Distributed Optimization and Control Using Only a Germ of Intelligence

Kevin M. Passino

Dept. Electrical Engineering The Ohio State University 2015 Neil Avenue Columbus, OH 43210-1272 (614) 292-5716, k.passino@osu.edu http://eewww.eng.ohio-state.edu/~passino

Outline

- Foraging theory
- Chemotactic behavior (foraging strategy) of *E. coli*
- Bacterial foraging for distributed optimization
- Bacterial foraging for distributed control
- Biomimicry of intelligent foraging
- Stability analysis of foraging swarms
- Concluding remarks

Foraging Theory

Animals search for and obtain nutrients to maximize

E

 \overline{T}

where E is energy obtained per time T

- Foraging constraints: Physiology, predators/prey, environment
- Evolution optimizes foraging
 - Foraging strategy: Find patch, decide whether to enter it and search for food, when to leave patch?

Figure 1: Foraging landscape and scenario.

- Use dynamic programming to find "optimal policies."
- Search strategies for foraging: cruise (tuna fish), saltatory (birds, fish, insects), and ambush (snakes)
- Social foraging: Need communications but individuals can gain advantages (more sensors, "gang-up" on large prey, protection, collective intelligence).
 - Examples: Bees, ants, fish, birds, wolves, humans

Figure 2: Cognitive spectrum for foraging.

- Entire spectrum interesting from an engineering perspective.
- Let's start at the bottom...

Chemotactic (Foraging) Behavior of E. coli

ullet – *E. coli*: Diameter: $1\mu m$, Length: $2\mu m$

Figure 3: *E. coli* bacterium (from [2]).

• Can reproduce (split) in 20 min.

E. coli in action... (from C. Morton-Firth, Cambridge Univ.)

Motility and Chemotaxis

• Motility via reversible rigid 100 - 200 rps spinning flagella each driven by a biological "motor"

Figure 4: *E. coli* biological "motor" (from [1]).

Figure 5: Chemotactic behavior.

Decision Making in Foraging

- 1. If in neutral medium alternate tumbles and runs \Rightarrow Search
- If swimming up nutrient gradient (or out of noxious substances) swim longer (climb up nutrient gradient or down noxious gradient)

 \Rightarrow Seek increasingly favorable environments

3. If swimming down nutrient gradient (or up noxious substance gradient), then search
 ⇒ Avoid unfavorable environments

Figure 6: Capillary experiment (from [5]).

Figure 7: Sensing and control in *E. coli* (from [1]).

- The sensors are very sensitive, and overall there is a "high gain."
- Averages sensed concentrations and computes an approximation to a *time* derivative.
- Probably the best understood sensory and decision-making system in biology (understood/simulated at molecular level).

Elimination/Dispersal and Evolution

- Bacteria often killed and dispersed (can be viewed as part of their motility)
 - Mutations in *E. coli* affect, e.g., reproductive efficiency at different temperatures, and occur at a rate of about 10^{-7} per gene, per generation.
 - *E. coli* occasionally engage in a type of "sex" called "conjugation" (Figure 8)

Figure 8: Conjugation in *E. coli* (from [5]).

Other Taxes

- 1. Change cell shape and number of flagella based on medium!
- Oxygen (aerotaxis), light (phototaxis), temperature (thermotaxis), magnetic flux lines (magnetotaxis)

Figure 9: Phototaxis behavior of the phototropic bacterium *Thiospirillum jenense* (from [5]).

Swarms

- *E. coli* and *S. typhimurium* can form intricate stable
 spatio-temporal patterns in certain semi-solid
 nutrient media
 - Radially eat their way through the medium.
 - Cell-to-cell attractant signals.
 - The bacteria protect each other.

Figure 10: Swarm pattern of *E. coli* (from [3]).

Bacterial Swarm Foraging for Optimization

• Find the minimum of

 $J(\theta), \ \theta \in \Re^p$

when we do not have $\nabla J(\theta)$.

Suppose θ is the position of a bacterium, and $J(\theta)$ represents an attractant-repellant profile so:

1. $J > 0 \Rightarrow$ noxious

2. $J = 0 \Rightarrow$ neutral

3. $J < 0 \Rightarrow \text{food}$

• Let

$$P(j,k,\ell) = \left\{ \theta^i(j,k,\ell) | i = 1, 2, \dots, S \right\}$$

be the set of all S bacterial positions at the j^{th} chemotactic step, k^{th} reproduction step, and ℓ^{th} elimination-dispersal event.

- Let $J(i, j, k, \ell)$ denote the cost at the location of the i^{th} bacterium $\theta^i(j, k, \ell) \in \Re^p$.
- Let N_c be the length of the lifetime of the bacteria as measured by the number of chemotactic steps.

To represent a tumble, a unit length random direction, say $\phi(j)$, is generated; then we let $\theta^{i}(j+1,k,\ell) = \theta^{i}(j,k,\ell) + C(i)\phi(j)$ so $\overline{C(i)} > 0$ is the size of the step taken in the random direction specified by the tumble. \rightarrow If at $\theta^i(j+1,k,\ell)$ the cost $J(i,j+1,k,\ell)$ is better (lower) than at $\theta^i(j,k,\ell)$, then another chemotactic step of size C(i) in this same direction will be taken, and repeat that up to a maximum number of steps, N_s .

Cell-to-cell signaling via an attractant:

- Attractants are essentially "food" for other cells (chemotactically attracted to it)
- 2. Use $J_{cc}^{i}(\theta)$, i = 1, 2, ..., S, to represent locally secreted food.
- Repel? Via local consumption, and cells are not food for each other. Again, use $J_{cc}^{i}(\theta)$.
- **Example:** Consider the S = 2 case...

Figure 11: Example cell-to-cell attractant model, S = 2.

 $J(i, j, k, \ell) + J_{cc}(\theta)$

so cells try to find nutrients, avoid noxious substances, and try to move towards other cells, but not too close to them.

- The $J_{cc}(\theta)$ function dynamically deforms the search landscape to represent the desire to swarm.
- Take N_{re} reproduction steps.

- For reproduction, healthiest bacteria (ones that have lowest accumulated cost over their lifetime) split, and then kill other unhealthy half of population.
- Let N_{ed} be the number of elimination-dispersal events and for each elimination-dispersal event each bacterium in the population is subjected to elimination-dispersal with probability p_{ed}.
 - Biologically valid model? Capturing gross characteristics of chemotactic hill-climbing and swarming.

Example: Function Optimization

- Find minimum of function in Figure 12 ($[15, 5]^{ op}$ is the global minimum point, $[20, 15]^{ op}$ is a local minimum).
- Standard ideas from optimization theory can be used to set the algorithm parameters.

Figure 12: Function with multiple extremum points.

→ No swarming:

- S = 50, $N_c = 100$, C(i) = 0.1, i = 1, 2, ..., S, $N_s = 4$ (a biologically-motivated choice)
- $N_{re} = 4$, $N_{ed} = 2$, $p_{ed} = 0.25$,
- Random initial bacteria distribution.

Figure 13: Bacterial motion trajectories, generations 1-4.

Figure 14: Bacterial motion trajectories, generations 1-4, after an elimination-dispersal event.

- Emulate Figure 10 by considering optimization over Figure 15.
- Initially, place all cells at the peak $[15, 15]^{\top}$.

Figure 15: A nutrient surface for testing swarming.

Figure 16: Swarm behavior of *E. coli* on a test function.

Take a Step Up the Cognitive Spectrum for Foraging

 Archangium violaceum foraging for Sarcina (Myxobacteria web page, M. Dworkin, Univ. Minnesota).

M. xanthus: Social and adventurous swarming (web page of Dale Kaiser, Stanford Univ.)

Figure 17: *M. xanthus* mound formation (from [4]).

- Cellular automata-based optimization
- Resulting swarm dynamics "emerge":
 - 1. Formation (aggregation) events
 - 2. Size
 - 3. Location
 - Motility (move faster as individuals than in groups)
- Balance between desire to individually forage and to form swarm aggregates is delicate.

Discussion

- Optimization methods: Related to stochastic approximation, genetic algorithms. Comparative analysis important! (J. Spall)
- Evolution made foraging search strategies "optimal" for the environment of the bacteria (class of cost functions)—perhaps not our engineering problems!
 - What is the value? To be determined, but for now:
 Science, metaphor for engineering and control?

Uninhabited Autonomous Air Vehicles

Figure 18: UAAV scenario (with M. Polycarpou).

- Fuel/time constraints
- Sensor range/accuracy may be low
- Communication constraints: Locality, bandwidth, and delays
- On-board functionality: Computer, signal processing, and control. How much?
- Vehicle dynamics constrain movements
- Target/threats may move/evade

E. *coli* "vehicles"—a nanotechnologist's dream!

- Use an *E. coli* (*M. xanthus*) search strategy?
- Bacterial sensing, locomotion, and decision-making strategies are limited.
- Their foraging is optimized for a certain environment, probably not this one!
- Foraging principle: Optimization/search is a central concept.
- Evolutionary principle: Vehicle and environment dictate cooperative strategy.

Intelligent Foraging for Distributed Coordination and Control (M. Baum)

- What if our forager has capabilities for planning, attention, learning, and sophisticated communications?
- Learning/planning approach: construct cognitive maps, predict using these, and share the maps
 - Relevant optimization theory: Pattern search and real-time surrogate model (response surface) methods.

Distributed Learning and Planning for UAVs

Figure 19: UAAV learning a foraging landscape.

- Other maps: Target priority, threat severity, ...
- Distributed Learning and Coordination: How to coordinate learning via sharing of maps? When to seek more information (risky) vs. when to focus on gathering more information in a previously visited area?
- Distributed Planning: On shared maps.
- Theoretical Challenges: Stability, convergence, robustness

Stable Foraging Swarms (Y. Liu)

- Swarm aggregation and disintegration: Results from dominance of local attractive and repelling relationships between organisms, environmental effects, and organism characteristics.
- Cohesion: During vegetative swarming (feed better in group), and for protection
- Disintegration: Plentiful small prey, and scatter for survival (safety in a group?)

- One-dimensional vehicular swarm (platoon, formation?) with swarm member:
 - 1. Position: $x^i(t)$, i = 1, 2, ..., N (can add dynamics)
 - 2. Moves at times: T^i , i = 1, 2, ..., N (infinite, can have $T^i \cap T^j \neq \phi$)
 - 3. Proximity sensor: Immediate measurements within $\epsilon>0$
 - 4. Neighbor sensor: Provides i^{th} member $x^{i-1}(\tau^i_{i-1}(t)), 0 \le \tau^i_j(t) \le t.$

- 5. Goal: Achieve inter-swarm member distance d > 0 (or neighborhood)
- 6. Locomotion: Compute $e^{i}(t) = x^{i}(t) x^{i-1}(t)$ and use $g(e^{i}(t) - d)$ (sector-bounded) to represent attract/repel features
- 7. Asychronism: Total or partial (sense and act within B time units)

• N-member swarm model: Swarm member i = 2, example

$$x^{2}(t+1) = max\{x^{1}(t) + \epsilon,$$

$$min\{x^{2}(t) - g(x^{2}(t) - x^{1}(\tau_{1}^{2}(t)) - d),$$

$$x^{3}(t) - \epsilon\}\}$$

 $\bullet \ \text{Suppose} \ x^i(0) - x^{i-1}(0) > \epsilon$

- Characterize stability via inter-swarm member distances
- Goal: Convergence to within d (or a neighborhood).
- Stationary edge member: Convergence...
 - 1. Total asynchronism \Rightarrow asymptotic convergence
 - 2. Partial asynchronism \Rightarrow finite-time convergence
- Totally mobile swarms: Leader-follower rules in terms of $J_c(x)$. Convergence?

Swarm behavior: Follow the edge-leader

• Convergence?

- 1. Need: Constraints on rates of movement, partial asynchronism, convergence to a neighborhood
- 2. For general $J_c(x)$ must allow swarm splits/joins
- Key Relationship: Adventurous-cohesion balance (rates of movement related to communication delays, dynamics, and inter-swarm member neighorhood that can get convergence to)
- 4. Generalize? 2, 3-dimensional cases, robustness, learning/planning.

Concluding Remarks

- You can do a lot with a germ of intelligence!
- Biomimicry of intelligent foraging for distributed optimization and control.
- Theoretical foundations (stability, optimization) are very important.
- Relevant engineering applications...

References

- [1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. *Molecular Biology of the Cell*. Garland Publishing, NY, 2nd edition, 1989.
- [2] T. Audesirk and G. Audesirk. *Biology: Life on Earth*. Prentice Hall, NJ, 5 edition, 1999.
- [3] E.O. Budrene and H.C. Berg. Dynamics of formation of symmetrical patterns by chemotactic bacteria. *Nature*, 376:49–53, 1995.
- [4] R. Losick and D. Kaiser. Why and how bacteria communicate. *Scientific American*, 276(2):68–73, 1997.
- [5] M.T. Madigan, J.M. Martinko, and J. Parker. *Biology of Microorganisms*. Prentice Hall, NJ, 8 edition, 1997.