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FORAGING

Focus:

➙ Bacterial foraging (modeling, simulation, optimization)

➙ Stability analysis of swarms, swarms approach to cooperative
control for robots

➙ Games, cooperative and competitive foraging

➙ Intelligent social foraging (planning, attention, learning,
communications, multiple agents/cooperation/competition)
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Bacterial Foraging as Optimization

Foraging Theory

Elements of Foraging Theory

➙ Foraging theory is based on the assumption that animals
search for and obtain nutrients in a way that maximizes their
energy intake E per unit time T spent foraging.

E

T

➙ Foraging is an optimization process created by evolution.

• Gives time for reproduction, etc.
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• Foraging is very different for different species.

➙ “Environment” sets pattern of predators/prey (nutrients).

➙ Forager physiological characteristics affect success (also evolve).

➙ Nutrients are distributed in “patches”

➙ Typical foraging decision strategies?
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Group of 
predators

Forager

Nutrient patch

Figure 196: Foraging landscape and scenario.
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➙ Decision-making in foraging is a control strategy for organism
guidance.

➙ “Optimal foraging theory”? Relevance? Optimal guidance
strategies!

Social/Intelligent Foraging

➙ Advantages to “social” foraging? Need communications:

– Wider area search

– Access to “information center” for helping with survival.

– Increased capabilities to cope with larger prey.

– Protection from predators.

➙ Think of a group (swarm) as a single living creature—emergent
intelligence.

➙ Examples: Pack of wolves hunting, flock of birds, swarm of
bees, colony of ants (algorithms here), or school of fish.
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➙ “Intelligent foraging” uses rules, planning, attention, learning.

Sense, act Communicate,
Learn, Plan

Figure 197: Cognitive spectrum for foraging.

➙ Entire spectrum interesting from an engineering perspective.

• Let’s start at the bottom...
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Chemotactic (Foraging) Behavior of E. coli

• E. coli: Diameter: 1µm, Length: 2µm

Figure 198: E. coli bacterium (from [2]).

• Can reproduce (split) in 20 min.
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Motility and Chemotaxis

• Motility via reversible rigid 100 − 200 rps spinning flagella each
driven by a biological “motor”

Figure 199: E. coli biological “motor” (from [1]).
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Clockwise rotation of flagella, tumble

Counterclockwise rotation of flagella, swim

(a) (b)

(c)

Figure 200: Chemotactic behavior.
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Decision Making in Foraging

1. If in neutral medium alternate tumbles and runs
⇒ Search

2. If swimming up nutrient gradient (or out of noxious
substances) swim longer (climb up nutrient gradient or down
noxious gradient)
⇒ Seek increasingly favorable environments

3. If swimming down nutrient gradient (or up noxious substance
gradient), then search
⇒ Avoid unfavorable environments
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(a) (b) (c) (d)

Figure 201: Capillary experiment (from [14]).
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Figure 202: Sensing and control in E. coli (from [1]).
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• The sensors are very sensitive, and overall there is a “high
gain.”

• Averages sensed concentrations and computes an
approximation to a time derivative.

➙ Probably the best understood sensory and decision-making
system in biology (understood/simulated at molecular level).
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Elimination/Dispersal and Evolution

➙ Bacteria often killed and dispersed (can be viewed as part of
their motility)

• Mutations in E. coli affect, e.g., reproductive efficiency at
different temperatures, and occur at a rate of about 10−7 per
gene, per generation.

• E. coli occasionally engage in a type of “sex” called
“conjugation” (Figure 203)



612

Figure 203: Conjugation in E. coli (from [14]).
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Other Taxes

1. Change cell shape and number of flagella based on medium!

2. Oxygen (aerotaxis), light (phototaxis), temperature
(thermotaxis), magnetic flux lines (magnetotaxis)
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Figure 204: Phototaxis behavior of the phototropic bacterium
Thiospirillum jenense (from [14]).
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Swarms

➙ E. coli and S. typhimurium can form intricate stable
spatio-temporal patterns in certain semi-solid nutrient media

• Radially eat their way through the medium.

• Cell-to-cell attractant signals.

• The bacteria protect each other.
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Figure 205: Swarm pattern of E. coli (from [3]).
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Bacterial Swarm Foraging for Optimization

• Find the minimum of

J(θ), θ ∈ �p

when we do not have ∇J(θ).

➙ Suppose θ is the position of a bacterium, and J(θ) represents
an attractant-repellant profile so:

1. J > 0 ⇒ noxious

2. J = 0 ⇒ neutral

3. J < 0 ⇒ food

➙ Let
P (j, k, �) =

{
θi(j, k, �)|i = 1, 2, . . . , S

}
be the set of all S bacterial positions at the jth chemotactic

step, kth reproduction step, and �th elimination-dispersal event.
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• Let J(i, j, k, �) denote the cost at the location of the ith

bacterium θi(j, k, �) ∈ �p.

• Let Nc be the length of the lifetime of the bacteria as measured
by the number of chemotactic steps.

➙ To represent a tumble, a unit length random direction, say
φ(j), is generated; then we let

θi(j + 1, k, �) = θi(j, k, �) + C(i)φ(j)

so C(i) > 0 is the size of the step taken in the random
direction specified by the tumble.

➙ If at θi(j + 1, k, �) the cost J(i, j + 1, k, �) is better (lower) than
at θi(j, k, �), then another chemotactic step of size C(i) in this
same direction will be taken, and repeat that up to a maximum
number of steps, Ns.
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➙ Cell-to-cell signaling via an attractant:

1. Attractants are essentially “food” for other cells
(chemotactically attracted to it)

2. Use J i
cc(θ), i = 1, 2, . . . , S, to represent locally secreted food.

• Repel? Via local consumption, and cells are not food for each
other. Again, use J i

cc(θ).

• Example: Consider the S = 2 case...
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Figure 206: Example cell-to-cell attractant model, S = 2.
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➙ For swarming consider minimization of

J(i, j, k, �) + Jcc(θ)

so cells try to find nutrients, avoid noxious substances, and try
to move towards other cells, but not too close to them.

➙ The Jcc(θ) function dynamically deforms the search landscape
to represent the desire to swarm.

• Take Nre reproduction steps.
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➙ For reproduction, healthiest bacteria (ones that have lowest
accumulated cost over their lifetime) split, and then kill other
unhealthy half of population.

➙ Let Ned be the number of elimination-dispersal events (for each
one, each bacterium is subjected to elimination-dispersal with
probability ped).

➙ Biologically valid model? Capturing gross characteristics of
chemotactic hill-climbing and swarming.
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Example: Function Optimization

• Find minimum of function in Figure 207 ([15, 5]� is the global
minimum point, [20, 15]� is a local minimum).

• Standard ideas from optimization theory can be used to set the
algorithm parameters.
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➙ No swarming:

• S = 50, Nc = 100, C(i) = 0.1, i = 1, 2, . . . , S, Ns = 4 (a
biologically-motivated choice)

• Nre = 4, Ned = 2, ped = 0.25,

• Random initial bacteria distribution.
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Figure 208: Bacterial motion trajectories, generations 1-4.
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Figure 209: Bacterial motion trajectories, generations 1-4, after an
elimination-dispersal event.
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➙ Swarm effects:

• Emulate Figure 205 by considering optimization over
Figure 210.

• Initially, place all cells at the peak [15, 15]�.
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Figure 211: Swarm behavior of E. coli on a test function.
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Social Bacterial Foraging: M. xanthus

➙ Exotic social motile behavior Myxobacteria (“slime bacteria”)

Gliding, Slime Trails, and Swarm Foraging Behavior

➙ Lives in soil and on leaves on forest floors, is a “gliding”
bacterium.

• Single bacterium is isolated in an appropriate nutrient-rich
environment moves forward and backward and it seems to
make no progress.

➙ As it moves it lays down a slime trail, others tend to follow.

➙ Also engage in social foraging (via mutations “social motility”
and “adventurous motility”)
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Figure 212: Swarm chemotactic behavior of M. xanthus (figure taken
from [16], but the images were made by M. Dworkin of the Univ. of
Minnesota).
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Figure 213: Formation of a mound of M. xanthus. In the top frame
aggregation is just starting via cell alignment, then via aggregation
the mound grows as shown in subsequent frames (figure taken from
[13]).
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Figure 214: Fruiting body of Chondromyces crocatus. If you watch
a movie of the formation of this fruiting body it resembles a growing
plant (figure taken from [13], but image is from H. Reichenbach, Inst.
for Biotechnical Research, Germany).
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Other Types of Swarming/Complex Bacterial Patterns

➙ Luminous bacteria symbiotic with squid

➙ Soil-dwelling streptomycete colonies can grow a branching
network of long fiber-like cells that can penetrate and degrade
vegetation

➙ Proteus mirabilis swimmer/swarmer capabilities
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Figure 215: Cellular automaton: M. xanthus bacterial swarm forag-
ing algorithm results, after 50 chemotactic steps.
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Figure 216: M. xanthus bacterial swarm foraging algorithm results,
after 100 chemotactic steps.
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Stability Analysis of Social Foraging Swarms

• Examples: Bees, bacteria, wildebeests, birds, robots, etc.

Swarm and Environment Models

Agent Dynamics and Communications

➙ N “agents,” point mass dynamics,

ẋi = vi (93)

v̇i =
1

Mi
ui

where xi ∈ �n is the position, vi ∈ �n is the velocity, Mi is the
mass, and ui ∈ �n is the (force) control input for the ith agent.

• Nonlinear and stochastic models can be used.

• Consider n = 3

• Could use “communication topology” (G,A) where
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G = {1, 2, . . . , N} is a set of nodes (the agents) and

A = {(i, j) : i, j ∈ G, i �= j}

• Fixed? Time-varying? Link characteristics?

Agent to Agent Attraction and Repulsion

➙ Agent seeks to be in a position that is “comfortable” relative to
its neighbors

➙ Attraction/repulsion terms: Can have linear, nonlinear,
local/global, static/dynamic.

➙ Balance between attraction and repulsion (a basic concept in
swarm dynamics that is sometimes referred to as an
“equilibrium” even though it may not be one in the
stability-theoretic sense)

• Include in ui for each agent:
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➙ Attraction: Linear attraction

−ka

(
xi − xj

)
where ka > 0 is a scalar that represents the strength of
attraction.

– Repulsion:
∗ Seek a “comfortable distance”: A term in ui with[

−k
(
||xi − xj || − d

)] (
xi − xj

)
∗ Repel when close: A term in ui

kr exp
(−1

2‖xi − xj‖2

r2
s

)(
xi − xj

)
(94)

∗ Hard repulsion for collision avoidance: Term like[
max

{(
a

b||xi − xj || − w
− ε

)
, 0
}] (

xi − xj
)

(95)
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Environment and Foraging

• Agents move over a “resource profile” (e.g., nutrient profile)
J(x), where x ∈ �n.

• Agents move in the direction of the negative gradient of J(x)

−∇J(x) = −∂J

∂x

in order to move away from bad areas and into good areas of
the environment (e.g., to avoid noxious substances and find
nutrients).

• Examples:

– Plane: In this case we have J(x) = Jp(x) where

Jp(x) = R�x + ro

where R ∈ �n and ro is a scalar. Here, ∇Jp(x) = R.
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– Quadratic: In this case we have J(x) = Jq(x) where

Jq(x) =
rm

2
‖x − Rc‖2 + ro

where rm and ro are scalars and Rc ∈ �n. Here,
∇Jq(x) = rm (x − Rc).

➙ Agents can sense profile, with noise

➙ Multi-objective agents

➙ Can sense points or regions of environment

➙ Consumption, time-varying profile

Stability Analysis of Swarm Cohesion Properties

Sensing, Noise, and Error Dynamics

• Let

x̄ =
1
N

N∑
i=1

xi
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be the center of the swarm and

v̄ =
1
N

N∑
i=1

vi

be the average velocity (vector) which we view as the velocity
of the group of agents.

• Each agent can sense the distance from itself to x̄, and the
difference between its own velocity and v̄.

• Each agent knows its own velocity, but not its own position.

• Sensors for this in nature? Robotics?

➙ Agent objective: Move so as to end up at or near x̄ and have
its velocity equal to v̄

• x̄ and v̄ are generally time-varying
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➙ Error system:
ei
p = xi − x̄

and
ei
v = vi − v̄

• Notice

ėi
p = ei

v

ėi
v =

1
Mi

ui − 1
N

N∑
j=1

1
Mj

uj (96)

➙ Challenge: Specify the ui so that we get good cohesion
properties and successful social foraging.

• Assume that each agent can sense its position and velocity
relative to x̄ and v̄, but with some bounded errors.

➙ Let di
p(t) ∈ �n, di

v(t) ∈ �n be these errors for agent i,
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respectively.

➙ Assume that di
p(t) and di

v(t) are sufficiently smooth and are
independent of the state of the system.

➙ Each agent senses the gradient of Jp, but with some sufficiently
smooth error di

f (t) ∈ �n (sensor noise or noise on the profile).

➙ Will use term “noise” loosely

➙ Assume:

‖di
p‖ ≤ Dp

‖di
v‖ ≤ Dv

‖di
f‖ ≤ Df

where Dp > 0, Dv > 0, and Df > 0 are known constants.

➙ Thus, each agent can sense

êi
p = ei

p − di
p
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êi
v = ei

v − di
v

and
∇Jp

(
xi
)
− di

f

at the location xi where the agent is located.

➙ Suppose that in order to steer itself each agent uses

ui = −Mikaêi
p − Mikaêi

v − Mikvvi

+ Mikr

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)(
êi
p − êj

p

)
− Mikf

(
∇Jp

(
xi
)
− di

f

)
(97)

• Each agent knows its own mass Mi and velocity vi.

• kv > 0 is the gain for a “velocity damping term.”

• ka > 0 is the “attraction gain”
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• kr is a “repulsion gain” which sets how much the agents want
to be away from each other.

• Notice that

êi
p−êj

p =
((

xi − x̄
)
− di

p

)
−
((

xj − x̄
)
− dj

p

)
=
(
xi − xj

)
−
(
di

p − dj
p

)
• If Dp = Dv = 0, there is no sensing error on attraction and

repulsion, thus, êi
p = ei

p, êi
v = ei

v, and ei
p − ej

p = xi − xj .

Social Foraging in Noise: Groups Can Increase Foraging Effectiveness

➙ Substitute this choice for ui into the error dynamics in
Equation (96) and study their stability properties.

➙ First, however, we will study how the group can follow the
resource profile in the presence of noise.

• Consider ėi
v = v̇i − ˙̄v.
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• First, note that

˙̄v =
1
N

N∑
i=1

1
Mi

ui

= −ka

N

N∑
i=1

(
êi
p + êi

v

)
− kv

N

N∑
i=1

vi

+
kr

N

N∑
i=1

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)(
êi
p − êj

p

)

− kf

N

N∑
i=1

(
R − di

f

)
(98)

1
N

N∑
i=1

êi
p =

1
N

N∑
i=1

((
xi − x̄

)
− di

p

)
= x̄− 1

N
Nx̄− 1

N

N∑
i=1

di
p = − 1

N

N∑
i=1

di
p

• Also, the term due to repulsion in Equation (98) is zero as we
show next.
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• Note that
N∑

i=1

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)(
êi
p − êj

p

)
=


 N∑

i=1

êi
p

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)
]




−


 N∑

i=1

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)
êj
p


 (99)

• The last term in Equation (99)

N∑
i=1

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)
êj
p =
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N∑
j=1

N∑
i=1,i�=j

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)
êj
p

and since

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)
= exp

(
−1

2‖êj
p − êi

p‖2

r2
s

)

we have
N∑

j=1

N∑
i=1,i�=j

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)
êj
p =

N∑
j=1

êj
p

N∑
i=1,i�=j

exp

(
−1

2‖êj
p − êi

p‖2

r2
s

)

but this last value is the same as the first term in
Equation (99).

• So overall its value is zero.
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• This gives us

˙̄v =
ka

N

N∑
i=1

di
p +

ka

N

N∑
i=1

di
v +

kf

N

N∑
i=1

di
f − kv v̄ − kfR

• Letting d̄p(t) = 1
N

∑N
i=1 di

p(t) and similarly for d̄v(t) and d̄f (t)
we get

˙̄v = −kv v̄ + kad̄p + kad̄v + kf d̄f − kfR︸ ︷︷ ︸
z(t)

(100)

➙ This is an exponentially stable system with a time-varying but
bounded input z(t) so we know that v̄(t) is bounded.

• To see this, choose a Lyapunov function

Vv̄ =
1
2
v̄�v̄

defined on D = {v̄ ∈ �n | ‖v̄‖ < rv} for some rv > 0, and we
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have
V̇v̄ = v̄� ˙̄v = −kv v̄�v̄ + z(t)�v̄

with ∥∥∥∥∂Vv̄

∂v̄

∥∥∥∥ = ‖v̄‖

• Note that ‖z(t)‖ ≤
∥∥kad̄p

∥∥+
∥∥kad̄v

∥∥+
∥∥kf d̄f

∥∥+ ‖kfR‖ ≤ δ,
where δ = kaDp + kaDv + kfDf + kf‖R‖. If δ < kvθrv for all
t ≥ 0 for some positive constant θ < 1, and all v̄ ∈ D, then it
can be proven that for all ‖v̄(0)‖ < rv, and some finite T we
have

‖v̄(t)‖ ≤ exp [−(1 − θ)kvt] ‖v̄(0)‖ , ∀ 0 ≤ t < T

and
‖v̄(t)‖ ≤ δ

kvθ
, ∀ t ≥ T

• Since this holds globally we can take rv → ∞ so these
inequalities hold for all v̄(0).
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• If δ and θ are fixed, with increasing kv we get that ‖v̄(t)‖
decreases faster for 0 ≤ t < T and smaller bound on ‖v̄(t)‖ for
t ≥ T .

➙ If δ gets larger with kv and θ fixed, ‖v̄(t)‖ has larger bound for
t ≥ T ; hence if the magnitude of the noise increases this
increases δ and hence there can be larger magnitude changes in
the ultimate average velocity of the swarm (e.g., the average
velocity could oscillate).

➙ Note that if in Equation (100) z(t) ≈ 0 (e.g., due to noise that
destroys the directionality of the resource profile R), then the
above bound may be reduced but the swarm could be going in
the wrong direction.

➙ Average sensing errors of the group is what changes the
direction of the group’s movement relative to the direction of
the gradient of Jp(x).
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➙ For big swmars it can be that d̄p ≈ d̄v ≈ d̄f ≈ 0 to give a zero
average sensing error and the group will perfectly follow the
proper direction for foraging

➙ Also, groups can often climb noisy gradients better than an
individual - Grunbaum.

Cohesive Social Foraging in Noise

➙ Consider the v̇i term of ėi
v = v̇i − ˙̄v in Equation (96).

• Note that

v̇i =
1

Mi
ui = −kaêi

p − kaêi
v − kvvi

+ kr

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)(
êi
p − êj

p

)
− kf

(
∇Jp

(
xi
)
− di

f

)
= −kaei

p + kadi
p − kaei

v + kadi
v − kvv

i
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+ kr

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)(
êi
p − êj

p

)
− kf

(
R − di

f

)
• Hence, we have

ėi
v = v̇i − ˙̄v =

−kaei
p − kaei

v − kvei
v + ka

(
di

p − d̄p

)
+ ka

(
di

v − d̄v

)
+kr

N∑
j=1,j �=i

exp

(
−1

2‖
(
xi − xj

)
−
(
di

p − dj
p

)
‖2

r2
s

)((
xi − xj

)
−
(
di

p − dj
p

))
+ kf

(
di

f − d̄f

)
➙ To study the stability of the error dynamics, and hence swarm

cohesiveness, define

Ei = [ei
p
�

, ei
v
�

]
�
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and E = [E1�, E2�, . . . , EN�]
�

, and choose a Lyapunov
function

V (E) =
N∑

i=1

Vi

(
Ei
)

where
Vi

(
Ei
)

= Ei�PEi

with P = P� and P > 0 (a positive definite matrix).

• We know that

λmin(P )Ei�Ei ≤ Ei�PEi ≤ λmax(P )Ei�Ei

• Notice that with I an n × n identity matrix, we have

Ėi =


 0 I

−kaI − (ka + kv) I




︸ ︷︷ ︸
A

Ei +


 0

I




︸ ︷︷ ︸
B

gi(E)
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where

gi(E) = ka

(
di

p − d̄p

)
+ ka

(
di

v − d̄v

)
+ kr

N∑
j=1,j �=i

exp

(
−1

2‖êi
p − êj

p‖2

r2
s

)(
êi
p − êj

p

)
+ kf

(
di

f − d̄f

)
(101)

➙ Note that any matrix 
 0 I

−k1I −k2I




with k1 > 0 and k2 > 0 has eigenvalues given by the roots of
(s2 + k2s + k1)

n, which are in the strict left half plane.

➙ Since ka > 0 and kv > 0, the matrix A above is Hurwitz (i.e.,
has eigenvalues all in the strict left half plane).
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• We have

V̇i = Ei�PĖi+Ėi
�

PEi = Ei� (PA + A�P
)︸ ︷︷ ︸

−Q

Ei+2Ei�PBgi(E)

(102)

• Note that if Q, defined in this manner, is such that Q = Q�

and Q > 0, then the unique solution P of PA + A�P = −Q

has P = P� and P > 0 as needed.

• Also, since ‖B‖ = 1, Ei�QEi ≥ λmin(Q)Ei�Ei, and
‖P‖ = λmax(P ) with P = P� > 0, we have

V̇i ≤ −λmin(Q)
∥∥Ei

∥∥2
+ 2

∥∥Ei
∥∥λmax(P )‖gi(E)‖

= −λmin(Q)
(∥∥Ei

∥∥− 2λmax(P )
λmin(Q)

‖gi(E)‖
)∥∥Ei

∥∥(103)

• Suppose for a moment that for each i = 1, 2, . . . , N ,
‖gi(E)‖ < β for some known β.
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• Then, if ∥∥Ei
∥∥ >

2λmax(P )
λmin(Q)

‖gi(E)‖ (104)

we have that V̇i < 0.

• Hence, the set

Ωb =
{

E :
∥∥Ei

∥∥ ≤ 2
λmax(P )
λmin(Q)

‖gi(E)‖, i = 1, 2, . . . , N

}
(105)

is attractive and compact.

➙ Also we know that within a finite amount of time, Ei → Ωb.

➙ This means that we can guarantee that if the swarm is not
cohesive, it will seek to be cohesive, but this can only be
guaranteed if it is a certain distance from cohesiveness as
indicated by Equation (104).

➙ It remains to show that for each i, ‖gi(E)‖ < β for some β.
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• Note that

‖gi(E)‖ ≤ ka‖di
p − d̄p‖ + ka‖di

v − d̄v‖ + kf‖di
f − d̄f‖

+ kr

N∑
j=1,j �=i

exp
(−1

2‖ψ‖2

r2
s

)
‖ψ‖ (106)

where ψ = êi
p − êj

p =
(
xi − xj

)
−
(
di

p − dj
p

)
.

• Notice that 1
N

∑N
j=1 ‖dj

p‖ ≤ Dp since ‖dj
p‖ ≤ Dp.

• Also

di
p − 1

N

N∑
j=1

dj
p ≤ ‖di

p‖ +
1
N

‖
N∑

j=1

dj
p‖ ≤ ‖di

p‖ +
1
N

N∑
j=1

‖dj
p‖

‖di
p − d̄p‖ ≤ 2Dp, ‖di

v − d̄v‖ ≤ 2Dv, and ‖di
f − d̄f‖ ≤ 2Df .

➙ For the last term in Equation (106), note that as ‖xi − xj‖
becomes large for all i and j, the agents are all far from each
other and the repulsion term goes to zero.
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➙ Also, the term due to the repulsion is bounded with a unique
maximum point.

• To find this point note that

∂

∂‖ψ‖

(
‖ψ‖ exp

(−1
2‖ψ‖2

r2
s

))
=

exp
(−1

2‖ψ‖2

r2
s

)
− ‖ψ‖2

r2
s

exp
(−1

2‖ψ‖2

r2
s

)
• The maximum point occurs at a point such that

1 − ‖ψ‖2

r2
s

= 0

or when ‖ψ‖ = rs.
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➙ Hence, we have

‖gi(E)‖ ≤ 2ka (Dp + Dv) + 2kfDf + kr

N∑
j=1,j �=i

exp
(
−1

2

)
rs

= 2ka (Dp + Dv) + 2kfDf + krrs(N − 1) exp
(
−1

2

)
= β

➙ If you substitute this value for β into Equation (105) you get
the set Ωb that ultimately all the trajectories will end up in.

Cohesive Social Foraging with No Noise: Optimization Perspective

➙ When there is no noise, tighter bounds and stronger results can
be obtained.

➙ First, we can eliminate the effect of P via λmax(P ) on the
bound for the no-noise case. As
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• sume there is no sensor noise so Dp = Dv = Df = 0. Choose

ui = −Mikaei
p − Mikaei

v − Mikvvi

+ Mikr

(
B�P−1B

) N∑
j=1,j �=i

exp

(
−1

2‖ei
p − ej

p‖2

r2
s

)(
ei
p − ej

p

)
− MikfR (107)

where P = P�, P > 0 was defined earlier, so P−1 exists.

• Also

V̇i ≤ −λmin(Q)
∥∥Ei

∥∥2

+ 2Ei�PB


krB

�P−1B
N∑

j=1,j �=i

exp

(
−1

2‖ei
p − ej

p‖2

r2
s

)(
ei
p − ej

p

)
= −λmin(Q)

∥∥Ei
∥∥2
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+ 2krE
i�B

N∑
j=1,j �=i

exp

(
−1

2‖ei
p − ej

p‖2

r2
s

)(
ei
p − ej

p

)

≤ −λmin(Q)
∥∥Ei

∥∥2
+ 2kr

∥∥Ei
∥∥ (N − 1) exp

(
−1

2

)
rs

• So V̇i < 0 if
∥∥Ei

∥∥ > 2kr(N−1)rs

λmin(Q) exp
(
−1

2

)
. Let

Ω′
b =

{
E :

∥∥Ei
∥∥ ≤ 2krrs(N − 1)

λmin(Q)
exp

(
−1

2

)
, i = 1, 2, . . . , N

}

➙ Next, note that in the set Ωb, we have bounded ei
p and ei

v but
we are not guaranteed that ei

v → 0 for any i.

➙ Achieving ei
v → 0 for all i would be a desirable property since

this represents that vi = v̄ for all i so that the group will all
move cohesively in the same direction.

➙ Consider Ω′
b, and consider a Lyapunov function
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V o(E) =
∑N

i=1 V o
i

(
Ei
)

with

V o
i

(
Ei
)

=
1
2
kaei

p
�

ei
p+

1
2
kaei

v
�

ei
v+krr

2
s

N∑
j=1,j �=i

exp

(
−1

2‖ei
p − ej

p‖2

r2
s

)

• Note that this Lyapunov function satisfies V o
i

(
Ei
)
≥ 0.

➙ You should view the objective of the agents as being that of
minimizing this Lyapunov function; they try to minimize the
distance to the center of the swarm, match the average velocity
of the group, and minimize the repulsion effect (to do that the
agents move away from each other).

• We have

∇ei
p
V o

i = kaei
p − kr

N∑
j=1,j �=i

exp

(
−1

2‖ei
p − ej

p‖2

r2
s

)(
ei
p − ej

p

)
∇ei

v
V o

i = ei
v
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so
V̇ o

i =
(
∇J

(
Ei
))�

Ėi

= kae
i
p
�

e
i
v − kr

N∑
j=1,j �=i

exp

(
− 1

2 ‖ei
p − e

j
p‖2

r2
s

)(
e

i
p − e

j
p

)�
e

i
v

+ei
v
�

(
−kaei

p − kaei
v − kvei

v + kr

N∑
j=1,j �=i

exp

(
− 1

2 ‖ei
p − e

j
p‖2

r2
s

)(
ei

p − e
j
p

))
= − (ka + kv) ei

v
�

ei
v

• Hence,

V̇ o = − (ka + kv)
N∑

i=1

‖ei
v‖2 ≤ 0

on E ∈ Ω for a compact set Ω.

• Choose Ω so it is positively invariant, which is clearly possible,
and so Ωe ∈ Ω where

Ωe = {E : V̇ o(E) = 0} = {E : ei
v = 0, i = 1, 2, . . . , N}
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➙ From LaSalle’s Invariance Principle we know that if E(0) ∈ Ω
then E(t) will converge to the largest invariant subset of Ωe.

• Hence
ei
v(t) → 0

as t → ∞.

• When R = 0 (no resource profile effect), v̄(t) → 0 and hence
vi(t) → 0 as t → ∞ for all i (i.e., ultimately no oscillations in
the average velocity).

• If R �= 0, then ˙̄v = −kv v̄ − kfR and v̄(t) → −kf

kv
R as t → ∞,

and thus, vi(t) → −kf

kv
R for all i as t → ∞, i.e, the group

follows the profile.

➙ These results help to highlight the effects of the noise.

➙ The noise makes it so that the swarm may not follow the
profile as well (but makes following it possible when it may not
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be possible for a single individual), and it destroys tight
cohesion characterized by getting ei

v(t) → 0.

Cohesion Characteristics and Swarm Dynamics

• Suppose that ui is given by Equation (97).

Effects of Parameters on Swarm Size

• The size of Ωb in Equation (105), which we denote by |Ωb|, is
directly a function of several known parameters.

• Consider the following cases:
– No sensing errors: If there are no sensing errors, i.e.,

Dp = Dv = Df = 0, and if Q = kaI we obtain

Ωb =

{
E :

∥∥Ei
∥∥ ≤

2krrs(N − 1)

ka
λmax(P ) exp

(
−

1

2

)
, i = 1, 2, . . . , N

}
If N , kr, and rs are fixed, then if ka increases from zero we
get λmax(P )

ka
→ 1 from above and we get a decrease in |Ωb|,

but only up to a certain point.
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– Sensing errors: There are several characteristics of interest:
∗ Noise cancellations: In the special situation when

di
p = dj

p, di
v = dj

v, and di
f = dj

f for all i and j, then
di

p − d̄p = di
v − d̄v = di

f − d̄f for all i and it is as if there
were no error and |Ωb| is smaller.

∗ Repel effects: For fixed values of N , ka, and kr if we
increase rs each agent has a larger region from which it
will repel its neighbors so |Ωb| is larger. For fixed kr, ka,
and rs if we let N → ∞, then |Ωb| → ∞ as we expect due
to the repulsion (the bound is conservative since it
depends on the special case of all agents being aligned on
a line so there are N − 1 inter-agent distances that sum to
make the bound large).

∗ Attraction can amplify noise: Let Ds = Dp + Dv and J

quantify the size of the set Ωb. Next, we study the special
case of choosing Q = kaI. Fix all values of the parameters
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except ka and Ds. A plot of J versus ka and Ds is shown
in Figure 217, where the locus of points are those values
of ka that minimize J for each given value of Ds.



671

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

0

100

200

300

400

500

600

700

800

900

1000

D
s

J, k
a
 values that minimize J for each D

s

k
a

J,
 s

iz
e 

of
 b

ou
nd

Figure 217: Values of ka that minimize J for given values of noise
magnitude Ds.
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This plot shows that if there is a set magnitude of the
noise, then to get the best cohesiveness (smallest Ωb) ka

should not be too small (or it would not hold the group
together), but also not too large since then the noise is
also amplified by the attraction gain and poor cohesion
results. Could you interpret the plot as a type of fitness
function, and then make any conclusions about the
evolution of the agent parameters?

– Swarm size N : In some situations, when N is very large,
d̄p ≈ d̄v ≈ d̄f ≈ 0 and there is no biasing of sensing errors so
that on average they are zero and this reduces the above
bound on ‖gi(E)‖.

Swarm Dynamics: Individual and Group

➙ Assume no noise. We use linear attraction, velocity damping,
the Gaussian form for the repulsion term, and the resource
profile with the shape of a plane.
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➙ N = 50, ka = 1, kr = 10, r2
s = 0.1, kv = kf = 0.1,

R = [1, 2, 3]�, and ro = 0.
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Figure 218: Agent trajectories in a swarm.
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➙ The group achieves a certain level of aggregation relatively
quickly, then the group moves to follow the foraging profile.
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Design Example: Cooperative Robot Swarms

Robot Swarm Formulation

➙ Robot swarm = group of robots that move in a cohesive
fashion in order to perform some task.

➙ Here, the task is simply to get the group to a certain location in
a factory so that they can perform some activity together there.

• Obstacle avoidance by group is a problem

• Use same problem as in planning for obstacle avoidance.

➙ “Obstacle function,” “goal function” combined to get cost
function

– Think of as a nutrient profile or resource profile (avoidance,
goal-seeking)

– Use swarm agent model above with Mi = 1.

– Each robot perfectly knows the swarm center and swarm
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average velocity and its own velocity (also consider noise
case)

Performance in Obstacle Avoidance and Noise Effects

➙ N = 20, kp = 1, kv = 0.1, kf = 0.1, kr = 10, and r2
s = 1. We

pick some random initial locations and velocities, but within
some fixed ranges.

• Pick w1 = 120 and w2 = 0.1 after some tuning.

➙ Use an Euler approximation and simulate the swarm as a
discrete-time system.

➙ Do stability results of last section hold? No.
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Figure 219: Robot swarm, robot position trajectories showing how
they avoid collisions with obstacles and reach the goal position (no
noise).
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Figure 220: Robot swarm, robot position trajectories, noise case.
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Additional Robot Swarm Design Challenges

➙ Complex mazes, dead ends, circular loops, mobile obstacles,
uncertainty

➙ Does the group help or hurt ability to overcome these issues
(e.g., adding a network can help, but could add even more
uncertainty)?
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Competitive and Intelligent Foraging

➙ Foraging invovles both search and competition for food
(limited resources, fighting, predator/prey)

➙ “Foraging games” - games where animals compete for resources
or cooperate to obtain resources.

➙ Aspects:

– Resources limited

– Environment places constraints (including aspects of
predators)

– Physiology of animal places constraints

➙ Cooperative foraging is social foraging

➙ Intelligent foraging: planning, learning, attention

➙ Evolution designs both cooperative and competitive foraging
strategies
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Introduction to Game Theory

Strategies and Information for Decisions

Players, Rules, and Payoffs

• Two “players” (“decision-makers”), P1 and P2

• θ1, θ2 are “decision variables” ofP1 and P2

• J1 and J2 are cost functions of P1 and P2 (i.e., gain or loss for
given decisions).

• P1 (P2) wants to minimize (maximize) J1.

• If
J1(θ1, θ2) + J2(θ1, θ2) = 0

for all θ1 and θ2, we have a “zero sum game”

• Initially suppose that (“actions”)

θ1 ∈ {1, 2, . . . ,D1}
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and
θ2 ∈ {1, 2, . . . ,D2}

• For simplicity, θ1 = i and θ2 = j for P1 and P2

• Denote costs by J1(i, j) and J2(i, j).

• Two player case: J1(i, j) and J2(i, j) are D1 × D2 matrices, J ij
1

and J ij
2

• Suppose that the game is only played once (i.e., P1 and P2 only
make decisions once).

• The players make decisions with full information about payoffs,
they make their decisions simultaneously, and are “rational.”

• A pair of decision strategies for a two-player finite game is
denoted by (i, j).

• The “outcome” of the game is J ij
1 .

• An “optimal” strategy is (i∗, j∗).
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Security Strategies, Saddle Point Strategies, and Decision Information

• Let D1 = 5 and D2 = 3.

• Suppose

J ij
1 =




−3 4 4

0 −5 2

−2 1 −4

2 3 −4

2 −2 −5




(108)

• Rows correspond to P1 decisions and columns to P2 decisions.

➙ In a “security strategy” a player makes decisions to secure
losses against what ever the other player might do (i.e., it
minimizes its maximum possible loss).

• P1 picks row i∗ such that any value in any column of this row
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is no bigger than the largest value of any other row i �= i∗ (i.e.,
pick the row that minimizes the maximum size column value).

• For Equation (108) the list of maximum values for each row is

4

2

1

3

2

so the security strategy is for P1 to pick i∗ = 3.

• The “loss ceiling” (i.e., the most it can lose) is 1, which is less
than the other possible losses, and this is called the “security
level” of P1.

• P2 can adopt a security strategy by choosing the column j∗
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whose row values are smaller than the smallest value found for
another column j �= j∗.

• In this case, the list of minimum values is

−3 −5 −5

so the security strategy for P2 is j∗ = 1 and P2 secures gains at
the “gain floor” (its security level) of −3 (i.e., he pays no more
than 3).

• The security level of P1 is never below the security level of P2.

• The “outcome” of the game,

J i∗j∗

1 = J31
1 = −2

will lie between the two security levels.

• Special case: the security levels of the two players are the same,
the security strategies of the two players are in “equilibrium”
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with each other since they are “optimal” with respect to each
other; in this case they are called “saddle point strategies.”

➙ A pair of strategies is said to be in a “saddle point equilibrium”
if unilateral deviations by one player from its strategy will not
benefit that player.

• In general, for a D1 × D2 matrix game if (i∗, j∗) is the pair of
chosen strategies, and if

J i∗j
1 ≤ J i∗j∗

1 ≤ J ij∗

1

for all i ∈ {1, 2, . . . ,D1} and j ∈ {1, 2, . . . ,D2}, then (i∗, j∗)
constitutes a saddle point equilibrium.

• The value of J i∗j∗

1 is called the “saddle point value.”

➙ Order of play and knowledge changes outcomes

• If use sequence of information get a “dynamic” rather than
“static” game
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➙ Above are “pure” strategies (there are also “mixed” ones)

➙ All concepts extend to multiple players (“nature” could be one)

➙ There are “noncooperative games” (above, below) and
“cooperative games” (below) and ones with elements of both.

Extensive Forms and Decision Trees

• The matrix form of a game is called its “normal form.”

• An “extensive form” of a game involves creating a type of
labeled (multi-stage) “decision tree” to represent the game, like:
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Figure 221: Example of an extensive representation, in this case
in (a) for the matrix game in Equation (108) and in (b) for the
same payoff matrix but when P1 chooses first and then P2 knows its
decision before choosing.

➙ Decisions versus strategies: Decision is the specific value chosen
while a strategy is a rule (policy, function) for picking actions
based on some set of information
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Competitive Games: Nash, Minimax, and

Stackelberg Strategies

Nash Equilibrium Strategies

➙ Non zero sum case: that

J1(i, j) + J2(i, j) �= 0

• Payoff matrices J ij
1 and J ij

2 denote losses of P1 and P2

• Assume players are rational

• Unless otherwise stated we assume that there is no cooperation
and decisions are made independently.

➙ The basic problem for each player is that the outcome resulting
from their decision also depends on what the other player
decides.

• A pair of strategies is said to be in a “saddle point equilibrium”
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if unilateral deviations by one player from its strategy will not
benefit that player.

• Many types of “equilibrium” strategies

➙ A strategy pair (i∗, j∗) is a noncooperative (Nash) equilibrium
solution to a “bimatrix” game (J ij

1 , J ij
2 ) if the inequalities

J i∗j∗

1 ≤ J ij∗

1 (109)

and
J i∗j∗

2 ≤ J i∗j
2 (110)

are both satisfied for all i ∈ {1, 2, . . . ,D1} and all
j ∈ {1, 2, . . . ,D2}.

• The pair (J i∗j∗

1 , J i∗j∗

2 ) is the noncooperative (Nash)
equilibrium outcome of the game.

➙ There can be no Nash solutions, one Nash solution, or many
Nash solutions.
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• If J ij
1 = −J ij

2 for all i and j then we have a zero sum game, and
the Nash solution is a saddle point equilibrium for the game.

➙ Example: D1 = 5 and D2 = 3.

• Suppose

J ij
1 =




−1 5 −3

−2 5 1

4 3 −2

−5 −1 5

3 0 2




, J ij
2 =




−1 2 −3

2 −3 1

−2 3 1

−1 1 −1

4 −4 1




(111)

• To solve for the Nash equilibria, consider candidate (i∗, j∗)
pairs in turn and test if they satisfy both the inequalities in
Equations (109) and (110).

• To do this, consider (1, 1) and see if J11
1 is less than all other
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row elements of column one to test Equation (109).

• Since it is not, (1, 1) cannot be a Nash solution.

• (1, 2) is not a Nash solution.

• If you test (1, 3) you will see that J13
1 ≤ J i3

1 for all i so it is a
candidate, so test the inequality in Equation (110) and you will
find that J13

2 ≤ J1j
2 for all j; hence (i∗, j∗) = (1, 3) is indeed a

Nash equilibrium.

• The Nash equilibrium outcome is (−3,−3) so that both players
gain 3.

• Show that (4, 1) is also a Nash solution, but that all others are
not.

➙ A Nash equilibrium solution is special since if the players adopt
it, then they have no reason after playing the game to regret
their decisions.
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• There can be more than one Nash equilibrium so the question
of which one to use arises.

• It is not possible to totally order the Nash strategies according
to the values of their outcomes because they are defined by
pairs of numbers.

• One Nash strategy is “better” than another if both outcomes
are better than the other.

➙ Problem: If one player picks one Nash strategy and another
picks another Nash strategy then they could both do worse
(how to resolve? use cooperation?)

Infinite Games and Reaction Curves

• Consider an infinite number of strategy (decision) choices by
one or both of the players.
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➙ Example: Actions of P1 can be

θ1 ∈ [−4, 4]

and for P2

θ2 ∈ [−5, 5]

• Suppose

J1(θ1, θ2) = − exp
(
−(θ1 − 2)2

8
− (θ2 − 4)2

2

)
and

J2(θ1, θ2) = − exp
(
−(θ1 − 1)2

1
− (θ2 + 1)2

6

)
each of which has one global minimum, and also for which if
you fix θ1 (θ2) there is a unique minimum point in the other
value.
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➙ Define the “reaction curve” of P1 to be

R1(θ2) = arg min
θ1

J1(θ1, θ2)

where we are using the assumption of uniqueness of the
minimum point so that there is only one point at which the
minimum is achieved.

➙ The reaction curve R1(θ2) defines how P1 should react for
every possible action of P2 in order to minimize its losses.

• Similarly, for P2
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• Any intersection point of the two curves in Figure 222(a) is a
Nash equilibrium, so (2,−1) is the unique Nash equilibrium.

• Curve shapes can be complex, sets not lines, may not intersect.

Stable Nash Equilibria

• Suppose for the game in Figure 222(b) we have P1 play first,
then P2, followed by P1, and so on

• Suppose that we number the moves with an index k.

• Suppose that each player knows the other’s last move, and
takes an action that minimizes its losses given this past move.

• For an arbitrarily chosen first decision by P1, the “trajectory”
in decision-space is shown in Figure 223.

• Since the reaction curves were already computed for this case it
is easy to construct the trajectory since once P1 makes a
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decision θ1(k) at iteration k (k odd), we have

θ2(k + 1) = R2(θ1(k))

and once P2 makes a decision θ2(k) at iteration k (k even), we
have

θ1(k + 1) = R1(θ2(k))
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➙ If for every initial choice by P1 (i.e., θ1(1)), the trajectory in
the decision space moves to the point (2, 0) then the point
(2, 0) is said to be a “stable Nash equilibrium.”

Minimax Strategies

➙ To find the minimax strategy you simply find the security
strategy for P1 based on J ij

1 and the security strategy for P2

based on J ij
2 and then taken together these directly provide a

strategy pair that is the “minimax” strategy for the bimatrix
game.

• P1 (P2) does not need knowledge of J ij
2 (J ij

1 ) to compute its
strategy.

• The minimax concept essentially ignores whether the opponent
is rational or not.

• These facts can be important in practical applications.
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• Can lead to very conservative strategies in some applications.

• There are also “Stackelberg strategies” (“leader-follower”)
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Cooperation and Pareto-Optimal Strategies

• Above, assumed games to be noncooperative so we assumed
that there was a type of adversarial relationship between the
two players.

• There are, however, games where the two players may be able
to share information to try to do better; that is, they may
cooperate.

Multiobjective Optimization and Pareto Optimality

➙ A multiobjective optimization problem is in the form of

minimize: {J1(θ), . . . , JN (θ)}
subject to: θ = [(θ1)�, . . . , (θN )�]� ∈ Θ

➙ Simulataneously minimize a set of cost functions (called a “cost
function vector”) by changing θ.

• A general optimization problem.
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• Here, we assume that θi = [θi
1, . . . , θ

i
n]�, i = 1, 2, . . . , N , so that

decisions are n × 1 vectors, rather than just scalars, and there
are N costs to minimize (e.g., in a two-player game we will
have N = 2).

➙ A decision vector θ∗ ∈ Θ is Pareto optimal if there does not
exist any other θ ∈ Θ such that

Ji(θ) ≤ Ji(θ∗)

for all i = 1, 2, . . . , N , and at the same time

Jj(θ) < Jj(θ∗)

for at least one index j.

• A cost function vector is called Pareto optimal if the
corresponding decision vector is Pareto optimal.

➙ A cost function vector is Pareto optimal if you cannot improve
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one cost value without degrading others.

➙ There can be many Pareto optimal solutions.

• In multiobjective optimization there is a need to specify
preferences to be able to pick which Pareto optimal solution
specifies an acceptable solution (e.g., one that balances the
wins and losses of two players).

• Is there a “decision maker” who will specify these preferences
in some manner?

• Decision maker may provide a “value function” to say what is
best.

➙ Example: θ1 and θ2 are scalars, so that θ is a 2 × 1 vector.

• Quadratic costs so they are convex.

• Suppose

J1(θ) = J1(θ1, θ2) =
(
θ1 − 2

)2
+
(
θ2 − 3

)2



705

J2(θ) = J2(θ1, θ2) =
(
θ1 + 2

)2
+
(
θ2 + 2

)2
• Contour plots in Figure 224.
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➙ If a line on this contour plot is tangent to a contour of both
costs, then the point of tangency for both costs is a Pareto
optimal solution.

• Why? Suppose gradient at such a point θ∗ is in the opposite
direction for each cost

• Imagine that you are at some Pareto optimal solution θ∗ in
Figure 224.

• The direction of the negative gradient is the direction to move
from θ∗ in order to get a steepest amount of decrease in the
value of one cost function

• The key observation is that if you perturb θ∗ along the
gradient in direction of the minimum point for J1 (J2) the cost
for J1 (J2) goes down, but the cost for J2 (J1) goes up.

• So, we cannot reduce one cost without increasing the other,
which is the very definition of Pareto optimality.
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• The set of all Pareto optimal solutions is sometimes called the
“family” of Pareto optimal solutions.

➙ If we define a “Pareto cost” (value function) to be

Jp(θ) = pJ1(θ) + (1 − p)J2(θ)

for p ∈ [0, 1] (this is called the “scalarization” approach to
constructing the Pareto cost), then the family of Pareto points
is the set of (unique) global minima for Jp(θ) as p varies from
zero to one, which is just the equation for the line between the
two minimum points in Figure 224.

Pareto Optimal Solutions for Games

• A standard way to define Pareto-optimality is

J ij
p = pJ ij

1 + (1 − p)J ij
2

for p ∈ [0, 1].
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• Any minimum point in the matrix J ij
p is called a

Pareto-optimal solution for the bimatrix game (and note that
there may be several minimum points for any one value of p).

• If p = 1 (p = 0), all the emphasis is placed on the two players
collaborating to minimize the losses of P1 (P2).

Defining the Pareto Cost and Finding Pareto Solutions

• Problems in defining Pareto costs and computing Pareto
solutions...

➙ Example: Figure 222(b) and analgous to the above example, let

Jp(θ1, θ2) = pJ1(θ1, θ2) + (1 − p)J2(θ1, θ2)

for p ∈ [0, 1].

• To give insight into the shape of the cost surface Jp see
Figure 225 which is the case for p = 0.5.
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• Finding the global minimum can in general be challenging.

• Also, note that the p parameter will in this case scale the
“depth” of the two minima.
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Design Example: Static Foraging Games

• Study the basics of competition and cooperation in static
“foraging games”

Static Foraging Game Model

➙ Two-forager (N = 2), static, discrete, full-information
“foraging game on a line.”

• Resources are distributed in “cells” (bins) along the real line.

• M different types of resources in Q cells and denote the intial
distribution of resources of type m to be rm(q), q = 1, 2, . . . , Q,
m = 1, 2, . . . ,M .

• Here, we assume that rm(q) ≥ 0, q = 1, 2, . . . , Q, but the model
is easily extended to the negative resource case (where one
could think of moving to avoid regions where resources are
lost).
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• Let D1 (D2) be the number of decisions that forager 1 (2) can
make and θ1 ∈ {1, 2, . . . ,D1} (θ2 ∈ {1, 2, . . . ,D2}) be those
decisions, which correspond to forager 1 (2) moving to a cell q

if θ1 = q (θ2 = q), q = 1, 2, . . . , Q.

• D1 = D2 = Q so each forager can move to any available cell.

Effort and Resource Consumption

➙ Let z1 (z2) denote the effort allocated by forager 1 (2) to
consume resources.

• For simplicity, we assume that the same amount of effort is
expended for consumption of each resource type
m = 1, 2, . . . ,M when a forager goes to a cell.

➙ Let P (q) be the set of foragers that decide to go to the same
position q to consume resources there,

P (q) =
{
i : θi = q

}
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• 0 ≤ |P (q)| ≤ N for all q and
∑

i∈P (q) zi, the total consumption
effort at q, is zero if |P (q)| = 0.

• Assume αm, m = 1, 2, . . . ,M , is used to model the depletion
rate of resource m in the presence of consumption effort.

➙ We model the amount of resource of type m remaining at cell q

after one play (one unit of expenditure of effort) as

rm(q)e−αm
∑

i∈P (q)
zi

• Initial expenditures of effort in a cell yield more resources than
later ones.

• Define the amount of consumption given that a strategy pair
(θ1, θ2) is played by foragers 1 and 2.

• If both foragers are in the same cell expending effort to
consume the same resource, then they have to split the
resource since there is a type of competition for it.
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• Here, assume that they split the resources evenly.

➙ Let the amount of consumption of resource m for decision pair
(θ1, θ2) for foragers 1 and 2 be defined as follows:

1. Foragers at different locations: If θ1 �= θ2, then for i = 1, 2,

Cm
i (θ1, θ2) = rm(θi)

(
1 − e−αmzi

)
2. Foragers at the same location: If θ1 = θ2 = θ̄, then for

i = 1, 2,

Cm
i (θ1, θ2) =

1
|P (θ̄)|r

m(θ̄)
(

1 − e
−αm

∑
i∈P (θ̄)

zi

)

=
1
2
rm(θ̄)

(
1 − e−αm(z1+z2)

)
• So, in cases where forager 1 (2) goes to a cell that forager 2 (1)

does not go to, rm(θ1) (rm(θ2)) is the initial amount of
resource of type m and rm(θ1)e−αmz1 (rm(θ2)e−αmz2) is the
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amount remaining after consumption.

• When both foragers go to the same cell, then they both expend
effort, but they have to split the returns in half.

➙ This results in a resource conservation property of: “all that is
consumed plus what is remaining is equal to what was initially
there.”

Forager Payoffs: Consumption, Energy, and Danger
Avoidance

➙ We assume that each forager has certain priorities to consume
different resources.

• We denote these by pm
1 (pm

2 ) for forager 1 (2), m = 1, 2, . . . ,M .

➙ You can think of these priorities as representing preferences or
“tastes” for resources.

• One aspect of the cost to forager 1 (2) that it wants to
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minimize is given by the negative total consumption weighted
by the priorities

J ij
1c = J1c(θ1, θ2) = −

M∑
m=1

pm
1 Cm

1 (θ1, θ2)

J ij
2c = J2c(θ1, θ2) = −

M∑
m=1

pm
2 Cm

2 (θ1, θ2)

where θ1 = i, θ2 = j, and J ij
1c and J ij

2c constitute a matrix
representation of the game.

• The problem for forager 1 (2) is how to pick θ1 (θ2).

➙ The adversarial nature of the foraging game will dictate what
to choose (e.g., in a competitive game each forager may get less
than if they cooperate).

• Think of the foragers as being located at position “0” (i.e., on
one edge outside the foraging area) initially.
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• Model the cost to move along to line to go to position i (j) for
forager 1 (2) as

J i
1e = J1e(θ1) = we1i

(
Jj

2e = J2e(θ1) = we2j
)

where θ1 = i, θ2 = j, we1 ≥ 0 and we2 ≥ 0 represent the unit
amount of energy expenditure to move one unit (e.g., from cell
1 to cell 2).

• Can be location-dependent dangers for forager 1 (2)
represented with

J i
1d ≥ 0

(
Jj

2d ≥ 0
)

where bigger values of the costs represent worse areas to be in
and actions of the other forager do not affect the danger to a
forager.
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• We can think of forager 1 (2) trying to minimize

J ij
1 = J ij

1c + J i
1e + J i

1d

(
J ij

2 = J ij
2c + Jj

2e + Jj
2d

)
so that it maximizes the amount of resources it gets and
minimizes the energy expenditure and exposure to dangers to
get them.

➙ Here, each forager knows everything about the game (e.g., the
payoffs, costs of movement, dangers, the other forager’s
objectives, etc.).

Competition and Cooperation for a Resource

• Choose D1 = D2 = Q = 21, M = 1, z1 = z2 = 1, α1 = 1,
p1
1 = p1

2 = 1, and we1 = we2 = 0 (no energy required for
foraging).

• Assume that J i
1d = Jj

2d = 0 for all i and j.

• The initial resource distribution is shown in Figure 226.
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Figure 226: Example initial resource distribution.

• The cost functions J ij
1 and J ij

2 are plotted in Figures 227
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and 228.

➙ Notice in Figure 227 that if you hold j constant, then forager 1
generally gets more consumption and hence more payoff if it
moves to where there are more resources; however, if both
foragers move to the same location they get less since they will
then compete for resources at that cell.

• This competition is represented by the ridges of increased cost.
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• First, suppose that we have an adversarial (noncooperative)
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game so that the foragers do not coordinate where to go to
forage.

• There are four Nash solutions

(10, 11), (11, 10), (11, 12), (12, 11)

• Does this make sense?

• From Figure 226 the cell with the most resources is cell 11.

• Note, however, that the problem of nonunique Nash solutions
arises. How?

➙ A cooperative foraging game...

• Suppose that the two foragers cooperate by using a Pareto cost
found via scalarization as J ij

p = pJ ij
1 + (1 − p)J ij

2 with p as the
Pareto parameter.

• Pareto points found in this case are shown in Figure 229.
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• We get Pareto points (which are also Nash solutions) (10, 11)
or (11, 10) depending on the Pareto parameter p.

• The two foragers would communicate to decide who goes to
which location, which as opposed to the Nash game, is possible
since the two foragers are cooperating.

• The one that goes to position 11 will get the most resources.

➙ When p is close to zero it favors forager 2 so forager 2 goes to
position 11, and when p is close to one it favors forager 1 so
forager 1 goes to position 11.

• The p parameter can be used to balance the cooperation to
favor one forager or the other.



726

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8

-6

-4

-2

0

C
os

ts

J
p
 (o), J

1
 (-), and J

2
 (--) for Pareto points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

i*

Decision of player 1 (x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Pareto parameter, p

j*

Decision of player 2 (*)

Figure 229: Set of all Pareto points for a cooperative foraging game,
scalarized Pareto cost.



727

• The scalarization approach is, however, only one way to form
the Pareto cost.

• The set of all Pareto points for the game is shown in Figure 230
and you can see that the ones that arise from the above
scalarization approach are a subset of all possible Pareto points.

• These other Pareto points represent different ways to balance
the payoffs to each of the two foragers.
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➙ You can view a cooperative foraging game as one where you try
to allocate resources to all the foragers so that everyone “wins,”
with the relative payoffs given by which Pareto points you
choose.

Energy-Constrained Competition and Cooperation for
Two Resources

• Choose M = 2, p1
1 = p2

1 = 1, p1
2 = 1, and p2

2 = 2 so that forager
2 places a high priority on getting resource 2.

• We let we1 = we2 = 0.1 so that moving to cell locations with
higher values of q costs more energy.

• As before we have D1 = D2 = Q = 21, z1 = z2 = 1,
α1 = α2 = 1, and J i

1d = Jj
2d = 0 for all i and j.

• The initial resource distribution is in Figure 231.
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middle designated by “stacking” the plots).
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• The cost functions J ij
1 and J ij

2 are plotted in Figures 232
and 233.

• Focus on Figure 232 and notice that even though it sets an
equal priority for both resources the costs generally increase as
i increases (ignoring the ridge) due to the presence of the J i

1e

term that represents the energy needed to forage at each
position.

• This raises the cost of the second resource.

➙ Notice that in Figure 233 we have the presence of this same
effect, and the effect of the higher priority of resource 2 for
forager 2 so that for forager 2, even though it has to travel
further to get resource 2, since it is higher priority it may be
willing to do that.
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• Consider the competitive case first.
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• The unique Nash solution is (5, 14).

• Essentially, with the above choices, forager 1 chooses resource 1
since it is close, but forager 2 picks resource 2 since its level of
priority is high so it is willing to expend the energy to get it.

• Notice that the maximum for the second resource is achieved at
three contiguous positions, but forager 2 it picks the smallest of
these to minimize energy.

• If the foragers enter into a cooperative game, with a scalarized
Pareto cost J ij

p = pJ ij
1 + (1 − p)J ij

2 , then we get the Pareto
solutions all at (5, 14) for all p.

• The two forager’s objectives are so different that there is
nothing to be gained by cooperation (and nothing to be lost by
competition) and hence there is really no need for
communication.
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Dynamic Games

➙ Dynamic games consider repeated decisions, actions, and
observations by the players.

Modeling the Game Arena and Observations

• N players, a discrete time formulation.

• Let
x(k) ∈ X ⊂ �nx

denote the state of the game at time k, k ≥ 0.

• The admissible controls (actions) by player i are for k ≥ 0

ui(k) ∈ U i(k) ⊂ �nu

• The outputs (measurements of what is happening in the game)
are, for k ≥ 0,

yi(k) ∈ Y i(k) ⊂ �ny
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• Let
u(k) =

[
(u1(k))�, (u2(k))�, . . . , (uN (k))�

]�
and

y(k) =
[
(y1(k))�, (y2(k))�, . . . , (yN (k))�

]�
➙ Define the “arena” in which the game is played as f where

x(k + 1) = f(x(k), u(k), k) (112)

and suppose that the intial state of the game is x(0) ∈ X.

• This is a deterministic game model, but it can be time varying.

• A stochastic game: x(k + 1) = f(x(k), u(k), w(k), k)

➙ The observations that player i can make about the arena of the
game are yi(k) = hi(x(k), k) for k ≥ 0, and if we let
h(x(k), k) =

[
(h1)�, (h2)�, . . . , (hN )�

]�, then

y(k) = h(x(k), k) (113)
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• You could view h as part of the representation of the arena of
the game as it models what can be observed by each player
while the game is played.

• Observations lead to decisions, which lead to actions, which
lead to observations, and so on.

• Let Ji(x(k), u(k)) denote the loss (cost) function of of the ith

player at the kth stage of play.

➙ Multiple stages of play:

JNs
i =

Ns−1∑
k=0

Ji(x(k), u(k)) (114)

• Players choose sequences ui(k) to minimize JNs
i
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• Another sequence

JNs

i =
Ns−1∑
k=1

Ji(x(k + 1), x(k), u(k)) (115)

• In general player i does not know Ji(x(k), u(k)) since it may
not know x(k) and u(k).

Information Space and Strategies

• How are player’s strategies defined?

• More complicated than in the static game case. Why?

➙ Each player may make decisions based on “what they know
and when they know it” and hence it is not assumed that each
player knows everything at one time and only one action is
taken by each player at that time.

• If a player has memory it can store and recall past observations.
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• Then, for any player i, at the kth stage of play, it may base its
decisions to choose ui(k) on a subset of{

y
1(0), . . . , y

1(k); · · · ; y
N (0), . . . , y

N (k);

u1(0), . . . , u1(k − 1); · · · ; uN (0), . . . , uN (k − 1)
}

➙ Each such subset is called an “information structure”
• Let

I
i(k) ⊂ (Y

1(0) × · · · × Y
1(k)) × · · · × (Y

N (0) × · · · × Y
N (k)) ×

(U
1(0) × · · · × U

1(k − 1)) × · · · × (U
N (0) × · · · × U

N (k − 1))

denote the “information space” of player i at time k ≥ 0

• Ii(k) is implemented via an appropriately-defined
communication network between the players and memory
within each player to store past values.

• In an adversarial game there may be no communication links
between the players, but memory.
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➙ Cooperation requires communications? Cues (e.g., via
environment)? Signals?

• Game constraints may specify Ii(k), but other times the
designer may be able to choose it.

➙ Example: If all players only make decisions based on their own
current observations of the arena of play and the previous
actions of all other players and itself, then

Ii(k) ⊂ (Y i(k)) × (U1(k − 1) × · · · × UN (k − 1))

➙ A strategy for a player i at the kth stage of play is Gi
k, k ≥ 0,

Gi
k : Ii(k) → U i(k)

• The design of strategies involves designing both Ii(k) and Gi
k.

➙ Example: If each player i can observe at stage k, only yi(k)
(i.e., its only observation) and all actions ui(k − 1),
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i = 1, 2, . . . , N , the strategies of the players are defined via a
Gi

k mapping for each player that specifies its actions,

ui(k) = Gi
k(yi(k), u1(k − 1), . . . , uN (k − 1))

(and at k = 0 there are no elements in the ui slots).

• “Full state feedback” case: yi(k) = x(k) for all i and k

(“perfect information”)

• The standard concepts of saddle point, Nash, and Stackelberg
equilibrium solutions can be extended to dynamic games.

• There are additional solution concepts depending on the
information space that is assumed (e.g., the “feedback Nash
solution”).

• Most common: linear systems with quadratic cost
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Decision/Action Timing

• Finite number of Ns stages (time steps), or k → ∞?

➙ Actions need not be synchronous, could be asyncrhonous ı

➙ tem All players above act at each time k (but can define a “null
play”)
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Example: Modeling Dynamic Foraging Games

Dynamic Foraging Game Model

State and Inputs

• N ≥ 2 foragers.

• The state x ∈ �nx is composed of aspects of the foraging
environment and the positions of the foragers in that
environment.

• Assume that you have a two-dimensional foraging environment
(a “foraging plane”).

➙ The position of the ith forager is given by

xi(k) =
[
xi

1(k), xi
2(k)

]� ∈ {1, 2, . . . , Q1} × {1, 2, . . . , Q2} = F

with xi
1(k) its horizontal and xi

2(k) its vertical position on a
discrete grid.
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• The decisions by forager i are commands to move itself to each
of the cells that are adjacent to the current position, and which
resource type to consume there.

• That is, at time k, so long as the movement is in the valid
foraging region so that xi(k) ∈ F , we have that ui

p(k) is in the
set {[

x
i
1(k), x

i
2(k)
]�

,

[
x

i
1(k) + 1, x

i
2(k)
]�

, . . . ,

[
x

i
1(k) + 1, x

i
2(k) + 1

]�}⋂
F

which we will denote by U i
p(k).

• up(k) =
[
(u1

p(k))�, (u2
p(k))�, . . . , (uN

p (k))�
]�.

• M resources indexed with m.

• We represent the choice of resource by player i at time k as
ui

r(k), i = 1, 2, . . . , N , where

ui
r(k) ∈ U i

r(k) ⊂ {1, 2, . . . ,M}

represents the resource type m that forager i chooses to
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consume at time k, and U i
r(k) can be used to model the set of

resources that it can choose from.

• ur(k) =
[
u1

r(k), u2
r(k), . . . , uN

r (k)
]�.

• The decision ui(k) of forager i at time k is

ui(k) =
[
(ui

p(k))�, ui
r(k)

]� ∈ U i
p(k) × U i

r(k)

and u(k) =
[
(u1(k))�, (u2(k))�, . . . , (uN (k))�

]�.

• The distribution of resources is also part of the state.

• Let
q = [q1, q2]� ∈ F

denote a cell in the foraging plane.

• Let zm
i denote the effort allocation to consume resource m by

forager i.
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• Let
Pm(q) =

{
i : ui

p = q, ui
r = m

}
be the set of foragers that decide to go to position q to
consume resource m at time k.

• Notice that 0 ≤ |Pm(q)| ≤ N , but below we will only use
Pm(q) for q = ui

p for some i = 1, 2, . . . , N , so |Pm(q)| > 0.

• We use the depletion rate αm, m = 1, 2, . . . ,M , for the mth

resource.

• The amount of resource at time k of type m at cell q is rm(q, k)
with rm(q, 0) the intitial distribution.

• The resources change over time due to growth (e.g. plants),
weather, disease, farming, and foraging.

• For foraging, resources may diminish due to consumption, and
in some cases such consumption may result in the increase of
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other resources (e.g., since the resources may be living so
foraging influences their competitive balance).

• In other cases foraging for one type of resource at one time
may make it possible to forage for other resources later (e.g., if
one forager eats one type of resource and this gives rise to
other resources due to, for example, a forager leaving behind
remains).

• Assume

rm(q, k + 1) = rm(q, k)e−αm
∑

i∈Pm(q)
zm

i (116)

for all q ∈ F .

• For this equation notice that Pm(q) is a function of u.

• Let
xp(k) =

[
(x1(k))�, (x2(k))�, . . . , (xN (k))�

]�
denote the vector of places where the foragers are located.
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• Let

xr(k) =




r1([1, 1]�, k)
...

r1([Q1, Q2]�, k)
...

rM ([1, 1]�, k)
...

rM ([Q1, Q2]�, k)




be a vector that holds a vectorized representation of the
resource distribution (maps).

• The state of the game is

x(k) =


 xp(k)

xr(k)
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➙ Define next state...

– xp(k + 1) = up(k) (assuming no dynamics and kinematics
for our forager, or a rate assumption on movement).

– xr(k + 1) is defined via Equation (116)

• Assume that the real time between k and k + 1 is fixed so that
the real time is t = kT where T is a sampling period (needed
for how we model resource depletion).

• The real time at the next sampling instant is t′ = kT + T .

• But, still asychronous via use of “null plays”

Sensing and Outputs

• The physiology of the animal constrains what sensing is
possible.

• Some animals can only sense via sampling chemicals in their
immediate surrounding environment (e.g., certain bacteria),
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while others can sense light or sound and hence “see” for long
distances.

➙ Possibilities:

1. Full observations: Forager, i = 1, 2, . . . , N , and time k,

yi(k) = x(k) (117)

2. Resource observations and own position:

yi(k) = hi(x(k), k) =


 xi(k)

xr(k)




3. Range-constrained sensing: Let S(q) denote the set of cell
locations that a forager can sense resources in, or other
forager positions, when it is located at cell q. Suppose that

S(q) =
{

q̄ :
√

(q − q̄)�(q − q̄) ≤ Rs

}⋂
F
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First, form a vector of the forager locations, for foragers
that can be sensed, from elements of xp, as xsi

p with
elements xj(k) where xj(k) ∈ S(xi(k)) for all
j = 1, 2, . . . , N . Second, form a new vector of the currently
sensed cells from elements of xr, as xsi

r with elements
rm(q, k) where q ∈ S(xi(k)) for all m = 1, 2, . . . ,M . If

yi(k) = hi(x(k), k) =


 xsi

p

xsi
r (k)




➙ Many other possibilities...

Consumption, Energy, and Payoff to Foragers

➙ Define the amount of consumption of resource m by forager i,
i = 1, 2, . . . , N , at time k for a set of forager decisions u1, u2,
. . . , uN , as

Cm
i (u1(k), u2(k), . . . , uN (k))
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=
1

|Pm(ui
p(k))|

(
rm(ui

p(k), k) − rm(ui
p(k), k + 1)

)
=

1
|Pm(ui

p(k))|r
m(ui

p(k), k)
(

1 − e
−αm

∑
i∈P m(ui

p(k))
zm

i

)

• Notice that |Pm(ui
p(k))| > 0.

• The factor 1
|P m(ui

p(k))| is used to represent splitting resources

➙ The cost due only to consumption for one move is, given that
forager i has priority pm

i for resource m,

Jic(x(k+1), x(k), u(k)) = −
M∑

m=1

pm
i Cm

i (u1(k), u2(k), . . . , uN (k))

➙ Each forager must expend energy to forage, and we define this
via

Jie(x(k+1), x(k)) = wie

(
xi(k + 1) − xi(k)

)� (
xi(k + 1) − xi(k)

)
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where wie ≥ 0 sets the amount of energy needed to move a
certain distance.

• We assume that energy is independent of resource type being
sought and consumed.

• The “danger” aspect could be modeled as in the last section,
but we ignore this possibility here.

➙ Our total payoff to forager i at time k is

Ji(x(k+1), x(k), u(k)) = Jic(x(k+1), x(k), u(k))+Jie(x(k+1), x(k))

• If there are Ns steps in the game we have a payoff JNs

i for
playing the entire multistage game as given in Equation (115).

• Each forager wants to minimize JNs

i and thereby maximize
consumption with minimal energy expenditure.

• This can require considerable finesse as it may be a good
strategy to give up payoffs at some points in time in order to



754

realize more benefits at some other later time.

Information Space and Strategy Design Challenges

• Consider one approach...

• Suppose that Equation (117) holds and each forager only uses
yi(k) so

Ii(k) = Y i(k)

and we need to choose Gi
k where ui(k) = Gi

k(x(k)).

• Can see all forager positions and resources, but does not have
memory

• Communication network? Type of game?

• Here, we will assume that the communication topology enables
the sharing of sensed information for Ii(k) above. This will
allow each forager to compute all the decisions of all the other
foragers so that they do not need to share information on u(k).
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Biomimcry for Foraging Strategies

Rules, Planning, Learning

➙ Simple rules (heuristics?)

➙ Planning: model predictive control approach with a dynamic
programming solution—computational complexity problems!

➙ Learning, learning and planning?

A Generic Saltatory Strategy

➙ Model “saltatory search” (recall from early)

➙ Aim at getting a computationally tractable strategy

➙ Generic steps:

1. Play a static matrix game to determine where each forager
should go and what to consume (consider this a set of goals)

2. If any forager achieves a goal position, then play another
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static matrix game

3. Repeat

➙ How do the foragers move from one goal position to another?

• What can they sense during movement? Should it set a path,
then not deviate from it? Should it take into account how
other foragers move? Do foragers consume while they move?

➙ Notice that there is an element of prediction in this approach

• Could use abstractions (e.g., about profitability of regions)

• Can add other “social” elements

➙ Coping with complexity is a key challenge:

– Spatial abstractions (e.g., about profitability of regions)

– Time abstractions
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Intelligent Foraging

➙ Some additional psychology and biology foundations.

Planning, Attention and Learning for Foraging

➙ A surrogate model method simultaneously learns an
approximation to the cost function and uses it to guide where
to search the cost function:

1. Pick a test point (or set of test points) for J and compute J

at this point (these points). Note that the method can be
“set-based” so that it computes in parallel the cost function
at several test points (e.g., via parallel processing).

2. Store the pairing(s) between the test point(s) and value(s)
of J in a training data set G for an approximator f for J .

3. Construct an approximator (interpolator) for the data in G

(perhaps removing some points as others are added). This
approximator retuning can be achieved via repeated
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application of recursive least squares over a linear in the
parameters approximator, or via application of a
Levenberg-Marquardt method to training a nonlinear in the
parameter appoximator.

4. Perform an optimization over the approximator surface
(not the cost function) to find a minimum point on that
surface (you may use gradient methods or pattern search
methods to perform this optimization). Call this a new test
point, compute J at this point (and for a set-based method
perhaps at a pattern of points around it), and add this
(these) to the training data set. Go back to step 3.
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Intelligent Social Foraging

➙ Vehicles, Environment, and Objectives:

1. Groups of Vehicles:
– Vehicle dynamics, sensors/actuators, communications
– Hierarchy and distribution in the group of vehicles

2. Environment Model
– Media
– Predator/prey (or noxious substance/nutrient)

characteristics
– Environmental changes

3. Goals
– Energy consumption
– Achieving goal positions
– Gathering information
– Changing the environment
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Elements of Distributed Decision-Making

➙ Distributed Rule-Based Cooperative Foraging:

– Using neighbor’s information in rule antecedents

– Rules for sending information to neighbors

➙ Distributed Planning for Cooperative Foraging:

– Sharing models

– Sharing plans or sets of plans

– Sharing plan selection strategies

➙ Distributed Attention for Cooperative Foraging:

– Distributed agreement on focus regions

– Distributed dynamic attentional strategies

– Leaders and hierarchical strategies
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Distributed Learning

➙ Can use with all above distributed strategies

➙ Learning characteristics of the environment

➙ Learning foraging strategies from other group members

➙ Learn how to communicate

➙ Example: Distributed surrogate model method for intelligent
social foraging.
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Evolution of Foragers

➙ Evolving Cooperative Foraging Strategies:

– Designing parameters of the decision-making elements

– Achieving balance between decision-making functionalities

– Evolving simple designs

– Studying trade-offs between computational and
communication resources

– Co-evolution

– Darwinian design of the software

➙ Evolving Vehicular Hardware?

– Could you build an experiment that would illustrate
hardware evolution in a foraging swarm, not just evolution
of software?

– How do you make the hardware replicate itself with
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fecundity and variation, and instill inheritance into the
process?

– How do you implement (un)natural selection via
environmental influences?

– Could you make this emulate evolution of biological
organisms, however simple they might be?

– Would this be useful for understanding biological evolution?

– Could you argue that your hardware is alive?

– What is the engineering utility of performing hardware
evolution for populations? Could it be a way to make a
group of vehicles more adaptable to changes in its
environment?

➙ Via combined hardware-software evolution, learning, planning,
attention, rule-based, and neural systems approaches, could
you implement a truly “intelligent” controller?
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