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Abstract

The first part of this chapter shows how architectures of control sys-
tems have gradually evolved from adaptive control to learning control.
This evolution is ezxplained in terms of the need to fulfill the require-
ments of greater autonomy and generality of control systems. Learn-
ing controllers should be able to learn three kinds of knowledge: goals,
models, and control laws. These three kinds of knowledge constitute
the domain of “intelligent control”, which uses methods from control,
operations research and artificial intelligence (AI). The second part of
this chapter is devoted to the COPER/IC architecture being developed
by the author. This includes an overview of author’s work on auto-
matic discovery of physical variables relevant to a particular model,
the use of physical similarity in the process of modeling, integration
of qualitative and quantitative techniques, and the use of reinforce-
ment learning for control. The chapter closes with an author’s view
of future needs and developments in the area of learning control.

1 INTRODUCTION

This chapter is devoted to learning control. Our main goal is to show
that the emergence of this approach to control has resulted from the need
to satisfy a specific set of performance criteria. We focus our attention
on two of such criteria: autonomy and generality. Without being too
formal, we interpret autonomy as the ability to choose goals and devise
new control laws. This interpretation is consistent with the dictionary
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definition of autonomy as the right of self-government. Generality is
understood as the quality of being applicable to the whole, and thus a
system is more general than another if it is applicable to more situations
or domains. Antsaklis and Passino [1] discuss the issue of autonomy in
more detail.

Learning controllers, or, in other words, controllers with learning ca-
pabilities, have been investigated for a relatively long period of time. In
control, adaptive controllers [2] are perhaps the most direct outcome of
the attempts to make controllers more general and more autonomous
(cf. [3]). But the applicability of adaptive systems is constrained by
the need to fulfill other criteria, like, for instance, the boundedness of
the controlled variable (even if the controller is theoretically capable of
adapting to the changed environment eventually, until adaptation is com-
plete, excessive variations of the controlled variable may result in a major
catastrophe, including destruction). In addition to this, adaptive systems
are not applicable to control where situations change structurally, i.e.,
when adaptation in parameters of either a model or a control law does
not guarantee sufficient performance improvement. As a result of these
kind of requirements, a new area of restructurable control has emerged
[4], in which the controller reconfigures itself when a new situation is
identified. Unfortunately, it is impossible to predict all potential struc-
turally different situations and design a set of control laws that can cover
all possibilities. This naturally leads to learning controllers, which can
in such a case learn a control law, or a strategy for attaining the overall
goal of the system through appropriate sequencing of the sub-goals.

The development of the discipline of artificial intelligence (AI) can
also be strongly linked to the criteria of autonomy and generality. The
ideal that serves as a model for Al is, naturally, a human being, who
is considered a highly autonomous and general agent. As a result, the
main thrust of Al is to construct systems that can make decisions un-
der changing circumstances. The first development of AI - the expert
systems — were very quickly recognized as being too brittle, i.e., they fail
when the situation for which they were designed changes. One of the
developments in Al has been deliberate agents [5), i.e., software systems
that are capable of using any data or knowledge base in their reasoning
processes. The generality of such an agent comes from the fact that
it uses a general purpose reasoning mechanism of theorem proving. It
seems that logic-based AI programs are more appropriate for control,
since one can make precise statements about their performance under
specific circumstances, which is one of the necessary conditions for the
applicability of Al systems in control.

But even deliberate agents are not general enough; their generality
is limited by their knowledge bases. When they encounter a situation
that is not covered by the knowledge base, even their general-purpose
reasoning mechanisms will fail, due to the limitations of their knowl-
edge. Thus, in order to be able to adjust to new situations, deliberate
agents must have the ability to incorporate new knowledge, i.e., they
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must learn. Unfortunately, the generality of logic-based systems, espe-
cially when combined with the learning capabilities, comes with a price,
inefficiency. The proofs do not necessarily have to be finite, and thus a
logic-based agent can be stuck forever trying to find a control action.

As we can see from this discussion, the search for a general and au-
tonomous agent encounters many controversies; high level of autonomy
and generality can be sometimes achieved, sacrificing efficiency, or other
performance criteria. This fact perhaps should not surprise us, instead,
it should mobilize our efforts to search for tools and methods that would
allow us to build agents that are capable of making rational judgements
about trade-offs between various performance criteria. As a result of
such an agreement, as noticed by Saridis [6], the third party besides
control and Al - operations research (OR) — comes as a partner in this
endeavor. The resulting alliance is called intelligent control.

The goal of this chapter is to show how the contributions of control,
OR and AI can be combined in one architecture. In the following we show
how the architecture of adaptive control has gradually evolved towards a
more general architecture of learning control. It is important to under-
stand that we are showing only some basic steps in the evolution process;
many other architectural solutions are known in the literature, some of
them are either variations or combinations of these basic configurations.
This general overview is followed by the description of the COPER/IC
architecture and its features. COPER/IC is a partial implementation of
the generic learning control architecture.

2 FROM ADAPTIVE TO LEARNING CONTROL
SYSTEMS

2.1 Adaptive Control

Many of today’s control problems pose very high demands for the con-
troller. Not only do these applications inherently involve large-range
dynamic disturbances of all kinds and very stringent time requirements,
but the disturbances occur and change in an unpredictable fashion caus-
ing unpredictable response due to the nonlinear characteristics of the
plant. In addition, the range of disturbances is extended by changing
control goals.

These kind of conditions make the problem of the controller design
very difficult, not amenable to linear controller design methodology. The
nonlinear control laws are necessary to compensate for all kinds of nonlin-
earities in the behavior of the controlled plant. The nonlinearities may
be due to temperature and sensor errors, backlash, friction, resonant
modes, nonlinear compliance, and others. The importance of particular
nonlinearities is strongly related to disturbances. The disturbances oc-
cur, change and disappear. As a result, different types of nonlinearities
play the dominant role at different times. Due to nonpredictability of
disturbances, the importance of particular nonlinearities varies with time
in an unpredictable fashion.
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The solution to such a control problem seems to be in the adaptive con-
trol paradigm [2, 7], which represents one of the nonlinear control design
approaches. The main feature of adaptive control is the ability to deal
with the uncertainty in the model parameters of the controlled plant; the
exact values of the model parameters do not need to be known at the de-
sign time of an adaptive controller. An adaptive controller automatically
and continuously identifies and upgrades on-line performance through its
three functions: identification of the plant’s model, decision on how to
adjust the control to improve performance, and modification of control
variables to improve or optimize performance. A general schematic of an
adaptive controller is presented in Figure 1. This schematic represents
an indirect adaptive controller, in which the parameters of the model’s
function are estimated (parametric identification). In addition to this,
one may consider direct adaptive controllers, in which the parameters of
the control law are estimated directly.

goal _ | Controller > Plant >
A
Controller —> Mpdel <
Design Estimator

Figure 1: Adaptive Control Architecture

Adaptive control, although more flexible than conventional feedback
control, has its own limitations. The most obvious limitation is that the
logic for both identification and decision functions is implemented at the
time of controller design and remains fixed for its life time. Thus the
adaptive controller has a limited ability to update the control law: it
can only update the control law parameters within a predefined class of
models (parametric uncertainties of the model). It cannot, however, deal
with all kinds of non-parametric uncertainties, including high-frequency
unmodeled dynamics, low-frequency unmodeled dynamics, sensor noise,
and many others. If the real plant has a characteristic even slightly
different than the one presumed in the adaptive controller design the
results can be catastrophic. As was shown in [8], when the dynamics
of a plant are not modeled correctly, even small uncertainties may lead
to severe problems of parameter drifting and instability of the control
system. Much research has been subsequently performed to address the
basic problems that were pointed out in [8].

Moreover, even if an adaptive controller is able to adapt to new situa-
tions, since the same nonlinear characteristics of the controlled plant can
re-surface in the future, it does not seem to be reasonable to adapt to the
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re-occurring situation every time. It seems to be much more economical
to learn a control law associated with a particular dynamic character-
istic type, store it in the controller’s database, and use it whenever the
re-occurrence of a known situation can be recognized. This requires an
intelligent controller with both adaptive and learning capabilities that
not only can adapt to, and memorize the new control law, but also is
able to select an appropriate control law. More discussion of this problem
can be found in [9].

2.2 Restructurable Control

Restructurable controlis a relatively new paradigm in the design and im-
plementation of control systems (cf. [4]). The driving force behind the
development of this approach was the need for controlling plants that
change their dynamics structurally in an unpredictable fashion. This
means that at different points in time the dynamic model of the plant
needs to be described by equations having different variables and dif-
ferent mathematical operators (form). The main idea is to be able to
monitor the situation, recognize structural changes, and then redesign
the controller in real time in order to compensate for the structural
changes. A schematic view of a restructurable controller is represented
in Figure 2.

_&: Controller . Plant >
Control > Model
Selector Selector -
Control
Laws

Figure 2: Restructurable Control Architecture

Restructurable control is applicable in many situations; the case of
a damage in the plant is the most typical condition for applying this
approach. A damage does not necessarily has to result in a catastro-
phe; in many cases such a damage can be compensated for by radically
changing the control strategy. This is possible when redundancy exists
in the controlled system. For instance, one might imagine a two-legged
robot, whose one leg has been damaged, using the other leg for moving
(jumping), like humans or animals would naturally do.
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3 INTELLIGENT CONTROL

Intelligent control is a next step after adaptive and restructurable con-
trol in the search for more powerful, more accurate, more reliable, and
more flexible controllers. It is based upon the advancements in several
science/engineering areas: control, operations research, and artificial in-
telligence. The main paradigm of intelligent control is captured by the
Perception- Reasoning-Actionloop [10]. This triad is patterned upon, and
is a generalization of, the three adaptive control functions: identification,
decision, modification. Perception is a generalization of the identifica-
tion function, reasoning is a generalization of the decision function, and
action is a generalization of the modification function.

A schematic view of the intelligent control architecture is represented
in Figure 3. There are several main differences between restructurable
and intelligent control architectures. Perhaps the most important of all
is the goal reasoning block. In more traditional control paradigm, goals
are supposed to be either known in advance or come from a higher-level
block independent of the controller. In the intelligent control paradigm,
goals are subject to negotiation [11]. To implement this process, the
flow of information has to be bidirectional, both from goals to actions
and from actions to goals (and this is the second major difference). The
third characteristic of intelligent control is the generality of procedures in
particular blocks: model selection, control selection and goal reasoning.
While in traditional approaches these mechanisms were implemented as
procedures, in intelligent control they are substituted with search-based
inference engines and knowledge bases. Typically, knowledge bases are
implemented as rules. These rules can be added and/or removed from
the knowledge base without affecting the functioning of the inference
engine.

3.1 Learning Control

In many situations, restructurable and intelligent control approaches are
very difficult to implement. For instance, to implement a restructurable
control system one would need to design a set of controllers appropriate
for particular situations and a monitor/selector able to select an appro-
priate controller for a particular situation. This is possible when such
controllers are available for all potential situations, i.e., when the situa-
tions can be clearly defined. The intelligent control approach might be
implemented through using an expert system controller that uses expert
rules instead of control algorithms. Unfortunately, this is possible only
when such rules can be obtained from a domain expert. These rules are
particularly hard to obtain when the domain is unpredictable and dy-
namic. For the domain of nonlinear plants with unpredictably changing
disturbances a set of controllers for particular kinds of dynamic charac-
teristics cannot be designed in advance.

Another, more flexible, approach is to identify the model and then
design a controller in real time. This is a very difficult task not only
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Figure 3: Intelligent Control Architecture

because it requires on-line identification of models (meaning that we
would have to deal with non-parametric identification), but also because
there is no algorithmic solution to the design of controllers for a wide
range of plant models. Thus, even if the identification problem could be
constructively resolved, the goal of automatic controller design would be
very difficult to achieve.

This discussion leads us to the conclusion, that in order to deal with
the control situations that are not well defined, one needs to design a
controller that has a learning capability. To cover all aspects of control,
such a learner should be able to learn goals, control laws, and plant
models (cf. [12] and Antsaklis in [13]).

A conceptual scheme of learning control is represented in Figure 4. The
intelligent control scheme has been extended by adding three learning
subsystems: goal learner, control learner, and model learner. Each of
the three learners has two kinds of outputs: update of a knowledge base
and update of the procedure. For instance, the model learner module
should be able to learn both models of plants and procedures for selecting
particular models in particular situations.

3.2 Issues in Learning Control

The implementation of the learning control architecture represented in
Figure 4 must fulfill a number of requirements in order to be of a prac-
tical use. To this aim, several questions need to be answered: (1) what
representation should be used to encode models and control laws whose
parametrizations are not known, (2) what inference mechanism should be
used to satisfy the real-time requirement, (3) what learning mechanism
is most appropriate for the purpose of implementation of this architec-
ture? In the followirig section we present an overview of the COPER/IC
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Figure 4: Learning Control Architecture

learning control architecture being developed by this author and outline
the approach which was employed to address the above issues.

4 COPER/IC

The author of this chapter has proposed a learning control architec-
ture called COPER/IC ([14, 15]), whose main elements are represented
in Figure 5. The COPER/IC architecture is designed for the purpose
of concurrent learning and controlling time-varying systems, where the
variations include not only drifting model parameters, but also structural
changes in the model (different relevant parameters, different functional
dependencies, varying goals). At this stage of development, this sys-
tem serves as a research framework for investigating the learning control
paradigm.

The main idea of the COPER/IC project is to implement a system
that permanently monitors the controlled process and selects an appro-
priate control goal and a control action from its knowledge and data
bases. Control goals are derived using an expert-system like inference
engine. The search for control actions is guided by the models of current
plant’s behaviors. The system first tries to find a model which accu-
rately predicts the behavior of the plant. If no such model is available,
the learning module is invoked and the new model for the new situation
is learned. At the time of learning the control action, the best available
model is used to select the controller. If an accurate model exists, the
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Figure 5: COPER/IC Architecture

system uses it for determining control actions. According to the rein-
forcement learning paradigm used in this system, the system directly
associates control actions with inputs. Data bases of control actions are
kept in the system’s memory; these data bases are indexed by the mod-
els. If the control law data base does not exist, the learning process is
utilized to produce such a data base of actions.

The implemented modules of COPER/IC include model learner,
model selector, adapter, goal reasoner, and knowledge base. As can
be seen by comparison with Figure 4, this system is a partial implemen-
tation of the general learning architecture.

Since learning from scratch is not feasible, the idea of COPER/IC is
to hand-code a number of plant’s models and related control laws using
traditional control design approach and subsequently use these models
and laws for initial training of the system in a simulated mode. As a
result, the system’s data bases are initialized. These data bases can be
used for controlling the plant in the on-line mode.

5 FEATURES OF COPER/IC

While many learning controllers are known in the control/Al literature,
the approach utilized in COPER/IC has several unique features: the
use of the similarity theory for reducing memory requirements and for
testing completeness of function’s arguments; the use of qualitative rep-
resentation to further reduce the need for memory; the application of
concurrent learning of multiple models and control laws together with
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policies for selecting one of them in a particular situation.

5.1 Memory-Based Representation and Physical Similarity

Parametric representation of either models or control laws consists of a
definition of a class of functions and a set of coefficients. Selecting a
fixed vector of coefficients chooses one of the functions from the class. A
typical example of such a representation is the class of linear functions
and the set of real-number coefficients. If the class of functions is not
known, we are dealing with the non-parametric representation problem.
To be more precise, we can distinguish between two cases: (1) the set
of variables is known, but the class of functors binding the variables is
unknown, and (2) both the set of variables and the class of functors are
unknown.

In the framework of COPER/IC both of these problems are being
investigated. Functions are represented using memory-based approach,
i.e., they are stored as sets of tuples with an associated interpolation
mechanism for determining values of functions for points that are not
stored explicitly. An algorithm for checking completeness of the set of
variables and for generating missing variables is also implemented. To
explain how this representation is implemented, we first need to intro-
duce the principle of physical similarity [16].

In general terms, similarity means finding invariants that describe how
the value of the function is transformed when the function’s arguments
change in such @& way that the invariants remain constant. A set of invari-
ants together with a set of transformations can then represent a whole
class of tuples of the function (a similarity class). This gives an improve-
ment with respect to the amount of memory needed to store a function.
Instead of storing a whole class we need to store one representative of
the class and a transformation (the same for all classes).

Although invariants can be derived in many ways, the COPER/IC
approach is based upon the so-called II — Theorem of dimensional anal-
ysis [16, 17]. Using II — Theorem we can transform any dimensionally
invariant function of m+r dimensional variables A,,..., A, B1,..., B;,

Z =F(Ay,...,An, By,...,B,),
into a (simpler) form of r dimensionless variables 74, ..., 7.,
T, = f(T1,..y ),

where each of the 7’s is represerited as:
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The ©’s represent the invariants of the function F. In our case, Z in
the above formula represents the controlled variable; A’s and B’s are
current state variables, initial state variables, input varlables elapsing
time, and plant parameters In similarity theory the = varla.bles are
called similarity numbers.

The justification for such a form of the functional dependency and
the algorithms for calculatmg all the exponents a;,a;;,(i=1,...,m;j =
1,...,7), can be found in the literature on dimensional analy51s ([16
17]) Since each similarity number is a monomial of m + 1 variables,
the same value of a similarity number 7; can be obtained for many
combinations of the variables Bj, A;,...,An. A set of points in the
variable space for which all similarity numbers remain constant is called
a hypersurface. The functions representing plant models and control
laws are thus collections of hypersurfaces. More detail on the issue of
similarity theory and hypersurfaces can be found in [18, 19, 20].

5.2 Discovery of Relevant Arguments

As was mentioned in the previous section, we are investigating an even
more difficult problem of non-parametric representation — the case when
the set of a function’s arguments is not fully known, while some of them
may be redundant. For this purpose, a system called COPER [21] is
used. The inputs to COPER are: the name and the dimension of the
function’s dependent argument, the names and the dimensions of the
independent arguments known (or at least suspected) to be relevant,
values of the above arguments for a number of combinations (tuples).
COPER first tests whether all of the relevant parameters are included.
If it discovers that the list is incomplete it either selects an additional
parameter from a list of suspects (if available), or generates the dimension
of the missing parameter. The user then needs to make the final decision
on the generated parameter.

One of the distinguishing features of COPER is that it can discover
that a parameter is missing even if it remains constant throughout all
tuples provided to COPER as input. The ability to discover incomplete-
ness gives more generality to the models and the control laws generated
by the system. An example of such a discovery is the acceleration due
to gravity. If the system that was trained on Earth, and thus was not
exposed to changing gravity, is sent to space, it is very likely that its
control algorithm will fail, since it does not incorporate the argument of
acceleration of gravity. COPER’s ability to discover the lack of such con-
stant arguments in the learned model can prevent such outcomes. A full
description of the learning algorithm for discovery of relevant arguments
of functional descriptions can be found in [21].

5.3 Qualitative Representations

In our initial investigations (cf. [22, 23]) we found that the use of physical
similarity reduces the needed space to represent functions in a memory-
based paradigm. However, if the space (variables) is continuous, memory
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requirements are still quite high. As an additional way of reducing the
amount of needed memory we use a quantitative-to-qualitative transla-
tion of the space of variables.

For instance, to represent the state transition function of a plant,
COPER/IC subdivides the plant variable space into qualitatively dis-
tinct regions (we call them gqualitative states) and expresses the transi-
tion function in terms of only these qualitative states. The semantics
of qualitative states is based on the concept of landmark points ([24]).
Landmark points constitute a partially ordered set of values in the con-
trolled variable domain. The plant’s qualitative state can be determined
by comparison of the value of its output (controlled) variable with these
values. We decided to distinguish two kinds of landmark points: (1) all
points for which the controlled variable takes local extrema, and (2) all
points for which the controlled variable gets values above Zj, below Z;,
or Z'+2—Zh plus/minus a threshold, where Z; and Z, are the lower and up-
per bounds of the so called safe range. The first category of landmarks
captures information about the inherent characteristics of the controlled
plant’s dynamics. The second category is related directly to the control
goal.

A landmark on the controlled variable defines a hypersurface in the
state space of the controlled system (through the inverse of the state
transition function). A hypersurface of landmark points is called a crit-
ical hypersurface. In COPER/IC we transform original variables into
similarity numbers. This results in critical hypersurfaces in the trans-
formed state space, which gives us the additional memory savings. Crit-
ical hypersurfaces are collections of points in the state space. Another
approach, especially popular in AI (e.g., [25]), is to subdivide the state
space into bozes (cf. [26]).

The principle of qualitative reasoning has been studied quite exten-
sively in the artificial intelligence community. The main idea is to reason
regarding changes in a physical system using qualitative characteristics
(landmark points) instead of using all the quantitative points. This kind
of reasoning is similar to the way experts reason about physical systems.
It has been proven that this kind of abstraction is powerful enough to
solve many different control tasks, especially where quantitative methods
are either unavailable or computationally too expensive. The application
of this approach in COPER/IC gives it two advantages: lower compu-
tational complexity, which is important for making control decisions in
real time, and compatibility with qualitative/symbolic knowledge, which
allows the combination of quantitative variables and expert rules in the
monitoring/controlling algorithms.

5.4 Reinforcement Learning and Control

Learning is defined as the capability to modify one’s knowledge, based
on past experience, leading to better performance in the future, either
in terms of some performance index, or in terms of ability to solve new
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tasks. It is widely accepted that the learning capability is a primary
ingredient of intelligence, and that learning systems (agents) exhibit the
highest degree of adaptability. Thus learning seems to be the natural
paradigm that should be used in overcoming the difficulties with non-
parametric adaptation.

One of the early findings of Al was that “you cannot learn anything un-
less you know almost everything”. In other words, knowledge is needed
for the agent to learn. This knowledge can be classified into two cat-
egories: the general (background) knowledge about the world, and the
feedback from the world. Depending on the form of feedback, learning
techniques can be classified into three major categories:

Learning with a teacher (learning from examples), where a learning
algorithm is presented with a training set, i.e., a series of instances clas-
sified by the teacher as either positive ezamples belonging to the concept
to be learned, or negative ezamples, which do not belong to the concept.
The goal of the learner is to generate a concept description that correctly
classifies the seen instances and generalizes well to the unseen instances.
The learner’s classification error is interpreted as instructive feedback.

Learning with a critic (reinforcement learning), where the learner re-
ceives as feedback a scalar signal, called reinforcement, which provides
evaluation of the learner’s performance with respect to the preset goals.
Such evaluative feedback does not give any direct error information on
the learner’s internal representation.

Learning by observation (unsupervised learning, or learning by discov-
ery), where the learning program does not have any direct input on what
it should focus its attention, which observations are positive/negative in-
stances, or what direction to follow in search for better descriptions. The
learner collects observations and derives generalized concepts according
to its own internal rules.

Learning with a teacher is difficult to implement since it requires much
of external guidance (a well informed teacher). Learning by discovery, on
the other hand, does not require any external guidance, but, as a result,
it is the least efficient of the three learning methods.

The reinforcement learning scheme seems to be the closest to the con-
trol framework. It presumes that the system can generate and execute
actions on the world and observe impact of the actions on the state
of the world. It also presumes the existence of a special output called
reinforcement. Additionally, and perhaps the most importantly, direct
associations of actions with situations are learned and stored in the data
structure representing the internal state of the learning system. As a
result, the problem of finding an appropriate action for a particular situ-
ation is reduced to a simple matching problem. This feature is especially
important for control systems, since real time operation of such systems
is required.

The general mechanism according to which the agent adapts its be-
havior to the incoming information from the world, i.e., to reinforcement
values and (possibly) world-state relevant information, is called a learn-
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ing behavior [27]. Its general scheme is presented in Figure 6. The
learning behavior consists of three parts: the internal state, the behavior
update function, and the evaluation function. The internal state summa-
rizes the level of knowledge that the agent has about the world; it does
not relate explicitly to the world states. At every cycle, the evaluation
function determines the agent’s response (control action) to the received
input, based on thé internal state. This action brings the world to a
new state, which results in a new input and a reinforcement value. The
agent’s internal state is then updated by the update function. A more
detailed description of the reinforcement learning mechanism and the
application of this mechanism in learning control laws is presented in [9].
The combination of reinforcement learning with fuzzy sets is described
in [28].

Evaluation Action
> Function g
World
—|
Input
. Update
> Function
Reinforcement

Figure 6: Reinforcement Learning

As we can see, this reinforcement learning scheme is in direct analogy
with the adaptive self-tuning control scheme. The update function is the
analogue of the parameter estimator block and the evaluation function is
analogical to the control law of an adaptive controller. The difference is,
however, that this approach does not use a parametric representation of
a controller; instead, it learns the control law in an explicit (associative)
form. The learned control law is represented as a set of input-action
pairs. The greatest advantage of this approach is that a class of models
does not need to be pre-specified at the design time of the controller.
This structure makes this approach amenable to implementations on
massively parallel computers, including neural networks.

The reinforcement learning approach has been studied in both control
community (learning automata) and AI. An overview of the learning
automata approach is presented in [29]. The main problem with this
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approach is that the world in this approach is modeled as a stochastic
automaton, which is globally consistent throughout the whole time of
its operation. This is not acceptable for restructurable control, where
the world needs to be considered as a different object at different times.
Another problem with the learning automata approach is the high com-
plexity of the learning algorithms and slow convergence rate. Several Al
researchers have proposed improvements through adding more structure
to the learning algorithms [30]; an overview of these structural solutions
is given in [31].

An attempt to combine reinforcement learning with restructurable
control has been presented in [32] for application in control of a power
plant. In this approach, it is presumed that a set of control laws is de-
signed in advance and that the only unknown part is the selection policy,
i.e., the preconditions for using a particular controller.

6 FUTURE DIRECTIONS IN LEARNING CONTROL

The great flexibility and potential robustness of learning control does
not come for free. The main problems with this approach are: very
high requirements on computer memory to implement the instance-based
representation of the control law, the slow convergence of the learning
algorithms, and the lack of analytic tools for analyzing stability of the
resulting controllers. This makes the implementation of the learning
capabilities in control applications a very difficult task. Not only does
designer loose control over the order of execution of particular control
actions, like in expert systems, but also the control law is created by
the running program rather than by the system developer. Even if the
learned knowledge allows the system to make correct decisions the appli-
cability of such an approach in real time is very difficult. More flexibility
given to the system most typically results in less efficiency, due to either
unnecessary steps taken by the inference engine or by the non-optimal
structure of the learned rules, as well as in a high computational com-
plexity of the learning process. The computation time and controller’s
performance are especially critical when the controlled plant shifts its
dynamic behavior in a structural way, i.e., when the previously learned
control law needs to be significantly adjusted.

In the second part of this chapter we showed how some of these diffi-
culties are addressed in the COPER/IC architecture. Some other issues
need to be addressed in future research. One of the research directions
that should be pursued is the utilization of domain specific knowledge to
improve speed of convergence of learning algorithms and memory require-
ments for non-parametric representation of models and control laws. An
example of such an attempt was presented in the context of COPER/IC,
where the fact that equations describing physical plants should be in-
variant with respect to transformations of systems of measurement units
provided constraints useful for the reduction of memory requirements.
Other generally applicable constraints may include symmetries present
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in a particular domain, known physical theories describing behavior of a
given class of systems, etc.

Another issue that needs to be investigated very thoroughly is the
performance criteria for controllers that combine a number of control
paradigms: restructurable control, learning control, and a number of
traditional control algorithms. The question about the performance cri-
terion (criteria) should be answered before we can even ask the question
of how well the proposed control system performs in a particular sit-
uation. In more traditional control, the control performance criteria
are well established. They include such measures and requirements as
steady-state error, transient control error, stability, distance from opti-
mality, etc. This problem is not so clear when we move into the area of
learning control. Here, as in adaptive control, the speed of convergence
of the learning algorithm plays a very important part in the evaluation
of the control system. When, in addition to this, the control system
is able to make non-parametric shifts (restructurable control), even the
issue of convergence is not so clearly defined since the structural shifts
mean moving not only within the same space of parameters, but also
entering new, not defined a priori spaces. Other indicators of the quality
of a control system may be time complexity of the learning algorithm,
time complexity of the control algorithm, memory requirements, etc. To
be able to understand how a particular learning system performs, a good
understanding of thé value of particular components of the quality crite-
rion is necessary. A systematic analysis of the quality criteria known in
the subject literature should provide a good start for the development
of an integrated quality evaluation procedure.

One way to improve the real-time performance of a learning con-
troller is to develop special-purpose computer architectures targeted at
the learning control applications. This area is in the process of very rapid
change; new special-purpose architectures are now being developed and
tested in many research labs. Typically, such hardware is targeted to-
wards control and sensory information processing in general. The devel-
opment of hardware for learning controllers seems to be the next logical
step.

And finally, one of the most difficult problems in learning control seems
to be in learning semantics. Having a semantics means being able to
assign meaning to a statement. To explain problems with semantics,
imagine a robot that can generate voice output, e.g., speech or music,
or a robot that can draw pictures. Taking into account the fact that fi-
nite acts of speech and drawing generate finite bit-level representations,
one might argue that the space of possible control actions is finite, and
thus, every output is meaningful. Unfortunately, the utility of treating
such sets as finite is rather low. This is analogous to using a finite-state
automaton for describing and analyzing the operation of a computer; it
is theoretically possible, but practically not useful. Specifying any point
in the robot’s arm configuration space is meaningful, while specifying
all possible vocal sequences is not. For speech outputs, only those that
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are interpretable in the controller’s knowledge base are meaningful, while
(most) others are not. This need for interpretation justifies the introduc-
tion of the distinction between “intelligence-in-the-limbs”, which does
not require any special interpretation, and “intelligence-in-the-brain”,
which requires consultation with the existing knowledge base.

In fact, whether the controller does or does not need to do the “inter-
pretation filtering” depends on what the next-in-line element, the rea-
soner, can process. If the controller’s reasoner is able to accept any
combination (sequence) of signals coming from its sensors, then inter-
pretation is not needed. This is typical of controlling arms and legs,
where the inputs/outputs are specified as vectors and the controller’s
reasoning algorithm is expecting such vectors. The controller can pro-
cess any vectors within a “hypercube”. (I call it “cubic representation
paradigm”.) Such a controller, however, can process only such vectors
and nothing else. This is because the reasoner knows the interpreta-
tion of each vector’s component; the interpretation is hard-wired in the
reasoner (control algorithm).

As mentioned above, in planning actions for such actuators as speech
or picture generators, we cannot pre-specify all meaningful sequences of
signals. Thus we need a general-purpose reasoner, which is not depen-
dent on the inputs; it should be able to interpret any input, although
some would be recognized as meaningless. Such a reasoner would be ap-
plicable to deriving actions of where to move legs and arms, what to say,
or what to draw. Unfortunately, due to a very high computational com-
plexity of the interpretation process, the efficiency of such a controller
would be extremely low.

Thus the conclusion would be that we can either use a general purpose
reasoner with flexible interpretation capabilities, or a special purpose rea-
soner with fixed interpretation, depending on the time complexity con-
straints and on the control objectives. For implementing “intelligence-in-
the-brain”, a special-purpose reasoner is not applicable. This is mainly
due to the fact that the set of goals and actions that need to be reasoned
about is not explicitly defined. We must use general-purpose reasoners,
although we are aware of their performance efficiency limitations.

Now we come back to the questions posed at the beginning of this
chapter: autonomy and generality. Even if the autonomy of the con-
troller is not constrained by the higher-level controller or by the user,
the system is limited in its ability to make control decisions due the lim-
itations of its perceptual system. The level of the system’s autonomy is
thus closely related to its generality, i.e., the ability to “understand the
world”. Therefore, one of the most important research issues in learning
control is the issue of learning semantics.
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