosophy, the connectionist network can be viewed as a pa-
rameterized model of a dynamic system that is to be learned. Since the network and
system structures are generally different, the system map cannot be represented ex-
actly over the domain of interest. Instead, the goal is to find network structure and
training algorithms that will be able to approximate these systems adequately. In ad-
dition to the parameter adjustment required for learning in feedforward systems, recur-
rent networks have the added difficulty that the state of the network must be corrected
to ensure its accuracy and stability in spite of noise, disturbances, and arbitrary initial
conditions.

x(k+1)= fne;(i(k),u(k);f?)}

This example demonstrates the use of a recurrent function approximation scheme to
identify the form of an unknown nonlinear plant. The identified nonlinear model is
then used in a model based control system, see Figure 3. The training of recurrent
connectionist systems is an area of significant current interest. For the training of

- +1 +
ulk] = 2(xgoglk+1] - TRIKI)) > [ Plant |2+
Xdeslk+1] S Function
;1 [ Approximation Ak+1]

pd

Figure 3. Block Diagram of Control Architecture for Example 2.
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this example we use the Spatially Localized Extended Kalman Filter Algorithm [13].
In other extended Kalman filter (EKF) formulations, all the network parameters must
be changed at each training instance. These EKF algorithms require the manipulation
of matrices whose dimensions are on the order of the total number of parameters in
the network. The drawbacks of computational complexity and memory requirements
are significant enough to render such implementations impractical for applications re-
quiring on-line learning. The Spatially Localized Extended Kalman Filter Algorithm
was developed as a local modification of the Extended Kalman Filter for the class of
spatially localized recurrent networks. Computational efficiency of the learning
scheme is achieved by exploiting local properties of the network structure.

As a particular example, assume that the only a priori information about the plant is
that it is of the form

x(k+1)= f(x)+0.5u(k)
y(k) = x(k)

and that the goal is to control the true plant such that it tracks some desired reference
input. For this example the plant nonlinearity will be

f(x(k))=0.5sin(x(k)).
The network model is
X(k+1) = fre (X(k))+0.5u(k)
y(k) = x(k)

Since the control goal is x(k +1) = x4.,(k + 1), the control law based on the current
system model is

u(k) = 2(=fner (X (k) + X ges (k +1))

which will yield perfect tracking if the network learns the nonlinear dynamics
x(k+1)=0.5sin(x(k)) exactly, and the state estimate x converges.

For simplicity, a one dimensional BOXES structure is used to implement the func-
tion approximator. The input domain, D = [-1.2,1.2], is divided into 50 equally sized
intervals. One real valued parameter corresponds to each interval. The approxima-
tion of £ is then calculated for any value of x by determining which interval contains
x, and averaging the parameters associated with that interval and its two nearest
neighbors. Thus, neighboring intervals will share two parameters. The sharing of
parameters between intervals allows a compromise between approximation accuracy
and training time. Alternatively, the accuracy could be increased by associating a lin-
ear or higher order function with each interval, but the constant parameters were se-
lected to maintain the simplicity of the example.

The Spatially Local Extended Kalman algorithm is used to update the parameters and
state of the approximation system. This algorithm simplifies the EKF algorithm
calculations for spatially localized architectures. At each time instant the state esti-
mate vector is augmented with the three model parameters pertinent to the calculation
of fY£). To calculate the Kalman filter feedback gains, we require the Jacobian matrix
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Alternatively, ? could be approximated by a first difference of the parameters asso-
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ciated with neighboring intervals. Several alternative methods are discussed in [13]
for simplifying the EKF implementation and decreasing its memory requirements.

The parameters associated with each interval were initialized to zero and a simulation
was carried out for 2000 time steps. The training of the network and the computa-
tion of the control law were performed at every time step. Figure 4a shows the ini-
tial poor tracking caused by an incorrect model of the true plant, and Figure 4b
shows the improved performance after the network has sufficiently learned the non-
linear dynamics. Figure 4c shows that the initial control effort is reasonable. The
nonlinearity learned by the network after 2000 iterations is shown in Figure 4d. The
data presented in Figure 4 is from a noise-free simulation; however, adding white
noise to the simulation yields similar results.

6. Conclusion

The principal objectives of this chapter were to describe the salient features of learn-
ing control systems, to differentiate these systems from related approaches, and to
suggest a general implementation methodology. We have intentionally avoided the
urge to identify and categorize the ever-growing variety of leamning control system ar-
chitectures. Instead, we have focused on the main motivation, operation, and imple-
mentation theoretic issues.

In summary, intelligent control systems incorporating learning capabilities have the
potential to (1) facilitate the control system design and tuning process, (2) accommo-
date uncertainty through on-line interaction with the actual plant, and (3) improve ef-
ficiency and performance through on-line self-optimization. Learning control sys-
tems can be implemented as general automatic function synthesis mechanisms, and
are suggested for applications involving either poorly modeled nonlinear dynamics or
tedious manual optimization.
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Two examples have been offered to demonstrate possible learning control architec-
tures and to underscore the issues related to spatial localization, generalization, and
recurrent training. Numerous alternative control implementation architectures have
been suggested in the literature. At the present stage in the development of learning
control systems, implementation and experimentation is critical both to demonstrate
their feasibility and possible benefits, and to identify future research directions. The
fact that current computational facilities are sufficient to support these implementa-
tions is demonstrated in Farrell & Baker [7].

To close this chapter, we suggest the following three subjects as areas of research of-
fering significant opportunities to improve the future capabilities of learning control
systems. (1) Investigation of important characteristics for learning control system
function synthesis: How large a network is required to adequately represent a desired
mapping? What resources (computational as well as storage) are required for imple-
mentation? What conditions are required to ensure convergence of the parameter vec-
tor? If so, how fast will it occur? Are there potential pitfalls associated with certain
types of representation schemes and learning algorithms? (2) Investigation of tech-
niques for variable structure representation schemes: The attainable approximation ac-
curacy and the implementation requirements are determined by the structure of the
function synthesis system. When the structure is determined a priori, an inefficient
use of resources may occur. Either too few resources may be assigned to approxi-
mate complex regions of the learning domain, thus limiting the approximation accu-
racy, or oo many resources may be applied to approximate simple portions of the
function, resulting in wasteful use computational resources. Variable structure learn-
ing schemes are one solution to this dilemma; however, efficient modification rules,
those for which the solution is less complex than the original problem, are still
unidentified. (3) Higher level learning: A priori specification of a performance in-
dex over an entire operational envelope is a difficult task. This line of research is di-
rected at adjusting the objective function on-line to request increased performance
where possible, and to decrease strain on the system where necessary.
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