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• Bacterial foraging for distributed optimization
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• Stability analysis of foraging swarms

• Concluding remarks
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Foraging Theory

• Animals search for and obtain nutrients to maximize

E

T

where E is energy obtained per time T

• Foraging constraints: Physiology, predators/prey,

environment

➙ Evolution optimizes foraging

• Foraging strategy: Find patch, decide whether to

enter it and search for food, when to leave patch?
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Group of 
predators

Forager

Nutient patch

Figure 1: Foraging landscape and scenario.
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• Use dynamic programming to find “optimal policies.”

• Search strategies for foraging: cruise (tuna fish),

saltatory (birds, fish, insects), and ambush (snakes)

➙ Social foraging: Need communications but

individuals can gain advantages (more sensors,

“gang-up” on large prey, protection, collective

intelligence).

• Examples: Bees, ants, fish, birds, wolves, humans
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Sense, act Communicate,
Learn, Plan

Figure 2: Cognitive spectrum for foraging.

• Entire spectrum interesting from an engineering

perspective.

• Let’s start at the bottom...
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Chemotactic (Foraging) Behavior of E. coli

• E. coli: Diameter: 1µm, Length: 2µm

Figure 3: E. coli bacterium (from [2]).

• Can reproduce (split) in 20 min.
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★ E. coli in action... (from C. Morton-Firth, Cambridge

Univ.)
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Motility and Chemotaxis

• Motility via reversible rigid 100 − 200 rps spinning

flagella each driven by a biological “motor”

Figure 4: E. coli biological “motor” (from [1]).
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Clockwise rotation of flagella, tumble

Counterclockwise rotation of flagella, swim

(a) (b)

(c)

Figure 5: Chemotactic behavior.
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Decision Making in Foraging

1. If in neutral medium alternate tumbles and runs

⇒ Search

2. If swimming up nutrient gradient (or out of noxious

substances) swim longer (climb up nutrient gradient

or down noxious gradient)

⇒ Seek increasingly favorable environments

3. If swimming down nutrient gradient (or up noxious

substance gradient), then search

⇒ Avoid unfavorable environments
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(a) (b) (c) (d)

Figure 6: Capillary experiment (from [5]).
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Figure 7: Sensing and control in E. coli (from [1]).
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• The sensors are very sensitive, and overall there is a

“high gain.”

• Averages sensed concentrations and computes an

approximation to a time derivative.

➙ Probably the best understood sensory and

decision-making system in biology

(understood/simulated at molecular level).
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Elimination/Dispersal and Evolution

➙ Bacteria often killed and dispersed (can be viewed

as part of their motility)

• Mutations in E. coli affect, e.g., reproductive

efficiency at different temperatures, and occur at a

rate of about 10−7 per gene, per generation.

• E. coli occasionally engage in a type of “sex” called

“conjugation” (Figure 8)
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Figure 8: Conjugation in E. coli (from [5]).
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Other Taxes

1. Change cell shape and number of flagella based on

medium!

2. Oxygen (aerotaxis), light (phototaxis), temperature

(thermotaxis), magnetic flux lines (magnetotaxis)
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Figure 9: Phototaxis behavior of the phototropic bac-

terium Thiospirillum jenense (from [5]).
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Swarms

➙ E. coli and S. typhimurium can form intricate stable

spatio-temporal patterns in certain semi-solid

nutrient media

• Radially eat their way through the medium.

• Cell-to-cell attractant signals.

• The bacteria protect each other.
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Figure 10: Swarm pattern of E. coli (from [3]).
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Bacterial Swarm Foraging for Optimization

• Find the minimum of

J(θ), θ ∈ �p

when we do not have ∇J(θ).

➙ Suppose θ is the position of a bacterium, and J(θ)

represents an attractant-repellant profile so:

1. J > 0 ⇒ noxious

2. J = 0 ⇒ neutral

3. J < 0 ⇒ food
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• Let

P (j, k, 
) =
{
θi(j, k, 
)|i = 1, 2, . . . , S

}

be the set of all S bacterial positions at the j th

chemotactic step, kth reproduction step, and 
th

elimination-dispersal event.

• Let J(i, j, k, 
) denote the cost at the location of

the ith bacterium θi(j, k, 
) ∈ �p.

• Let Nc be the length of the lifetime of the bacteria as

measured by the number of chemotactic steps.
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➙ To represent a tumble, a unit length random

direction, say φ(j), is generated; then we let

θi(j + 1, k, 
) = θi(j, k, 
) + C(i)φ(j)

so C(i) > 0 is the size of the step taken in the

random direction specified by the tumble.

➙ If at θi(j + 1, k, 
) the cost J(i, j + 1, k, 
) is

better (lower) than at θi(j, k, 
), then another

chemotactic step of size C(i) in this same direction

will be taken, and repeat that up to a maximum

number of steps, Ns.
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➙ Cell-to-cell signaling via an attractant:

1. Attractants are essentially “food” for other cells

(chemotactically attracted to it)

2. Use J i
cc(θ), i = 1, 2, . . . , S, to represent locally

secreted food.

• Repel? Via local consumption, and cells are not food

for each other. Again, use J i
cc(θ).

• Example: Consider the S = 2 case...
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Figure 11: Example cell-to-cell attractant model, S = 2.
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➙ For swarming consider minimization of

J(i, j, k, 
) + Jcc(θ)

so cells try to find nutrients, avoid noxious

substances, and try to move towards other cells, but

not too close to them.

• The Jcc(θ) function dynamically deforms the search

landscape to represent the desire to swarm.

• Take Nre reproduction steps.
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➙ For reproduction, healthiest bacteria (ones that have

lowest accumulated cost over their lifetime) split, and

then kill other unhealthy half of population.

➙ Let Ned be the number of elimination-dispersal

events and for each elimination-dispersal event each

bacterium in the population is subjected to

elimination-dispersal with probability ped.

• Biologically valid model? Capturing gross

characteristics of chemotactic hill-climbing and

swarming.
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Example: Function Optimization

• Find minimum of function in Figure 12 ([15, 5]� is

the global minimum point, [20, 15]� is a local

minimum).

• Standard ideas from optimization theory can be

used to set the algorithm parameters.
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Figure 12: Function with multiple extremum points.
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➙ No swarming:

• S = 50, Nc = 100, C(i) = 0.1, i = 1, 2, . . . , S,

Ns = 4 (a biologically-motivated choice)

• Nre = 4, Ned = 2, ped = 0.25,

• Random initial bacteria distribution.
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Figure 13: Bacterial motion trajectories, generations 1-4.
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Figure 14: Bacterial motion trajectories, generations 1-4,

after an elimination-dispersal event.
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➙ Swarm effects:

• Emulate Figure 10 by considering optimization over

Figure 15.

• Initially, place all cells at the peak [15, 15]�.
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Figure 15: A nutrient surface for testing swarming.
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Figure 16: Swarm behavior of E. coli on a test function.
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Take a Step Up the Cognitive Spectrum for Foraging

★ Archangium violaceum foraging for Sarcina

(Myxobacteria web page, M. Dworkin, Univ.

Minnesota).



37

OHIO
STATE

T . H . E

UNIVERSITY

★ M. xanthus: Social and adventurous swarming (web

page of Dale Kaiser, Stanford Univ.)
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Figure 17: M. xanthus mound formation (from [4]).
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• Cellular automata-based optimization

• Resulting swarm dynamics “emerge”:

1. Formation (aggregation) events

2. Size

3. Location

4. Motility (move faster as individuals than in

groups)

➙ Balance between desire to individually forage and to

form swarm aggregates is delicate.
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Discussion

• Optimization methods: Related to stochastic

approximation, genetic algorithms. Comparative

analysis important! (J. Spall)

➙ Evolution made foraging search strategies "optimal"

for the environment of the bacteria (class of cost

functions)—perhaps not our engineering problems!

• What is the value? To be determined, but for now:

Science, metaphor for engineering and control?
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Uninhabited Autonomous Air Vehicles

(i,j): i=threat severity index relative to UAAV (6=most severe),
        j=target priority index (6=highest priority)

(i,j)

Target/threat
environment

(4,2)

(2,4)

(2,4)

(3,5)

Target/threat
designation:

(4,1)

(1,6)

(6,2) (6,2)

(6,2)

(3,3)

(3,3)

(3,3)(3,3)

High threat, low
target priority group
protecting a high 
priority target that itself
presents little threat
to the UAAV

Low threat severity
group, with varying
target priorities

Group with medium threat
severity and target priority

UAAV

UAAV

UAAV

UAAV

North

Figure 18: UAAV scenario (with M. Polycarpou).
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• Fuel/time constraints

• Sensor range/accuracy may be low

• Communication constraints: Locality, bandwidth, and

delays

• On-board functionality: Computer, signal processing,

and control. How much?

• Vehicle dynamics constrain movements

• Target/threats may move/evade



43

OHIO
STATE

T . H . E

UNIVERSITY

★ E. coli “vehicles”—a nanotechnologist’s dream!
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• Use an E. coli (M. xanthus) search strategy?

• Bacterial sensing, locomotion, and decision-making

strategies are limited.

• Their foraging is optimized for a certain environment,

probably not this one!

➙ Foraging principle: Optimization/search is a central

concept.

➙ Evolutionary principle: Vehicle and environment

dictate cooperative strategy.
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Intelligent Foraging for Distributed

Coordination and Control (M. Baum)

➙ What if our forager has capabilities for planning,

attention, learning, and sophisticated

communications?

➙ Learning/planning approach: construct cognitive

maps, predict using these, and share the maps

• Relevant optimization theory: Pattern search and

real-time surrogate model (response surface)

methods.
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Distributed Learning and Planning for UAVs
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Figure 19: UAAV learning a foraging landscape.
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• Other maps: Target priority, threat severity, ...

• Distributed Learning and Coordination: How to

coordinate learning via sharing of maps? When to

seek more information (risky) vs. when to focus on

gathering more information in a previously visited

area?

• Distributed Planning: On shared maps.

➙ Theoretical Challenges: Stability, convergence,

robustness
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Stable Foraging Swarms (Y. Liu)

• Swarm aggregation and disintegration: Results from

dominance of local attractive and repelling

relationships between organisms, environmental

effects, and organism characteristics.

• Cohesion: During vegetative swarming (feed better

in group), and for protection

• Disintegration: Plentiful small prey, and scatter for

survival (safety in a group?)
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• One-dimensional vehicular swarm (platoon,

formation?) with swarm member:

1. Position: xi(t), i = 1, 2, . . . , N (can add

dynamics)

2. Moves at times: T i, i = 1, 2, . . . , N (infinite,

can have T i ∩ T j 
= φ)

3. Proximity sensor: Immediate measurements

within ε > 0

4. Neighbor sensor: Provides ith member

xi−1(τ i
i−1(t)), 0 ≤ τ i

j(t) ≤ t.
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5. Goal: Achieve inter-swarm member distance

d > 0 (or neighborhood)

6. Locomotion: Compute ei(t) = xi(t) − xi−1(t)

and use g(ei(t) − d) (sector-bounded) to

represent attract/repel features

7. Asychronism: Total or partial (sense and act

within B time units)
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• N -member swarm model: Swarm member i = 2,

example

x2(t + 1) = max{x1(t) + ε,

min{x2(t) − g(x2(t) − x1(τ 2
1 (t)) − d),

x3(t) − ε}}

• Suppose xi(0) − xi−1(0) > ε
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• Characterize stability via inter-swarm member

distances

• Goal: Convergence to within d (or a neighborhood).

• Stationary edge member: Convergence...

1. Total asynchronism ⇒ asymptotic convergence

2. Partial asynchronism ⇒ finite-time convergence

• Totally mobile swarms: Leader-follower rules in

terms of Jc(x). Convergence?
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★ Swarm behavior: Follow the edge-leader
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• Convergence?

1. Need: Constraints on rates of movement, partial

asynchronism, convergence to a neighborhood

2. For general Jc(x) must allow swarm splits/joins

3. Key Relationship: Adventurous-cohesion balance

(rates of movement related to communication

delays, dynamics, and inter-swarm member

neighorhood that can get convergence to)

4. Generalize? 2, 3-dimensional cases, robustness,

learning/planning.
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Concluding Remarks

✔ You can do a lot with a germ of intelligence!

✔ Biomimicry of intelligent foraging for distributed

optimization and control.

✔ Theoretical foundations (stability, optimization) are

very important.

✔ Relevant engineering applications...
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