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LEARNING

Focus:

➙ Learning and function approximation (basics, heuristic
adaptive control)

➙ Least squares methods (training/learning, linear)

➙ Gradient methods (training/learning, nonlinear)

➙ Adaptive control (direct/indirect, stability)
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Learning and Function Approximation

Psychology and Neuroscience of Learning: Classical
Conditioning

➙ Learning: “any process through which experience at one time
can alter an individual’s behavior at a future time” [5].

• Need “memory” (not necessarily in a nervous system).

➙ Learning: “learning is an enduring change in the mechanisms of
behavior involving specific stimuli and/or responses that results
from prior experience with similar stimuli and experiences.” [3]

➙ Control engineering: Learning is the process of the organism
interacting with its environment and using that experience to
modify its behavior so that it in the future it is more successful
in its environment.

• Does learning always imply performance improvement?
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Perhaps not.

➙ Two types of learning:

1. Learning aspects of the environment and storing facts,
relations, characteristics, etc., in “explicit memory” (i.e.,
memory available to our consciousness so we can
deliberately recall it)

2. Learning how to do things (e.g., when you acquire motor or
perceptual skills) that we store in “implicit memory” (i.e., a
type of memory that is unavailable to consciousness so it
generally cannot be recalled).

Habituation and Sensitization: Nonassociative Learning

➙ Habituation involves learning to ignore benign stimuli (e.g.,
some smells, sounds).

➙ Sensitization involves learning to react to important stimuli.
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• “Stimulus specificity” characteristic to habituation (e.g., some
animals can only be habituated to certain stimuli) that is
generally not present for sensitization (many animals can
become sensitized to almost any stimuli that they can sense).

• Habituation and sensitization are learning processes that
modify existing stimulus-response patterns.
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The Classical Conditioning Process: Pavlov’s Dog

➙ Classical conditioning—a behaviorist approach to learning.

➙ Organism has a natural (instinctual) reflexive type response
(called the “unconditioned response,” UR) to some stimulus
(called the “unconditioned stimulus,” US).

• Suppose there exisits a stimulus (called the “conditioned
stimulus,” CS) that will not instinctually elicit this same
response.

• Learning (training) process is conducted where the
unconditioned and conditioned stimuli are “paired” by
presenting the conditioned stimulus somewhat before the
unconditioned stimulus to the organism.

• Repeat this experiment several times

• If the stimuli and the length of time between their presentation
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are chosen properly, the organism will actually evoke the
unconditioned response (the “conditioned respsonse,” CR)
when only the conditioned stimulus is applied.

• It learned to pair (associate) the conditioned and unconditioned
stimuli so that even when the unconditioned stimulus is not
present, the conditioned stimulus can evoke the response.

• The learning of reflexes from instinctual reflexes.

➙ Example: Pavlov’s dog.



289

Example: Classical Conditioning at the Neural Level in Aplysia

Figure 122: Aplysia in its natural habitat (figure taken from[5]).

• Aplysia only have about 20,000 neurons—and some are quite
large.
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• Several of the Aplysia’s natural behaviors can be modified by
learning—and involve only about 100 neurons.

• A behavior of this type is the so called “gill-withdrawal” reflex
where if the Aplysia is touched anywhere on its skin it pulls its
gill into its body as if it were protecting against an attack.

• Unconditioned response is the normal gill-withdrawal reflex in
response to a touch to the skin.

• Consider neural-level
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Figure 123: Neural level learning for gill-withdrawal learning in
Aplysia (figure taken from [5]).

• Stimulation of sufficient strength anywhere on the skin excites
the sensory neurons, which then excite the motor neurons that
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signal muscles to withdraw the gill.

• The sensory neurons signal “modulatory (facilitating)
interneurons” but these are only activated when there is a
particularly strong stimulus (e.g., an electic shock, or in nature
when bitten by a predator).

• When the modulatory interneurons are active they release a
chemical substance called a “neuromodulator” at some “slow”
synapses onto axon terminals of sensory neurons.

• When these modulatory interneurons repeat this many times
the neuromodulator chemicals have the capability to start a
chain reaction in the sensory neurons where they grow new
synaptic connections onto motor neurons and “strengthen”
existing ones.

• This makes the motor neurons more sensitive to inputs from
the sensory neurons so that a weak stimulus that normally
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would not cause a gill reflex becomes capable of evoking it
(sensitization).

• In fact, the sensory neurons are impacted more significantly by
the neuromodulator if they have have just been activated; this
provides a possible mechanism for classical conditioning.

➙ Example training (can model as gradient, Hebbian):

1. An electrical shock to the tail—US

2. A very weak stimulus to the skin (in particular the
“siphon”) can serve as the CS.

3. Learning–several times pair the conditioned and
unconditioned stimuli are paired

4. Result: If only the conditioned stimulus is applied it will
evoke the gill-withdrawal reflex (motor neurons become
more sensitive to the sensory neurons so that a light touch
can evoke the gill-reflex).
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Characteristics of Classical Conditioning

➙ Classical Conditioning as Learning to Predict Events:

– Learning how to predict the US by observing the CS. May
be a genetic predisposition to for associating the CS and US.

– Call the time elapsed between application of the CS and US
the “inter-stimulus interval” (ISI).
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1 20.5 1.5 ISI, sec.

Strength
of 
conditioning

Figure 124: Effect of inter-stimulus interval on strength of condition-
ing for Aplysia (data taken from [7], however, only the general shape
is plotted).

– Strength of conditioning (i.e., how much is learned)

– Aplysia can best learn to predict events that are spaced at
about 0.5 sec. (too close or too far of spacing does not
result in learning)
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– Why?

– Evolutionary forces (driven by environment)?

➙ Blocking Phenomena:

– Organisms try to use the minimal amount of information to
predict an event.

(CS , US) UR

CS UR

(CS , CS , US) UR

CS UR

CS UR

Step 1

Step 2

BUT

Train

Train

1

1

1 2

1

2

Figure 125: Blocking phenomenon in classical conditioning.

– Learning to predict the US via CS2 was “blocked” by CS1.
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– The amount of conditioning depends on how “surprising”
the UR is.

➙ Extinction:

– How permanent is the “conditioned reflex” (e.g., will the
dog, for the rest of its life, always salivate when it hears a
bell ring?)?

– “Extinction” of the conditioned reflex occurs if the bell
rings a number of times without the unconditioned stimulus
(food).

– Learning new associations can inhibit past associations that
were learned.

– But, a type of “spontaneous recovery” occurs

– Extinction should not be thought of as forgetting, but as a
process of learning something new (e.g., that something will
not occur).
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➙ Generalization and Discrimination:

– “Generalization”—after training with CS1, other stimuli
(CSi, i �= 1) that are similar to the conditioned stimulus will
actually evoke the conditioned reflex in the same way as the
conditioned stimulus.

– With sufficient sensory capabilities organisms can learn to
“discriminate” between similar stimuli.

– “Discrimination training” can be used to reduce the effects
of generalization (suppose CS1, CS2 similar so after training
CR produced by either; train again with CS1 presented with
the unconditioned stimulus, but CS2 is presented repeatedly
without the unconditioned stimulus → conditioned reflex
between CS2 and the unconditioned response will become
extinct so it learns different responses to the two stimuli).

– Related to sensitization.



299

Psychology of Learning While Acting: Operant
Conditioning

➙ Key concept: Operant conditioning involves learning which
actions are most likely to lead to goal achievement.

• Some view habituation, sensitization, and classical conditioning
as “building blocks” for learning (evolution)

• Shades of these in operant conditioning and more complex
learning processes (e.g., learning how to predict, plan, and
schedule in a dynamic and stochastic environment).
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Training Pigeons for Missile Guidance

• Skinner trained pigeons to peck at images of boats projected
onto a screen by giving them a food reward each time that they
pecked at the correct position

➙ Operant conditioning is a training process

➙ Strengthening of likelihood of actions in direction of success.

➙ An increase in frequency of occurrence for successful activities.
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Pigeon

Look around

Peck at random positions

Peck at island

Peck at boat

Start

Middle of 
operant
conditioning

End of
operant
conditioning

Pigeon

Look around

Peck at random positions

Peck at island

Peck at boat

Pigeon

Look around

Peck at random positions

Peck at island

Peck at boat

Figure 126: Depiction of reinforcement in operant conditioning
(Thorndike’s “law of effect”).
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Characteristics of Operant Conditioning

➙ Operant Conditioning as Learning to Predict Consequences of
Actions:

– Operant conditioning can be viewed as learning how to
predict consequences of actions.

– Organism modifies its frequency of taking various actions to
optimize the likelihood of getting rewards.

– Operant conditioning is constrained by the interval of time
between action and reward.

– Environmental context can affect operant learning

– Operant learning generally gives the organism an ability to
shape its own environment so it is best suited for survival,
rather than just trying to cope with a given environment.

➙ Shaping, Partial Reinforcement, Extinction, Reinforcer Control:

– Concepts related to “generalization” in classical
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conditioning hold.

– “Shaping”—for pigeons, the random pecking response is
“shaped” in a way that it is similar to the proper response
in the sense that it will give a “partial reward”

– “Extinction” and “spontaneous recovery” conceptually
similar to classical conditioning

– “Reinforcer”—term meaning goal or reward.

– There exist “partial reinforcers” (periodic or lower
magnitude reward), “positive reinforcement” (a process
that increases the likelihood that a response will occur) and
“negative reinforcement” (when the removal of a stimulus
after a response makes the response more likely to occur).

– There are schedules for providing rewards (fixed, variable).
The “partial reinforcement learning effect,” is that the
variable schedule training methods are typically more
resistant to extinction—the animal also learns that it has to



304

be patient.

➙ Discrimination Training and Chaining:

– Can do “discrimination training” in operant conditioning.

– You can train an animal to recognize the situation that it is
currently in and to only take actions when in that situation
(it uses “contextual information”).

– Can use this to train animals to do sequences of actions.

– After discrimination training the situation is associated
with receiving a reinforcer so the situation itself acquires
some reinforcing value.

– The situation is sometimes said to be a “secondary
reinforcer” (for humans, e.g., money).

– Training to execute a sequence (chaining):
action 1 → situation 1 (secondary reinforcer 1),

· · ·
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action n − 1 → situation n (secondary reinforcer n) →
action n → goal (reinforcer)

– Training can occur in a “backward manner” in the learning
process.

– Training via chaining may result in an ability to predict
sequences of events.
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Control System Model of Operant Conditioning

EnvironmentOrganism

Actions

(operations)

Information the organism can
sense about the environment

Reward
determination

Figure 127: The operant conditioning process.
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Heuristic Adaptive Control

➙ Use either:

– Biomimicry of adaptation functionalities (e.g., of neural
networks, operant conditioning)

– Human-mimicry of adaptation capabilities (e.g., how
humans act to control a process)

➙ “Heuristic approach”—good or bad? Can use an optimization
perspective, or a stability-based approach.

➙ Relevance of planning, attention, development?
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Function Approximation as Learning

➙ Let
F (x, θ)

denote a tunable nonlinear function (neural, fuzzy, etc.) that
we will use as a “function approximator.”

• The input, which is known, is x = [x1, x2, . . . , xn]� and the
parameter vector θ = [θ1, θ2, . . . , θp]�.

• There is an “approximator structure” and tunable θ

• p is the “size” of the approximator.

Using Functions to Represent Mappings in Data

➙ Let
y = G(x, z)

where its input is x = [x1, x2, . . . , xn]�, z = [z1, z2, . . . , znz ]� is
an unknown “auxiliary variable,” and its output is the scalar y.
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• If nz = 0, G(x, z) is not a function of z, and denote it by G(x).

• We do not have an explicit mathematical description of G(x, z)

• Can learn about it by performing experiments and gathering
input and output data from it.

• Suppose that for the ith experiment we let the input data be

x(i) = [x1(i), x2(i), ..., xn(i)]�

the auxiliary variable

z(i) = [z1(i), z2(i), ..., znz
(i)]�

and the output data be

y(i) = G(x(i), z(i))

(hence, xj(i) is the jth element of the ith).
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• Typically, we know that

x(i) ∈ X ⊂ �n

for some (bounded) set X that we know a priori; similarly for

z(i) ∈ Z ⊂ �nz

➙ We will call the pair (x(i), y(i)) an input-output data pair
(training data pair).

• A set of input-output data pairs is the training data set

G = {(x(1), y(1)), . . . , (x(M), y(M))} (25)

where M denotes the number of input-output data pairs
contained in G.

• The function approximation problem is the problem of how to
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pick the value for the parameter vector θ in F (x, θ) so

G(x, z) = F (x, θ) + e(x, z) (26)

where the “approximation error” e(x, z) is as small as possible
for all x ∈ �n and z ∈ �nz , even at x such that (x, y) /∈ G

➙ This is quite challenging if we know nothing of the function
G(x, z) besides what is in the training data G.

• Example: Challenge—is classical conditioning function
approximation?
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Choosing the Training Data Set

• We would like G to contain as much information as possible
about G(x, z).

➙ Unfortunately, most often the number of training data pairs is
relatively small, or it is difficult to use too much data since this
affects the computational complexity of the algorithms that are
used to adjust θ.

➙ The key question is then, How would we like the limited
amount of data in G structured so that we can adjust θ so
that F (x, θ) matches G(x, z) very closely?

Uniform Coverage May Help:

• Then expect to have information about how the mapping
G(x, z) is shaped in all regions so we should be able to
approximate it well in all regions (assuming small influences
from z).
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• Accuracy will generally depend on the slope of G(x, z) in
various regions.

• Assuming the influence of z is small, in regions where the slope
is high, we may need more data points to get more information
so that we can do good approximation.

We Often Cannot Control What is in the Data Set:

• For instance, most often in “system identification” you cannot
directly pick the data pairs since the input portion can contain
both the inputs and outputs of the system.

• Basically this raises an issue of controllability of the system,
which for the nonlinear case can quickly become complicated.

• In adaptive control, a conflict: input chosen for good tracking
and to be “persistently exciting” to get good identification.
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Relationships to Persistent Excitation:

• Intuitively, for system identification we must choose an input
signal to “excite” the dynamics of the system so that we can
“see,” via the plant input-output data, what the dynamics are
(i.e., we can see inside the “black-box”).

• Excitation with a noise signal (or a random binary signal) will
have a tendency to place points in X over a whole range of
locations; however, there is no guarantee that uniform coverage
will be achieved for nonlinear identification problems.

It is a difficult problem to know how to pick the input signal so
that G is a good data set for solving a function approximation
problem.
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Data Scaling:

• There are times when scaling the data can be helpful in the
sense that the algorithms that are used to process the data to
find θ can sometimes perform better if it is scaled.

• One simple way to scale the data is to simply multiply by a
number that will force all the data values to be between −1
and +1.

• Such scaling can help with numerical issues, and may speed
convergence of some training methods.

Example: Collecting Data for Function Approximation

• Consider an unknown function G(x, z) where x is a scalar
(n = 1) that we can pick and at first we assume that nz = 0.

• Assuming we can get uniformly spaced data in X = [−6, 6] , for
M = 7 pieces of training data we get Figure 128.
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Figure 128: The training data G generated from the function G(x, z),
M = 7, nz = 0.
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➙ Notice that there is some interesting nonlinear behavior that is
exhibited by the training data.

• For M = 121 we get Figure 129.



318

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
)

M=121

Figure 129: The training data G generated from the function G(x, z),
M = 121, nz = 0.
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★ The higher frequency oscillations were not seen before since our
grid size was too large; is there more hidden nonlinear
behavior?

• We see that without additional information about the unknown
function (e.g., the maximum slope of the function) it is quite
difficult to know when you have enough data to have a good
representation of the function.

• As an example of how the z variable can complicate the
function approximation problem, consider the case when
nz = 1.

• There are many types of influences that z can have on G(x, z).

• When we collect training data for the M = 121 case we get the
data shown in Figure 130.
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Figure 130: The training data G generated from the function G(x, z),
M = 121, and influences of the auxiliary variable z are shown.
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➙ Now we see that G(x, z) appears to be a very complex function
to approximate accurately.

➙ There could be very high frequency information in the function
when in actuality this is a type of noise (that has in fact
masked some of the behavior of the function that we saw in
Figure 129).

➙ Even though we have gathered a lot of data it is not clear how
much data should be gathered since this data might not be
providing useful information.
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Measuring Approximation Accuracy: Using a Test Set

➙ How do we evaluate how closely the function F (x, θ)
approximates the function G(x, z) for a given θ?

• Notice that

W = sup
x∈X,z∈Z

{|G(x, z) − F (x, θ)|} (27)

is a bound on the approximation error e(x, z) (if it exists) and

W ∗ = inf
θ

sup
x∈X,z∈Z

{|G(x, z) − F (x, θ)|} (28)

is the “ideal approximation error” for a given approximator
structure.

• The value (or values) of θ that achieves W ∗ is called the “ideal
parameter value” and it is denoted by θ∗.

➙ Unfortunately, in practice, specification of such a bound like W
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requires that the function G(x, z) be completely known;
however, we only know G.

• Therefore, in practice we are only able to evaluate the accuracy
of approximation by evaluating the error between G(x, z) and
F (x, θ) at certain points x ∈ X given by available input-output
data.

➙ We call this set of input-output data the test set and denote it
as Γ, where

Γ = {(x(1), y(1)), . . . , (x(MΓ), y(MΓ))} (29)

• You can use error measures like

eΓ =
1

MΓ

∑
(x(i),y(i))∈Γ

(y(i) − F (x(i), θ))2 (30)
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(the mean squared error) or

eΓ = sup
(x(i),y(i))∈Γ

{|y(i) − F (x(i), θ)|} (31)

to measure the approximation error.

• Γ should contain a lot data that were not used to construct
F (x, θ).

• In fact, one way to see if you have chosen M large enough is to
use a test set with MΓ >> M (i.e., signficantly bigger than M)
and find the error that results for the training data set and the
test set and compare them.

• If the two resulting error measures are close, then it is likely
that you have chosen the training data set size (i.e., M) to be
large enough.
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Approximator Structures

• Introduce approximator structures and tune them by hand.

➙ We will later study automatic methods for finding θ from the
data G, but:

– Some of these will only tune the parameters that enter
linearly (so we must pick the others manually)

– Even in the case where the method will tune all the
parameters we need to be able to initialize the parameters
(and better initializations typically lead to better results).

➙ This is why the ideas on how to manually tune approximators
are valuable.
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Linear and Polynomial Approximator Structures

Linear Approximators:

• In this case,

y = Fl(x, θ) = θ1x1 + θ2x2 + · · · + θnxn + θn+1

(notice that the last term is simply a constant so it is an
“affine” mapping) or in vector notation if we let φ = [x�, 1]�

y = Fl(x, θ) = θ�φ(x) (32)

where x = [x1, x2, . . . , xn]�, θ = [θ1, θ2, . . . , θn, θn+1]�, and we
have p = n + 1.

➙ Linear approximators only provide for perfect representation of
a class of functions that are linear (likewise for affine).
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Polynomial Approximators:

• Next, consider a polynomial approximator

Fpoly(x, θ) = θ1x1 + θ2x2 + · · · + θnxn + θn+1 + · · ·
+θn+2x1x2 + θn+3x1x3 + · · ·
+θn+kx2

1x2 + · · · (33)

where the parameters θi that we adjust are used to scale terms
that are products of the xi (to any finite order), and notice
that Fl is a special case of Fpoly.

• We can, of course, pick θ so that Fpoly(x, θ) is a linear function
of θ or a nonlinear function of θ.
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Neural Network and Fuzzy System Approximator
Structures

Multilayer Perceptron, One Hidden Layer:

• In this case, the network is shown in Figure 131.

x 1

x 2

xn

.

.

.

1

2

y

n

Hidden
layer

φ

φ

φ

Output
layer

1

Input
layer

Figure 131: Multilayer perceptron with one hidden layer.
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• Only consider the MISO case (easy to extend to MIMO)

• For our single hidden layer network let φj , j = 1, 2, . . . , n1

denote the output of the jth neuron in the hidden layer, let bj

be the bias, and let

wj = [w1,j , w2,j , . . . , wn,j ]�

• Hence, we have
φj = f(bj + (wj)�x)

where f is the activation function (we could have different
activation functions for each neuron, but for simplicity we let
them all be the same).

• We will assume that the neurons in the hidden layer use
nonlinear activation functions.

• Let wj , j = 1, 2, . . . , n1 denote a weight in the output layer and
let b be the bias.
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• Let
w = [w1, w2, . . . , wn1 ]

�

• With this, and the choice of using a linear activation function
in the output layer, the mathematical formula describing
Figure 131 is

y = b +
n1∑

j=1

wj

(
f(bj + (wj)�x)

)
= b +

n1∑
j=1

wjφj

• Now, if we choose

φ = [φ1, φ2, . . . , φn1 , 1]�

so that
y = Fmlp(x, θ) = [w�, b]�φ (34)

(note that we could use F
(1)
mlp to denote this single hidden layer

perceptron, but we omit the “(1)” for simplicity).
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• We will consider two different choices for the parameter θ:

– Nonlinear in the parameters: Choose

θ = [(w1)�, b1, (w2)�, b2, . . . , (wn1)�, bn1 , w
�, b]�

– Linear in the parameters: Suppose that you know the values
of the wj and bj , j = 1, 2, . . . , n1. Choose

θ = [w�, b]�

Notice that if the wj and bj , j = 1, 2, . . . , n1, are known,
then the φj , j = 1, 2, . . . , n1 are known once the input x is
specified, so φ is known. For this choice of θ,

y = Fmlp(x, θ) = θ�φ

so y is a linear function of the parameter vector θ.
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Clearly, the nonlinear in the parameter case is more general;
however, that we have better methods to adjust linear in the
parameter approximators.

• Example: n = 1, n1 = 2 (i.e., two neurons in the hidden layer),
and let each neuron be the logistic (sigmoidal) nonlinearity.

• We have w1 = [w1,1]�, w2 = [w1,2]� as the weights and b1 and
b2 as the biases for the hidden layer.

• For the output layer w = [w1, w2]� where wj , j = 1, 2, are
weights and b is the bias, for the neuron in the output layer.

➙ All these weights and biases specify the shape of the
nonlinearity that is implemented by the neural network.

• If you try, for example, to approximate the function in
Figure 130 with a network that has a single sigmoid, you may
think of it as a “smooth step function” where:
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– You can shift the step horizontally (i.e., to the left and
right) by changing the value of the bias b1,

– Change the steepness of the step by adjusting w1 = w1,1,

– Scale the size of the step by changing w = w1,

– Offset the step vertically by adjusting the bias b.

➙ Using these ideas, manual tuning of the parameters (both the
ones that enter linearly and in a nonlinear fashion) results in
the approximator in Figure 132.
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Figure 132: Neural network approximation, two neurons.
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Takagi-Sugeno Fuzzy Systems:

• We consider a Takagi-Sugeno fuzzy system that is given by

y = Fts(x, θ) =
∑R

i=1 gi(x)µi(x)∑R
i=1 µi(x)

where if ai,j are constants,

gi(x) = ai,0 + ai,1x1 + · · · + ai,nxn

• Also, for i = 1, 2, . . . , R,

µi(x) =
n∏

j=1

exp


−1

2

(
xj − ci

j

σi
j

)2



where ci
j is the point in the jth input universe of discourse

where the membership function for the ith rule achieves a
maximum, and σi

j > 0 is the relative width of the membership
function for the jth input and the ith rule.
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• We are using center-average defuzzification and product for the
premise and implication.

• Consider two different choices for θ:

– Nonlinear in the parameters: One choice for θ above is to
let

θ = [c1
1, . . . , c

R
n , σ1

1 , . . . , σR
n ,

a1,0, a2,0, . . . , aR,0, a1,1, a2,1, . . . ,

aR,1, . . . , a1,n, a2,n, . . . , aR,n]�

– Linear in the parameters: Note that

y =
∑R

i=1 ai,0µi(x)∑R
i=1 µi(x)

+
∑R

i=1 ai,1x1µi(x)∑R
i=1 µi(x)

+· · ·+
∑R

i=1 ai,nxnµi(x)∑R
i=1 µi(x)
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Let

φ = [ξ1(x), ξ2(x), . . . , ξR(x), x1ξ1(x), x1ξ2(x), . . . , x1ξR(x), . . . ,

xnξ1(x), xnξ2(x), . . . , xnξR(x)]�

and

θ = [a1,0, a2,0, . . . , aR,0, a1,1, a2,1, . . . , aR,1, . . . , a1,n, a2,n, . . . , aR,n]�

and

ξj =
µj(x)∑R
i=1 µi(x)

j = 1, 2, . . . , R, so that

y = Fts(x, θ) = θ�φ(x)

represents the Takagi-Sugeno fuzzy system.

• As an example, consider a Takagi-Sugeno fuzzy system with
one input and R = 4 rules that we will use to approximate our
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same unknown function in Figure 130.

• In this case, we have to pick the parameters for

µi(x) = exp

(
−1

2

(
x1 − ci

1

σi
1

)2
)

i = 1, 2, 3, 4 and the parameters of the corresponding gi

functions.

• In the n = 1 case we have gi(x) = ai,0 + ai,1x1 (lines).

➙ Hence, it uses the functions µi (actually ξi) to interpolate
between lines.

➙ Split X into regions and use lines as in Figure 133 and we get
the approximator mapping in Figure 134.
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Properties of Approximators

Universal Approximation Property

• F – set of all possible approximator structures of type F (x, θ).

• Example: If F (x, θ) is a multilayer perceptron with a single
hidden layer, then F would contain an infinite number of
approximator structures, each one with different
interconnections, nonlinear activation functions, and numbers
of neurons in the various layers and values for the tunable
parameters θ.

• Assume for now that nz = 0 so no z.

➙ If G(x) is any real valued continuous function defined on a
closed and bounded set X ⊂ �n and for an arbitrary ε > 0,
there exists an approximator structure F (x, θ) ∈ F such that

sup
x∈X

|G(x) − F (x, θ)| < ε
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then the approximator structure F (x, θ) is said to satisfy the
“universal approximation property.”

• Using the Stone-Weierstrass theorem it is easy to show that
multilayer perceptrons, radial basis function neural networks,
and standard and Takagi-Sugeno fuzzy systems all satisfy the
universal approximation property.

• Clearly, however, the linear approximator structure Fl(x, θ)
does not satisfy the universal approximation property.

• Satisfaction of the universal approximation property guarantees
that there exists a way to define the particular approximator
structure F (x, θ) and its parameters θ to represent the
unknown nonlinearity as accurately as you would like.

• It does not say how to find the particular F (x, θ), or even what
p is.
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Approximator Complexity

➙ Approximator complexity refers to the complexity of
implementing the approximator structure.
Clearly, the best approximator is a “flexible” one that can be
tuned to accurately approximate many types of nonlinear func-
tions (e.g., one that satsifies the universal approximation prop-
erty) yet only requires minimal memory and processing time to
implement on a digital computer.

• Often, complexity analysis can lead you to a quantification of
the trade-off between performance and complexity, leading you
to conclude that performance costs money (not a surprising
conclusion).

• Complexity and neural and fuzzy approximator structures :

– For multilayer perceptrons be careful in adding layers to the
network since more than two layers may not add too much
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tuning flexibility, but it certainly adds more complexity.

– Be careful with creating grids of, for example, membership
functions of a fuzzy system (or receptive field units of radial
basis function neural networks), on the input space since a
grid with N membership functions on each of the n input
dimensions results in Nn membership functions (i.e., we get
an exponential growth in approximator complexity).

Linear or Nonlinear in the Parameter Approximators?

• Results from approximation theory (Barron’s) indicate that it
is desirable to use approximators that are nonlinear in their
parameters since a nonlinear in the parameters approximator
can be simpler than a linear in the parameters one (in terms of
the size of its structure and hence number of parameters) yet
achieve the same approximation accuracy (i.e., the same W ).
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• The general problem: We know how to tune linear in the
parameter approximators, but in certain cases they may not be
able to reduce approximation error very well, and we do not
know as much about how to tune nonlinear in the parameter
approximators, but we know that if can tune them properly we
can definitely reduce the approximation error.

Finding the best approximator structure is a difficult problem
that normally requires trial-and-error in practical applications.
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On-Line Function Approximation: Dynamic Learning

• Assume that each experiment is performed at the click of a
clock, k = 0, 1, 2, . . . and we get an infinite sequence of training
data pairs

(x(k), y(k))

k = 0, 1, 2, . . . (notice that we switch the index of the training
data to the time index k).

• Suppose that each time we get a new training data pair we
want to update the parameter vector θ(k) of the approximator
F (x, θ(k)). This will result in F (x, θ(k)) being a time-varying
nonlinear function that is searching for an appropriate shape.

• This “on-line function approximation” scheme is shown in
Figure 135 where we illustrate the tuning of θ(k) (illustrated
via the diagonal arrow through the box containing the
approximator) using (x(k), y(k)) information.
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y(k)=G(x(k),z(k))

ε(k)
θ(k)

y(k)^
F(x(k),θ(k))

Tuning
method for

θ(k)

Figure 135: On-line function approximation scheme.

➙ The goal is to get ε(k) = y(k) − ŷ(k) → 0 as k → ∞.
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Linear Least Squares Methods

➙ BLS, RLS for tuning p × 1 vector θ for the linear in the
parameters approximator

Flip(x, θ) = θ�φ(x)

where φ(x) is a known specified p × 1 vector function.

• Use G = {(x(i), y(i)) : i = 1, 2, . . . ,M}.
➙ Many types of “linear in the parameter” approximators.

Batch Least Squares

Batch Least Squares Derivation

• Define
Y (M) = [y(1), y(2), . . . , y(M)]�

to be an M × 1 vector of the y(i), i = 1, 2, . . . ,M from G (i.e.,
y(i) such that (x(i), y(i)) ∈ G).
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• We let

Φ(M) =




φ�(x(1))

φ�(x(2))
...

φ�(x(M))




be an M × p matrix constructed by stacking the 1 × p

φ�(x(i)) vectors into a matrix (i.e., the x(i) are such that
(x(i), y(i)) ∈ G).

• Let ε(i) = y(i) − Flip(x(i), θ) = y(i) − θ�φ(x(i)) which is the
same as

ε(i) = y(i) − φ�(x(i))θ

be the error in approximating the data pair (x(i), y(i)) ∈ G

where θ is used in the approximator.
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• Define
E(M) = [ε(1), ε(2), . . . , ε(M)]�

so that
E = Y − Φθ

➙ Choose
J(θ,G) =

1
2
E�E

(a measure of approximation quality for all the data in G for a
given θ).

• J(θ,G) is the sum of the squares of the errors in approximation
for each of the training data pairs.

➙ LS: Pick θ to minimize J(θ,G) (“least squares”)

• “Linear” least squares since approximator is linear in the
parameters.

➙ J(θ,G) is convex in θ → local minimum is a global minimum.
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➙ Calculus: Take partial derivative of J with respect to θ and set
it equal to zero, we get an equation for θ, the best estimate of
the unknown θ∗.

➙ Another approach:

2J = E�E = Y �Y − Y �Φθ − θ�Φ�Y + θ�Φ�Φθ

• “Complete the square” by assuming that Φ�Φ is invertible and

2J = Y �Y − Y �Φθ − θ�Φ�Y + θ�Φ�Φθ

+ Y �Φ(Φ�Φ)−1Φ�Y − Y �Φ(Φ�Φ)−1Φ�Y

(add and subtract the same terms at the end).

• Hence,

2J = Y �(I − Φ(Φ�Φ)−1Φ�)Y

+(θ − (Φ�Φ)−1Φ�Y )�Φ�Φ(θ − (Φ�Φ)−1Φ�Y )(35)



352

• The first term in this equation is independent of θ → ignore.

• Choose θ so that the second term is zero.

• Denote the value of the parameters that achieves the
minimization of J by θ

θ = (Φ�Φ)−1Φ�Y (36)

➙ “Batch” least squares.

• If pick inputs to the system so that it is “sufficiently excited”,
then we will be guaranteed that Φ�Φ is invertible.

➙ In “weighted” batch least squares we use

J(θ,G) =
1
2
E�WE (37)

where, for example, W is an M × M diagonal matrix with its
diagonal elements wi > 0 for i = 1, 2, . . . ,M .
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• The wi can be used to weight the importance of certain
elements of G more than others.

• We may choose to have it put less emphasis on older data by
choosing w1 < w2 < · · · < wM when x(2) is collected after x(1),
x(3) is collected after x(2), and so on.

➙ One approach: 0 < λ ≤ 1, then let wi = λM−i, i = 1, 2, . . . ,M .

• Can show that:

θwbls = (Φ�WΦ)−1Φ�WY (38)
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Example: Off-Line Tuning of Neural Networks

• Train MLP to match the training data shown in Figure 130
(this defines G and in our case we have M = 121).

Improved Accuracy Over Manual Tuning:

• Recall that we were using the perceptron with a single hidden
layer shown in Figure 131 with n1 = 2 neurons in the hidden
layer.

➙ Have:

y = Fmlp(x, θ) = θ�φ(x) = [w1, w2, b][φ1(x), φ2(x), 1]�

where via our heuristic approach we used f(x̄) = 1
1+exp(−x̄) and

had chosen
φ1(x) = f(b1 + w1,1x)
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with b1 = 0 and w1,1 = 1.5, and

φ2(x) = f(b2 + w1,2x)

with b2 = −6 and w1,2 = 1.25.

• We had chosen θ = [3, 1, 0.6]�.

➙ We will use the batch least squares approach to see how if it
can pick a better θ.

★ Form Y and Φ, use BLS formula to get

θ = [2.5747, 1.6101, 0.7071]�



356

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
,z

(i)
),

 a
nd

 p
er

ce
pt

ro
n 

ou
tp

ut
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Figure 136: Multilayer perceptron approximator trained with batch
least squares, 2 neurons.
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Increasing the Number of Hidden Neurons:

➙ Generally, you want to use much more training data than
parameters (to avoid what is called “overfitting” below) so
since we use M = 121 we will now consider n1 = 11 neurons in
the hidden layer (for a total of 11(2) + 11 + 1 = 34 parameters).

• We need a scheme to pick the weights and biases of the hidden
layer. Use a simple heuristic approach.

➙ Biases: Pick evenly spaced over −5 to 5, so that b1 = −5,
b2 = −4, to b11 = 5.

• This should help spread the points where the activation
functions turn on across the input space.

• The choice for the wj , j = 1, 2, . . . , 11, is more difficult if you
take the view that we did in the manual tuning of the
perceptron.
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• Notice that there we assumed that we could examine the
training data and pick off slopes to set these values.

➙ This is often unrealistic for complex real world problems.

• Here, we will exploit the fact that the scaling factors in w are
used to modify the slopes to what we will need, so we simply
pick wj = 1, j = 1, 2, . . . , 11 (for applications where n > 1 this
scheme may not be as effective and in those cases you will want
the weights to take on values that will allow for a range of
slopes).

• This completes the specification of the hidden layer.

★ BLS to tune the 12 parameters in θ = [w�, b]�:

θ = [2.7480, 2.0120,−11.9865, 34.7556,

−69.6968, 93.4042,−80.8496, 57.0819,

−34.6710, 15.8048,−3.9398, 0.8087]� (39)
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Neural network approximation,11 hidden neurons

Figure 137: Multilayer perceptron approximator trained with batch
least squares, 11 neurons.
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★ Signficant improvement over Figure 136 where we used n1 = 2
neurons in the hidden layer and Figure 132 where we tuned the
approximator manually.

➙ Vector θ has both positive and negative values (positive and
negative slopes).

➙ Clearly it would be quite difficult to tune the approximator
manually to get this kind of accuracy.

Fine-Tuning to Capture High Frequency Behavior:

➙ More parameters? Use n1 = 25 neurons (to get a total of
25(2) + 25 + 1 = 76 parameters).

• Choose the biases in a similar fashion—over the whole range
−6 to 6 to get b1 = −6, b2 = −5.5, to b25 = 6.

• As above, we pick all the weights in the hidden layer to be
unity.
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• We use batch least squares to tune the 26 parameters in
θ = [w�, b]�.

★ For this case we get the approximation shown in Figure 138
which is an improvement over Figure 137 where we used
n1 = 11 neurons (notice that the approximator is starting to
find some of the structure of the underlying function that is
illustrated in Figure 129; least squares is particularly good at
finding this structure, in this case, due to how the noise on z

enters).
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Neural network approximation,25 hidden neurons

Figure 138: Multilayer perceptron approximator trained with batch
least squares, 25 neurons.
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★ With more neurons able to approximate more of the “high
frequency” behavior in the function.

Overfitting Where the Approximator Seeks to Model Noise:

★ Increasing n1 can be taken too far.

• Suppose that we choose n1 = 121 (for a total of
121(2) + 121 + 1 = 364 parameters), b1 = −6, b2 = −5.9, to
b121 = 6, and the weights in the hidden layer as all unity.

• We have θ as an 122 × 1 vector so p > M .
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Figure 139: Multilayer perceptron approximator trained with batch
least squares, 121 neurons, plus comparison to G(x).
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★ Notice that in this plot we have also plotted approximator
nonlinearity on top of the function G(x) (i.e., where we have
removed the effects of the noise z).

Important fact: if you use too many parameters you may start
trying to approximate characteristics of the noise, and not the
underlying function.
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Recursive Least Squares

➙ Recursive version of BLS will allow us to update our θ estimate
each time we get a new data pair, without using all the old
data and without computing (Φ�Φ)−1.

• This “(weighted) recursive least squares” approach allows us to
implement an on-line function approximator.

➙ Suppose that the parameters of the physical system vary slowly.

➙ Consider minimizing

J(θ,G)|M=k =
1
2

k∑
i=1

λk−i(y(i) − φ�(x(i))θ)2

where 0 < λ ≤ 1 is called a “forgetting factor”—it gives the
more recent data higher weight in the optimization (consider
effect of λk−i in above summation).
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➙ The equations for WRLS are given by

θ(k) = θ(k − 1) + K(k)
(
y(k) − φ�(x(k))θ(k − 1)

)
(40)

K(k) =
P (k − 1)φ(x(k))

λ + φ�(x(k))P (k − 1)φ(x(k))

P (k) =
1
λ

(
I − K(k)φ�(x(k))

)
P (k − 1)

(where when λ = 1 we get the equation for standard RLS).

• We need to initialize the WRLS algorithm (i.e., choose θ(0)
and P (0)).
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• One approach to do this is to use θ(0) = 0 and P (0) = P0

where P0 = αI for some large α > 0.

➙ This is the choice that is often used in practice.

• Other times, you may pick P (0) = P0 but choose θ(0) to be a
best guess.

➙ In practice “covariance modifications” (e.g., covariance
resetting) are used.
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Example: Fitting a Line to Data Generated by a Time-Varying Function

• For n = 1

y = Flip(x, θ) = θ�φ(x) = θ�[φ1(x), 1]� = θ�[x1, 1]� = θ1x1+θ2

(41)

➙ Unknown function:

y(k) = G(x(k), z(k)) = sin(0.01k)x1(k) + 1

where x(k) = x1(k) and z(k) captures the time-varying nature
of the function (e.g., we could say that z(k) = k).

• Think of sin(0.01k) as a time-varying slope and the 1 as the
intercept.

• Choose x(k) uniformly distributed rv on [−1, 1].

• Pick θ(0) = [0, 0]� and P (0) = αI where α = 100.
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Figure 140: RLS parameter estimates, λ = 1 (upper left), λ = 0.98
(upper right), λ = 0.95 (lower left), λ = 0.7 (lower right).
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• λ = 1: θ1 quickly converges to the true value of 1 but that the
estimate θ2 is quite poor (since it does not forget old
information).

• λ = 0.98: Does much better.

• λ = 0.7: Get a very good estimate.

• But, if too small forgets too much → bad performance.
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Example: On-Line Tuning of Neural and Fuzzy Systems

Multilayer Perceptrons

• Use n1 = 25 neurons and use all the same values of the biases
and weights in the hidden layer that we developed earlier

• Tune weights and bias in output layer (26 × 1 vector θ).

Relatively Uniform Coverage of the Input Space

• Let the input x be uniformly distributed on [−6, 6] for our
theme problem.

• Let λ = 1 and intialize the algorithm with θ(0) = 0 and
P (0) = αI with α = 100.
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Figure 141: Neural network mappings generated using increasing
amounts of training data (k = 1 to k = 10).
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• For k = 1 we have two data points.

★ As k increases we get more and more training data and our
representation becomes more and more accurate.

Nonuniform Coverage of the Input Space

➙ By random chance it does not place any x data in one region of
the input space.
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Figure 142: Neural network mappings generated using increasing
amounts of training data (no data near x = −6 for k ≤ 9).
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➙ The approximator is extrapolating

★ If there are “holes” in the input space where there is no data we
will generally get poor approximation accuracy in that region.

★ Initialization: Estimation quality generally proportional to
initialization quality.
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Takagi-Sugeno Fuzzy Systems

➙ Due to locality properties of the Takagi-Sugeno fuzzy system it
tends to adjust the mapping only where it gets data and tends
not to destroy what it has learned in one area when making
adjustments in another area.

★ Other principles the same as for the neural network case.
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Gradient Methods

➙ Gradient techniques offer practical and effective methods to
perform optimization.

• Consider minimizing

J(θ,G) =
1
2

M∑
i=1

|y(i) − F (x(i), θ)|2 (42)

by the choice of θ for a given training data set G (note that in
several cases below we will develop the theory for the case
where F (x(i), θ) and y(i) are N̄ × 1 vectors).

➙ J(θ,G) can be a very complex “landscape” as in Figure 143.
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• Flat regions and local minima complicate the problem.

➙ Will we end at a local or global minimum?

• The most we will be able to hope for is to converge to a
“stationary point,” that is, a zero slope region.
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The Steepest Descent Method

• Let θ(j) be the current estimate of the parameter vector at
iteration j (note that when we indexed θ with time we used k,
but here j is used to emphasize that the index may simply be
for the training data, not time).

Steepest Descent Parameter Updates

• The basic form of the update using a gradient method to
minimize the function J(θ,G) via the choice of θ(j) is

θ(j + 1) = θ(j) + λjd(j) (43)

where d(j) is the p × 1 “descent direction,” and λj > 0 is a
(scalar) positive “step size” that can depend on the iteration
number j.
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• To see the rationale, let θ be a scalar and use the simple
quadratic function

J(θ,G) = θ2

in Figure 144 where we are searching for the point where the
function reaches the minimum by picking the scalar θ.
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• Name the point where the minimum is achieved θ∗ and assume
that it is unknown and that we want to find its value.

• The update formula for this scalar case, where λj = λ is a
positive constant, is

θ(j + 1) = θ(j) + λd(j)

• Notice that

d(j) =
θ(j + 1) − θ(j)

λ
(44)

• With λ as a step size we see that d(j) is a descent direction in
the sense that it is the direction in which the parameter is
moving in order to try to minimize J(θ,G).

➙ What direction would we like this to be?

➙ We would like the parameter updates to always move in a
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direction that decreases J(θ,G) because if it does this over a
whole sequence of iterations (perhaps an infinite number of
iterations) we may get θ(j) → θ∗ as j → ∞ (so
J(θ∗, G) ≤ J(θ,G) for all other possible θ).

• The above formula (Equation (44)) suggests that the direction
should be the slope of the function J(θ,G) at θ = θ(j).

• To see this, consider the example in Figure 144.

• Suppose that the initial (best) guess of θ∗ is the θ(0) shown.

• Based on this guess, how would you next guess at θ?

• That is, how would you generate θ(1)?

• Suppose that we can compute the slope (gradient) of J(θ,G) at
θ(0).
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• For our example this gradient is

∂J(θ,G)
∂θ

∣∣∣∣
θ=θ(0)

= 2θ|θ=θ(0) = 2θ(0) (45)

and it is shown as the black arrow pointing up and to the right
in Figure 144.

• The negative of this gradient is −2θ(0) and it is shown as the
black arrow pointing down and to the left in Figure 144.

• These arrows indicate possible directions d(j) to update the
guess at θ(0).

• Clearly, to move down the function J(θ,G) to minimize it one
choice would be to use the direction

d(j) = −∂J(θ,G)
∂θ

∣∣∣∣
θ=θ(j)

(46)

(i.e., to move along the negative gradient).
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• Intuitively, this choice is the “direction of steepest descent” (it
corresponds to how a skier often moves down a snow-covered
mountain) and hence the parameter update formula for the
steepest descent method, even for the p-dimensional case, is
given by

θ(j + 1) = θ(j) − λj
∂J(θ,G)

∂θ

∣∣∣∣
θ=θ(j)

(47)

• Generally, θ(j) may not have a limit point, it may diverge as in
this example, or it may oscillate; however, gradient methods
are generally able to find isolated stationary points (i.e., ones
where you can draw a sphere around it and no other stationary
points are in the sphere), if they start close to them (this is
why initialization of the algorithms is so important).

➙ Clearly, the direction of descent and step size are important
parameters for gradient methods.
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Descent Direction Possibilities and Momentum

• Considering Figure 144, notice that any direction d(j) is a
descent direction provided that the angle it makes with

∂J(θ,G)
∂θ

∣∣∣∣
θ=θ(j)

(indicated by the black arrow in Figure 144 that is pointing up
and to the right) is more than 90◦.

• For our simple example above, this means that the shaded
arrows shown in Figure 144 are also descent directions for that
θ(0).

• Mathematically, the angle is greater than 90◦ if(
∂J(θ(j), G)

∂θ(j)

)�
d(j) < 0

• As indicated, this formula also holds for the vector case.



389

• In the vector case d(j) is a p × 1 vector and the gradient is a
p × 1 vector that is denoted by

∇J(θ(j), G) =
∂J(θ(j), G)

∂θ(j)
=




∂J(θ(j),G)
∂θ1(j)

∂J(θ(j),G)
∂θ2(j)

...
∂J(θ(j),G)

∂θp(j)




(48)

• Clearly, the choice of

d(j) = −∂J(θ,G)
∂θ

∣∣∣∣
θ=θ(j)

= −∇J(θ(j), G)

results in the satisfaction of this formula, but clearly many
other choices do also.

• One modification to the descent direction that has been found
to be useful in some applications is to use a “momentum



390

term.”

• In this case the update formula is

θ(j + 1) = θ(j) − λj∇J(θ(j), G) + β (θ(j) − θ(j − 1)) (49)

where 0 ≤ β < 1 is a fixed gain and β (θ(j) − θ(j − 1)) is the
momentum term.

➙ Basically, momentum accelerates progress of the update where
the gradients ∇J(θ(j), G) are pointing in the same direction,
but restricts update sizes when successive gradients are roughly
opposite in direction.

• This can tend to dampen out oscillations in the parameter
vector and keep the parameter vector moving in the proper
direction.
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Step Size Choice

Constant Step Size

• For some applications (e.g., in adaptive control) a fixed step
size λj = λ for all j can be sufficient.

➙ Generally, if λ is too small we get slow convergence, but if it is
too large then we can get divergence.

➙ Indeed, in many problems a constant step size can result in
“limit cycling” (oscillations in parameter values) near a local
minimum since when you are in a region near a local minimum
you often must take successively smaller steps to ensure that
you do not “overshoot” the solution.

Diminishing Step Size

• In this case, the step size converges to zero as j goes to infinity,
according to some formula.
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• That is, we pick an algorithm for forcing

λj → 0

as j → ∞.

• For instance, we may choose

λj =
λ

j + 1

where λ > 0 is a constant.

• While this can be simple to implement, in some cases λj may
be chosen so that it goes to zero too fast so that the algorithm
slows prematurely, before it gets near a solution.

• It is for this reason that often it is required that
∞∑

j=0

λj = ∞
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which, in effect, forces the step size to persistently update the
parameters (provide the gradient is sufficiently large).
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Parameter Initialization, Constraints, and Update Termination

Parameter Initialization

➙ While in general you do not know where the optimal solution
θ∗ is, it is of course best to pick θ(0) as close to this desired
value as possible.

• For a multilayer perceptron, if you know nothing, pick small
random values (why?).

• For a fuzzy system use a uniform grid for premise membership
functions.

Constraints on Parameters

• Generally, there are several reasons why there are constraints
on the parameters in an optimization problem like we study:

1. If the parameters θ(j) take on certain values, there are
numerical problems.
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2. Physical constraints.

3. Sometimes we know a “feasible region” for the optimal
parameter values and hence searching outside this set is
fruitless.

4. Sometimes, we have extra information about the form of the
underlying function that we seek to approximate (e.g., by
physical insights, or by simple inspection of the training
data), and this can be used to constrain the choices of the
parameters.

• In any of these three cases the constraints can be captured by
requiring that

θ(j) ∈ Θ(j)

for all j ≥ 0 where Θ(j) is the (known) parameter “constraint
set” at iteration j.

• Often, we know that Θ(j) = Θ, that is, that the constraint set
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is the same at each iteration.

➙ How do we ensure that θ(j) ∈ Θ for all j ≥ 0? “Projection”

• First, we initialize so that θ(0) ∈ Θ so that all we need to
concern ourselves with is the case for j > 0.

• The most common case in practice is when we know scalars
θmin
i and θmax

i , i = 1, 2, . . . , p, such that we want

θmin
i ≤ θi(j) ≤ θmax

i (50)

for all j ≥ 0 (this specifies a convex set
Θ = {θ : θmin

i ≤ θi ≤ θmax
i , i = 1, 2, . . . , p}).

• Then, each time you use a gradient update formula to generate
θ(j + 1) you test Equation (50) for each i = 1, 2, . . . , p and if it
has chosen

θi(j + 1) > θmax
i
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you let
θi(j + 1) = θmax

i

and if it has chosen

θi(j + 1) < θmin
i

you let
θi(j + 1) = θmin

i

• If any generated θi(j + 1) is within the range specified by
Equation (50), then you accept the update θi(j + 1) with no
modification.

• In this way, for all j ≥ 1 we will never update the parameter
vector θ(j) to lie outside Θ.

Parameter Update Termination

• Let θ� be the solution used at termination, i.e., it may be that
θ� �= θ∗.
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• It is best to use “scale-free” termination criteria such as the
following:

1. Terminate if Parameter Change Rate is Low: Terminate if

(θ(j + 1) − θ(j))�(θ(j + 1) − θ(j)) ≤ εθ(j)�θ(j)

for some ε > 0 and let θ� = θ(j + 1).

2. Terminate if the Gradient is Small: Terminate if

∇J(θ(j), G)�∇J(θ(j), G) ≤ ε∇J(θ(0), G)�∇J(θ(0), G)

for some ε > 0 and let θ� = θ(j).

➙ While such methods are often used, in practice they are often
augmented (i.e., used in conjunction with) other criteria such
as the use of a “validation set” or simply a set maximum
number of iterations.
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Off- and On-Line, Serial and Parallel Data Processing

Off-Line Processing

• Know G a priori and hence M is fixed.

• Can process the data set G in “parallel” by repeated
application of the gradient update formula to the entire data
set.

• But, could use smaller subsets and process these serially, either
in a sequential or random order (and in some cases this can
improve performance)



400

On-Line Processing

• The data processing issues are different for the on-line case
since we do not know G a priori since M → ∞.

• The most common case in on-line (real-time) processing is to
use one training data pair per time step and take one iteration
of the gradient formula; this aligns time steps, data acquistions,
and iterations of the gradient update formula.

• But, of course, you could sequentially process (small) subsets of
data



401

Gauss-Newton and Levenberg-Marquardt Methods

➙ Newton’s method is theoretically interesting (good convergence
rates) but not used in practice due to need for computing the
inverse of the Hessian.

• Conjugate gradient and quasi-Newton methods found to be
effective in some cases.
The Levenberg-Marquardt method has been found to be effective
in solving practical function approximation problems.

• First, consider the Gauss-Newton method that is used to solve
a (nonlinear) least squares problem such as finding θ to
minimize J(θ,G) in Equation (42) when we do not use a linear
in the parameter approximator.
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• To develop the Gauss-Newton method we have

J(θ,G) =
1
2

M∑
i=1

|y(i) − F (x(i), θ)|2

and let the N̄ × 1 vectors

ε(i) = y(i) − F (x(i), θ)

(these are the function approximation errors arising at each
piece of training data) and define the N̄M × 1 vector

ε(θ,G) = [ε(1)�, ε(2)�, . . . , ε(M)�]�

= [ε1, ε2, . . . , εN̄M ]�

(where εj , j = 1, 2, . . . , N̄M , are scalars) to be a vector
containing all of the approximation errors.
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• Note that

J(θ,G) =
1
2

M∑
i=1

ε(i)�ε(i) =
1
2
ε(θ,G)�ε(θ,G)

• For functions J(θ,G) that are quadratic in θ (scalar or vector
case) Newton’s method gave very fast convergence (in one
step).

• For the function approximation problem, to get J(θ,G)
quadratic in θ, we use a linear in the parameter approximator
F (x, θ) = θ�φ(x) so that the approximation errors ε(i) and
hence ε(θ,G) are linear (affine) with respect to the parameters
θ, and then J(θ,G) is quadratic in θ.

• If F (x, θ) is nonlinear in the parameters then so are ε(i) and
ε(θ,G).
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Gauss-Newton Parameter Update Formula

★ To tune nonlinear in the parameter approximators, in the
Gauss-Newton approach at each iteration j we proceed
according to the following steps:

1. Linearize the error ε(θ,G) about the current value of θ(j).

2. Solve a least squares problem to minimize the linearized
error value and provide the next guess at the parameter,
θ(j + 1).

➙ Compared to Newton’s method, in the Gauss-Newton method
you create a quadratic approximation to the function you want
to minimize at each iteration, but now it is done via
linearization, rather than using second derivative information.
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• We discuss these two steps in more detail next.

• First: Linearize ε(θ,G) around θ(j) using a truncated Taylor
series expansion to get

ε̂(θ, θ(j), G) = ε(θ(j), G) + ∇ε(θ,G)�
∣∣
θ=θ(j)

(θ − θ(j))

where ε̂(θ, θ(j), G) is an approximation of ε(θ,G) since we
omitted the higher order terms (second order and higher) in
the Taylor series expansion.

• We use the notation ε̂(θ, θ(j), G) to emphasize the dependence
on both θ and θ(j).
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• Here,

∇ε(θ,G) =




∂ε1
∂θ1

· · · ∂εN̄M

∂θ1

. . .
...

...
. . .

∂ε1
∂θp

· · · ∂εN̄M

∂θp




= [∇ε1,∇ε2, . . . ,∇εN̄M ]

(51)
is a p × N̄M matrix and ∇ε(θ,G)� is the “Jacobian.”

• Second: Minimize the (scaled) squared norm of the linearized
function ε̂(θ, θ(j), G),

Jq(θ,G) =
1
2
ε̂(θ, θ(j), G)� ε̂(θ, θ(j), G)

which is a quadratic approximation to J(θ,G) (at θ(j)) which
is nonlinear in θ, and different from the one used in Newton’s
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method.

• Let

θ(j + 1) = arg min
θ

Jq(θ,G)

= arg min
θ

1
2
ε̂(θ, θ(j), G)� ε̂(θ, θ(j), G)

(here, “arg minθ” is simply mathematical notation for the
value of θ that minimizes the norm, it is the “argument” that
provides the value that achieves the minimization).

➙ But, we know how to solve this problem.

➙ It is the same as the batch least squares problem for the linear
in the parameters case.

• To see this, note that

Jq(θ,G) =
1
2
E�E
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with E = ε̂(θ, θ(j), G).

• Recall that we had
E = Y − Φθ

• Here, we have

ε̂(θ, θ(j), G) =
(
ε(θ(j), G) − ∇ε(θ,G)�

∣∣
θ=θ(j)

θ(j)
)

+ ∇ε(θ,G)�
∣∣
θ=θ(j)

θ (52)

so if we let

Y =
(
ε(θ(j), G) − ∇ε(θ,G)�

∣∣
θ=θ(j)

θ(j)
)

and
Φ = − ∇ε(θ,G)�

∣∣
θ=θ(j)

our least squares solution (the value of the parameter at the
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next iteration) is given by Equation (36) as

θ(j + 1) = (Φ�Φ)−1Φ�Y

and

(Φ�Φ)−1 =
(
∇ε(θ(j), G)∇ε(θ(j), G)�

)−1

and

Φ�Y = −∇ε(θ(j), G)
(
ε(θ(j), G) −∇ε(θ(j), G)�θ(j)

)
where

∇ε(θ(j), G)� = ∇ε(θ,G)�
∣∣
θ=θ(j)

so that the resulting Gauss-Newton update formula is

θ(j + 1) = θ(j) −
(
∇ε(θ(j), G)∇ε(θ(j), G)�

)−1 ∇ε(θ(j), G)ε(θ(j), G)
(53)

(if we had included a step size parameter then the method is
sometimes referred to as a “damped” Gauss-Newton approach).
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➙ We do not need the Hessian, only the Jacobian.

➙ Essentially, a Gauss-Newton iteration is an approximation to a
Newton iteration (in the sense that the quadratic
approximation at each iteration tries to approximate the one in
Newton’s method that uses second derivative information in its
quadratic approximation) so it can typically provide for faster
convergence than, for instance, steepest descent, but generally
not as fast as a pure Newton method.

➙ The Gauss-Newton method is the same as the “extended
Kalman filter” (EKF) except where the linearizations are
performed (to make the methods the same simply involves
changing how you process the data).
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Levenberg-Marquardt Parameter Update Formula

• To avoid problems with computing the inverse in
Equation (53), the method is often implemented as

θ(j + 1) = θ(j) −
(
∇ε(θ(j), G)∇ε(θ(j), G)� (54)

+ Λ(j))−1 ∇ε(θ(j), G)ε(θ(j), G)

where Λ(j) is a p × p diagonal matrix such that

∇ε(θ(j), G)∇ε(θ(j), G)� + Λ(j)

is positive definite so that it is invertible.

• Sometimes, a “Cholesky factorization” is used to specify Λ(j)
at each iteration.
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➙ In the Levenberg-Marquardt method you choose Λ(j) = λI

where λ > 0 and I is the p × p identity matrix.

• When λ = 0 we get the standard Gauss-Newton method and as
you increase λ the descent direction moves towards the
gradient.

➙ Hence, generally, thinking of λ as a step size, we expect that
for a small value of λ we will get fast convergence, while for a
larger value, we should get slower convergence.
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Levenberg-Marquardt Training of a Fuzzy System

➙ We study the use of the Levenberg-Marquardt method for
training a Takagi-Sugeno fuzzy system with R = 11 rules.

• We will tune all 44 parameters of the approximator.

• Here, we consider off-line batch processing of a data set
G = {(x(i), y(i)) : i = 1, 2, . . . ,M} from Figure 130 (where in
this case n = 1).

• In this case, our Takagi-Sugeno fuzzy system is given by

y = Fts(x, θ) =
∑R

i=1 gi(x)µi(x)∑R
i=1 µi(x)

where gi(x) = ai,0 + ai,1x1 and the ai,j , i = 1, 2, . . . , R, j = 1, 2
are constants.
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• Also,

µi(x) =
n∏

j=1

exp


−1

2

(
xj − ci

j

σi
j

)2

 = exp

(
−1

2

(
x1 − ci

1

σi
1

)2
)

where ci
j is the point in the jth input universe of discourse

where the membership function for the ith rule achieves a
maximum, and σi

j > 0 is the relative width of the membership
function for the jth input and the ith rule (since n = 1 the
premise membership functions are the same as the input
membership functions).

• Recall that we had defined

ξj =
µj(x)∑R
i=1 µi(x)

j = 1, 2, . . . , R.
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• For our case we have

θ = [c1
1, . . . , c

R
1 , σ1

1 , . . . , σR
1 ,

a1,0, a2,0, . . . , aR,0, a1,1, a2,1, . . . , aR,1]�

for a total of p = 4R = 44 parameters to tune.

Update Formula

➙ The update formula is given in Equation (54).

• To make the computations for the update formula we need, for
N̄ = 1, the p × M matrix ∇ε(θ(j), G) and the M × 1 vector
ε(θ(j), G).

• With N̄ = 1, the scalars

εi = ε(i) = y(i) − Fts(x(i), θ)

for i = 1, 2, . . . ,M , and so

ε(θ,G) = [ε1, ε2, . . . , εM ]�
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• Here,

∇ε(θ,G) =




∂ε1
∂θ1

· · · ∂εM

∂θ1

. . .
...

...
. . .

∂ε1
∂θp

· · · ∂εM

∂θp




• Now, notice that for i = 1, 2, . . . ,M , j = 1, 2, . . . , p,

∂εi

∂θj
=

∂

∂θj
(y(i) − Fts(x(i), θ))

= − ∂

∂θj
Fts(x(i), θ)

• It is convenient to compute this partial by considering various
components of the vector in sequence (not forgetting about the
minus sign in front of the partials).
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• First, consider the update formulas for the centers of the
premise membership functions.

• We will use indices i∗ and j∗ to help avoid confusion with the
indices i and j.

• We find, for j∗ = 1, 2, . . . , R,

∂

∂cj∗
1

Fts(x(i∗), θ) =
∂

∂cj∗
1

(∑R
i=1 gi(x(i∗))µi(x(i∗))∑R

i=1 µi(x(i∗))

)

where

µi(x(i∗)) = exp

(
−1

2

(
x(i∗) − ci

1

σi
1

)2
)

(we replaced x1 with x since they are the same) and

ξj∗(x(i∗)) =
µj∗(x(i∗))∑R
i=1 µi(x(i∗))



418

• Hence, we have

∂

∂cj∗
1

Fts(x(i∗), θ) =

(∑R
i=1 µi(x(i∗))

)(
gj∗ (x(i∗)) ∂

∂cj∗
1

µj∗(x(i∗))
)

(∑R
i=1 µi(x(i∗))

)2

−

(∑R
i=1 gi(x(i∗))µi(x(i∗))

)(
∂

∂cj∗
1

µj∗ (x(i∗))
)

(∑R
i=1 µi(x(i∗))

)2

=

(
gj∗(x(i∗)) − Fts(x(i∗), θ)∑R

i=1 µi(x(i∗))

)
∂

∂cj∗
1

µj∗(x(i∗))

• For this, let

x̄j∗ = −1
2

(
x(i∗) − cj∗

1

σj∗
1

)2
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so that using the chain rule from calculus

∂

∂cj∗
1

µj∗(x(i∗)) =
∂µj∗(x(i∗))

∂x̄j∗
∂x̄j∗

∂cj∗
1

• We have
∂µj∗(x(i∗))

∂x̄j∗
= µj∗ (x(i∗))

and
∂x̄j∗

∂cj∗
1

=
x(i∗) − cj∗

1(
σj∗

1

)2

so

∂

∂cj∗
1

Fts(x(i∗), θ) =

(
gj∗ (x(i∗)) − Fts(x(i∗), θ)∑R

i=1
µi(x(i∗))

)
µj∗ (x(i∗))

(
x(i∗) − cj∗

1

)
(
σj∗

1

)2
• Next, for the spreads on the premise membership functions we
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use the same development above to find

∂

∂σj∗
1

Fts(x(i∗), θ) =

(
gj∗ (x(i∗)) − Fts(x(i∗), θ)∑R

i=1
µi(x(i∗))

)
µj∗ (x(i∗))

(
x(i∗) − cj∗

1

)2

(
σj∗

1

)3
since

∂x̄j∗

∂σj∗
1

=

(
x(i∗) − cj∗

1

)2

(
σj∗

1

)3

• Next, for the parameters of the consequent functions notice
that

∂

∂aj∗,0
Fts(x(i∗), θ) =

∂

∂aj∗,0
(gj∗(x(i∗))ξj∗ (x(i∗))) = ξj∗(x(i∗))

and
∂

∂aj∗,1
Fts(x(i∗), θ) = x1(i∗)ξj∗(x(i∗))

➙ This gives us all the elements for the ∇ε(θ,G) matrix, and
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hence we can implement the Levenberg-Marquardt update
formula.

Parameter Constraint Set and Initialization

• The chosen parameter constraint set simply forces the centers
to lie between −6 and +6 (hence, we assume that we know the
maximum variation on the input domain a priori) and spreads
to all to be between 0.1 and 1 and uses projection to maintain
this for each iteration.

➙ We place the contraints on the spreads for two reasons, to
avoid a divide-by-zero error and since it simply makes sense to
have an upper bound.

• We put no constraints on the parameters of the consquent
functions.

➙ The centers are initialized to be on a uniform grid across the
input space, a reasonable choice if you do not know where high
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frequency behavior occurs.

• In particular, we choose c1
1 = −5, c2

1 = −4, up to c11
1 = 5.

• The spreads are all initalized to be 0.5 so that there is a
reasonable amount of separation between when one consequent
function of one rule turns on and the other turns off.

• The parameters of the consequent functions are simply
initialized to be all zero.
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Approximator Tuning Results: Effects on the Nonlinear
Part

• Here, we first consider the M = 121 case for the function
shown in Figure 130.

• We will simply show the mapping shape at various iterations
and hence will not implement a termination criterion.

• We choose λ = 0.5 (you can easily tune this parameter where if
you make it smaller it tends to make bigger updates).

• Figure 145 shows the mapping after just one iteration.
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Figure 145: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy
system, mapping shape at iteration j = 1.
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★ Clearly, even after one iteration, even though it has not tuned
the centers and spreads much, the method has chosen
reasonable values for the consequent functions and this is not
surprising considering the performance of the batch least
squares method for this approach and the similarities to that
method.

➙ Next, we will focus on how the method tunes the nonlinear
part of the approximator (i.e., the µi, and hence ξi functions)
but we must keep in mind that the linear part is also being
tuned at the same time.

★ Figure 146 shows that by the second iteration there is already
significant and successful tuning of the nonlinear part so that
approximation errors are reduced, particularly in the region
around x = −2.
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Figure 146: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy
system, mapping shape at iteration j = 2.
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• As the algorithm continues, it continues to tune the nonlinear
part of the approximator.

★ In particular, consider Figure 147, at j = 5, and we see that at
this point the training method has done quite a good job at
shaping the nonlinear part to get good accuracy around
x = −2.
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Figure 147: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy
system, mapping shape at iteration j = 5.
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• As the algorithm continues it still continues to tune the
nonlinear part of the approximator, both in the region around
x = −2 and in the high frequency region around x = 1.

★ In particular, consider Figure 148, at j = 12, and we see that
while it has tuned the parameters some, it is not much different
in the x = −2 region.
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Figure 148: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy
system, mapping shape at iteration j = 12.
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★ It is, however, having difficulties in the x = 1 region due to the
high frequency behavior.

• It seems that for this example, for higher numbers of iterations,
it tends to leave the approximator structure near x = −2
pretty much as it is and it tries to “fix” the part near x = 1.

• Consider the mapping at iteration j = 15 which is shown in
Figure 149 and notice that in the x = 1 region there is a
significant change in the nonlinear shape.
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Figure 149: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy
system, mapping shape at iteration j = 15.
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★ It tends to keep moving this shape around near x = 1 to try to
improve accuracy.

• Now, this is where the issue of termination arises.

➙ Do you terminate at j = 12 and declare success?

• Do you try to run the algorithm for many more iterations to
see if it can “allocate” more approximator structure to the
x = 1 high frequency region to improve the accuracy further?

• If you use more iterations will the overall approximation
accuracy improve?

➙ Or, will it get even worse that it is here?

➙ These are all important issues, but they tend to be very
application dependent.

• It is best if you are aware of all these issues and experiments
with the particular application at hand to try to get the best
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possible results (where the definition of “best” certainly
depends on the constraints of the particular application).

Overtraining, Overfitting, and Generalization

• Next, we consider the case where M = 13, that is a much
smaller data set than used above.

➙ We still use R = 11 rules and tune 44 parameters, so our
number of parameters is greater than the number of data
points.

• We use our earlier choice of initial parameters as c1
1 = −5,

c2
1 = −4, up to c11

1 = 5 with all the spreads as 0.5.

• Also, we use λ = 0.5 as earlier.

★ In Figure 150 we show the mapping shape at j = 1, and we see
that it picks a reaonable shape considering how little
information it has been given.
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Figure 150: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy
system, mapping shape at iteration j = 1, M = 13.
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➙ There is, however, a problem when we train with so little data
and so many parameters that becomes even clearer if we allow
a few more iterations to occur.

• In particular, consider Figure 151, where the mapping is shown
at j = 12.
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Figure 151: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy
system, mapping shape at iteration j = 12, M = 13.
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★ We see that the algorithm, in one sense, does a very good job:
It matches the training data almost exactly at every point.

★ However, this causes a problem since at points outside the
training data, the matching to the unknown function is poor
(consider, e.g., the large peak near x = 1, where even though
the mapping goes through one point in that region, we know its
shape is not appropriate for the problem at hand).

➙ This is called poor “generalization.”

★ If the approximator generalizes well, then it will produce a
good interpolation between the training data, not one that
provides large oscillations between the data.

• Moreover, if you study Figure 151 carefully (and compare it to
Figure 129 when noise is not added to the function), as we had
seen in the least squares case, the approximator is failing also
in the sense that it is trying to match the noise in the function
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(i.e., it is exhibiting overfitting).

➙ How do we avoid these problems?

• First, you would normally never pick p > M , that is, you will
normally have fewer parameters than training data pairs.

• Next, in some applications you need to make sure that you do
not “overtrain,” that is, use too many iterations of the gradient
update method.

• Sometimes, this can result in forcing the approximator to
match exactly at the data pairs at the expense of performing
poor generalization (i.e., poor interpolation between the
training data).

• Sometimes, the use of a “validation set” can help to detect
when poor generalization is occuring and the updating can be
terminated.
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Approximation Error Measures: Using a Test Set

➙ Notice that we have been glossing over the issues of the use of a
“test set” Γ for evaluating the approximation quality of our
approximators, and instead simply have been relying on visual
inspection of the plots to comment on approximation accuracy.

• Generally, for more complex multidimensional applications this
is not a good approach and you will want to use some type of
numerical measure of approximation accuracy where you
measure the accuracy both at the training data points and at
other points (to test interpolation and extrapolation).
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Matlab for Training Multilayer Neural Networks and Fuzzy Systems

➙ Matlab Neural Networks Toolbox.

• Matlab Fuzzy Systems Toolbox.

• Matlab Optimization Toolbox.

➙ There are many other software packages available.
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Clustering for Classifiers and Approximators

➙ Can use gradient (and other) methods to construct “classifiers”

• Classifiers seek to indicate which “class” an input vector lies in

➙ Training data: pairings between input vectors and classes (e.g.,
numbered by 1, 2, . . . , N)

➙ A function approximation problem!

• But often think of training to find an underlying probability
density function (that indicates the likelihood that the input
vector lies in a certain class).
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Adaptive Control

• Some control tasks are instinctual

• Some must be learned

➙ How do learning and evolution, both adaptive methods, apply
to the development of control systems?

➙ Here, study how to use adaptation in on-line control.

➙ On-line optimization for adaptation (also heuristic adaptive
methods) and stable adaptive methods.
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Strategies for Adaptive Control

PlantController

System
identification

Controller
designer

r(t) u(t) y(t)

Plant
parameters

Controller
parameters

Figure 152: Indirect adaptive control.
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PlantController

Adaptation
mechanism

r(t) u(t) y(t)

Figure 153: Direct adaptive control.

➙ Can use approximator structures for model (indirect case) or
controller (direct case)

➙ Can use recursive least squares, gradient methods,
genetic/foraging algorithms for adapting (tuning) the
approximator.
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Stable Adaptive Fuzzy/Neural Control

Class of Nonlinear Systems

Feedback Linearizable Continuous Time Nonlinear
Systems

➙ Consider the plant

ẋ = f(x) + g(x)u (55)

y = h(x) (56)

where x = [x1, . . . , xn]� is the state vector, u is the (scalar)
input, y is the (scalar) output of the plant and functions f(x),
g(x), and h(x) are smooth.

➙ Let Ld
gh(x) be the dth Lie derivative of h(x) with respect to g

Lgh(x) =
(

∂h

∂x

)�
g(x)
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and, for example,

L2
gh(x) = Lg(Lgh(x))

➙ A system is said to have “strong relative degree” d if

Lgh(x) = LgLfh(x) =, · · · ,= LgL
d−2
f h(x) = 0

and LgL
d−1
f h(x) is bounded away from zero for all x.

• If the system has strong relative degree d, then

ż1 = z2 = Lfh(x)
...

żd−1 = zr = Ld−1
f h(x)

żd = Ld
fh(x) + LgL

d−1
f h(x)u (57)

with z1 = y

➙ If we let y(d) denote the dth derivative of y, may be rewritten
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as
y(d) = (αk(t) + α(x)) + (βk(t) + β(x))u (58)

• Here, we assume that y = h(x) = x1.

• We will assume that d = n here since it simplifies the stability
analysis.

➙ We will assume that if the zi, i = 1, 2, . . . , d = n (i.e.,
y, ẏ, . . . , y(d)), are bounded, then so are the xi,
i = 1, 2, . . . , d = n.

• It is assumed that for some β0 > 0, we have

|βk(t) + β(x)| ≥ β0

so that it is bounded away from zero (could assume
βk(t) + β(x) < 0).

➙ We will assume that αk(t) and βk(t) are known components of
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the dynamics of the plant (that may depend on the state) or
known exogenous time dependent signals and that α(x) and
β(x) represent nonlinear dynamics of the plant that are
unknown.

• It is assumed that if x is a bounded state vector, then α(x),
β(x), αk(t), and βk(t) are bounded signals.

• Throughout the analysis to follow, both αk(t) and βk(t) may
be set to zero for all t ≥ 0.

Example: Ball on a Beam Experiment

Motor Beam

x1(t)

u

Ball

Figure 154: Ball on a beam experiment.
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ẋ1(t) = x2(t)

ẋ2(t) = ā tan−1(b̄x2(t))
(
exp(−c̄x2

2(t)) − 1
)
− d̄u(t) (59)

where x1(t) is the distance from the center of the ball to one
end of the beam, u(t) is the angle the beam makes with the
horizontal that is controlled with a motor, and ā = 9.84,
b̄ = 100, c̄ = 104, and d̄ = 514.96.

• While d̄ is unknown we assume due to modeling considerations
and physical constraints d̄ ∈ [500, 525].

➙ We have y = x1 and

ẋ = f(x) + g(x)u
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where

f(x) =


 x2

ā tan−1(b̄x2(t))
(
exp(−c̄x2

2(t)) − 1
)



and

g(x) =


 0

−d̄




➙ Relative degree? Take derivatives of the output until the input
appears

ẏ = ḣ(x) =
(

∂h

∂x

)�
ẋ

=
(

∂h

∂x

)�
f(x) +

(
∂h

∂x

)�
g(x)u

= Lfh(x) + Lgh(x)u
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and for our case
∂h

∂x
= [1, 0]�

so
ẏ = Lfh(x) = x2

(which is easy to see from the definition of the plant).

• Since Lgh(x) = 0 we need to find the second derivative of the
plant output.

• Doing this we find (defining αk = βk = 0

ÿ = L2
fh(x) + LgLfh(x)u

= ẋ2

= ā tan−1(b̄x2(t))
(
exp(−c̄x2

2(t)) − 1
)
− d̄u(t)

= α(x) + β(x)u
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and

LgLfh(x) =
(

∂x2

∂x

)�

 0

−d̄


 = [0, 1]


 0

−d̄


 = −d̄ �= 0

so that the relative degree is d = n = 2.

• Also, notice that if y = z1 and ẏ = z2 are bounded, then x1 and
x2 are bounded.

➙ Notice, however that there does not exist a β0 > 0 such that
β(x) ≥ β0 since β(x) is known to lie in a fixed interval of
negative numbers.
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Indirect Adaptive Control

Reference Model, Trajectory to be Tracked

➙ We want the output y(t) and its derivatives ẏ(t), . . . , y(d)(t) to
track a “reference trajectory” ym(t) and its derivatives
ẏm(t), . . . , y(d)

m (t), respectively.

• We will assume that ym(t) and its derivatives ẏm(t), . . . , y(d)
m (t),

are bounded.

• A convenient way to specify the reference trajectory signals is
to use a “reference model.”

➙ One approach: If we have a reference input r(t), with Laplace
transform R(s), and Ym(s) is the Laplace transform of ym(t),

Ym(s)
R(s)

=
q(s)
p(s)

=
q0

sd + pd−1sd−1 + · · · + p0

is a reference model where p(s) is the pole polynomial with
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stable roots and q0 is a constant.

• As an example, suppose that r(t) = 0, t ≥ 0, so we want
y(t) → 0 as t → ∞.

• For this, we could simply choose

ym(t) = ẏm(t) = · · · = y(d)
m (t) = 0

and this would represent a (perhaps challenging) request to
immediately have the output and its derivatives track zero.

➙ To provide a request that the output go to zero “more gently,”
or according to some dynamics, we could use r(t) = 0, t ≥ 0, so
R(s) = 0 and

p(s)Ym(s) = 0

or
(sd + pd−1s

d−1 + · · · + p0)Ym(s) = 0
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or
y(d)

m (t) + pd−1y
(d−1)
m (t) + · · · + p0ym(t) = 0

• The parameters pd−1, . . . , p0 specify the dynamics of how ym(t)
evolves over time and hence specifies how we would like y(t)
and its derivatives to evolve over time.

On-Line Approximators for Plant Nonlinearities

➙ Approximate the functions α(x) and β(x) with

θ�α φα(x)

and
θ�β φβ(x)

by adjusting the θα and θβ .

➙ The parameter vectors, θα and θβ are assumed to be defined
within the compact parameter sets Ωα and Ωβ , respectively.

➙ In addition, we define the subspace Sx ⊆ �n as the space



457

through which the state trajectory may travel under
closed-loop control (a known compact set).

• Notice that

α(x) = θ∗�α φα(x) + wα(x) (60)

β(x) = θ∗�β φβ(x) + wβ(x) (61)

where

θ∗α = arg min
θα∈Ωα

(
sup
x∈Sx

|θ�α φα(x) − α(x)|
)

(62)

θ∗β = arg min
θβ∈Ωβ

(
sup
x∈Sx

|θ�β φβ(x) − β(x)|
)

(63)

so that wα(x) and wβ(x) are approximation errors which arise
when α(x) and β(x) are represented by finite size
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approximators.

➙ We assume that
Wα(x) ≥ |wα(x)|

and
Wβ(x) ≥ |wβ(x)|

where Wα(x) and Wβ(x) are known state dependent bounds on
the error in representing the actual system with approximators.

➙ Since we will use universal approximators both |wα(x)| and
|wβ(x)| may be made arbitrarily small by a proper choice of
the approximator since α(x) and β(x) are smooth (of course
this may require an arbitrarily large number of parameters p).

➙ It is important to keep in mind that Wα(x) and Wβ(x)
represent the magnitude of error between the actual nonlinear
functions describing the system dynamics and the
approximators when the “best” parameters are used, and we do
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not need to know these best parameters.

➙ The approximations of α(x) and β(x) of the actual system are

α̂(x) = θ�α (t)φα(x) (64)

β̂(x) = θ�β (t)φβ(x) (65)

where the vectors θα(t) and θβ(t) are updated on line.

➙ The parameter errors are

θ̃α(t) = θα(t) − θ∗α (66)

θ̃β(t) = θβ(t) − θ∗β (67)

➙ Consider the indirect adaptive control law

u = uce + usi (68)
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➙ The control law is comprised of a “certainty equivalence”
control term uce and a “sliding mode” term usi. We will
introduce each of these next.

Certainty Equivalence Control Term

➙ Let the tracking error be

e(t) = ym(t) − y(t)

➙ Let
K = [k0, k1, . . . , kd−2, 1]�

be a vector of design parameters (whose choice we will discuss
below) and

es(t) = e(d−1)(t) + kd−2e
(d−2)(t) + · · · + k1ė(t) + k0e(t)
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• Also, for convenience below we let

ēs(t) = kd−2e
(d−1)(t) + · · · + k0ė(t)

so that
ēs(t) = ės(t) − e(d)(t)

• Let
L(s) = sd−1 + kd−2s

d−2 + · · · + k1s + k0

and assume that the design parameters in K are chosen so that
L(s) has its roots in the (open) left half plane.

➙ Our goal is to drive es(t) → 0 as t → ∞.

➙ Notice that es(t) is a measure of the tracking error.

• As an example, consider the case where d = 2 so K = [k0, 1]�

and
es(t) = ė(t) + k0e(t)
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• For L(s) to have its roots in the left half plane we have k0 > 0.

• Suppose that we have es(t) = 0.

• Then,
ė(t) + k0e(t) = 0

so that
ė(t) = −k0e(t)

so that e(t) → 0 as t → ∞ and hence y(t) → ym(t) as t → ∞.

• The shape of the error dynamics is dictated by the choice of k0.

• A large k0 represents that we would like e(t) to go to zero fast,
while a small value of k0 represents that we can accept that
y(t) may not achieve good tracking of ym(t) as fast.

• Note that you do not always want to choose k0 large because if
you make an unreasonable request in the speed of the response
the controller may try to use too much control energy to
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achieve it.

➙ The certainty equivalence control term is defined as

uce =
1

βk(t) + β̂(x)
(− (αk(t) + α̂(x)) + ν(t)) (69)

where
ν(t) = y(d)

m + γes + ēs

and γ > 0 is a design parameter whose choice we will discuss
below.

➙ As in the discrete-time case we will use projection to ensure
that βk(t) + β̂(x) is bounded away from zero so that uce is
well-defined.

• The dth derivative of the output error is e(d) = y
(d)
m − y(d) so

e(d) = y(d)
m − (αk(t) + α(x)) − (βk(t) + β(x)) u(t)
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and since u = uce + usi

e(d) = y(d)
m − (αk(t) + α(x)) − (70)

βk(t) + β(x)
βk(t) + β̂(x)

(− (αk(t) + α̂(x)) + ν(t)) − (βk(t) + β(x))usi

• Note that the first two terms y
(d)
m − (αk(t) + α(x)) =

= y(d)
m − (αk(t) + α̂(x)) − α(x) + α̂(x)

= (− (αk(t) + α̂(x)) + ν(t)) − α(x) + α̂(x) − ν(t) + y(d)
m

= (− (αk(t) + α̂(x)) + ν(t)) − α(x) + α̂(x) − γes − ēs

• Substituting this into Equation (70) we get
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e(d) =

(
1 − βk(t) + β(x)

βk(t) + β̂(x)

)
(−(αk(t) + α̂(x)) + ν(t)) − α(x) + α̂(x)

−γes − ēs − (βk(t) + β(x))usi

= (α̂(x) − α(x)) +
(
β̂(x) − β(x)

)
uce (71)

−γes − ēs − (βk(t) + β(x))usi

• Since ēs = ės − e(d)

➙ We get a type of linear relationship between a tracking error
measure and model error.

ės +γes = (α̂(x) − α(x))+
(
β̂(x) − β(x)

)
uce−(βk(t)+β(x))usi

(72)
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Parameter Update Laws

➙ Consider the following Lyapunov function candidate

Vi =
1
2
e2
s +

1
2ηα

θ̃�α θ̃α +
1

2ηβ
θ̃�β θ̃β (73)

where ηα > 0 and ηβ > 0 are design parameters whose choice
we will discuss below.

➙ This Lyapunov function quantifies both the error in tracking
and in the parameter estimates.

➙ Using vector derivatives, the time derivative of Equation (73) is

V̇i = esės +
1
ηα

θ̃�α
˙̃θα +

1
ηβ

θ̃�β
˙̃θβ (74)
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• Substituting in the derivative of the tracking error, ės from
Equation (72), yields V̇i =

es

(
−γes + (α̂(x) − α(x)) + (β̂(x) − β(x))uce − (βk(t) + β(x))usi

)
+

1

ηα
θ̃�

α
˙̃
θα +

1

ηβ
θ̃�

β
˙̃
θβ (75)

• Notice that

α̂(x)−α(x) = θ�α φα(x)− θ∗�α φα(x)−wα(x) = θ̃�α φα(x)−wα(x)

and similarly for β̂(x) − β(x).

Hence, V̇i =

−γe2
s +(

θ̃�
α φα(x) − wα(x) + θ̃�

β φβ(x)uce − wβ(x)uce − (βk(t) + β(x))usi

)
es

+
1

ηα
θ̃�

α
˙̃
θα +

1

ηβ
θ̃�

β
˙̃
θβ
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➙ Consider the following (gradient) update laws

θ̇α(t) = −ηαφα(x)es (76)

θ̇β(t) = −ηβφβ(x)esuce (77)

• We see that ηα > 0 and ηβ > 0 are adaptation gains.

• Picking these gains larger will indicate that you want a faster
adaptation.

• Note that since we assume that the ideal parameters are
constant ˙̃

θα = θ̇α and ˙̃
θβ = θ̇β .

• Now, with this notice that

1
ηα

θ̃�α
˙̃θα = −θ̃�α φα(x)es

and
1
ηβ

θ̃�β
˙̃θβ = −θ̃�β φβ(x)esuce
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so

V̇i = −γe2
s +
(
θ̃�α φα(x) − wα(x) + θ̃�β φβ(x)uce − wβ(x)uce

)
es

−(βk(t) + β(x))usies − θ̃�α φα(x)es − θ̃�β φβ(x)esuce

and

V̇i = −γe2
s − (wα(x) + wβ(x)uce)es − (βk(t) + β(x))usies (78)
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Projection Modification to Parameter Update Laws

➙ The above adaptation laws in Equations (76) and (77) will not
guarantee that θα ∈ Ωα and θβ ∈ Ωβ so we will use projection
to ensure this (e.g., to make sure that (βk(t) + β̂(x)) ≥ β0).

• Suppose in particular that we know that the ith component of
θ∗α (θ∗β) is in the (known) interval

θ∗αi
∈ [θmin

αi
, θmax

αi
]

and
θ∗βi

∈ [θmin
βi

, θmax
βi

]

• Suppose we place the intial values of the parameters in these
ranges.

➙ Also, if θαi
(t) and θβi

(t) are strictly within these ranges then
you use the update given by the update formulas in
Equations (76) and (77).



471

➙ If, however, θαi
(t) or θβi

(t) is on the boundary of its interval
and the update formula indicates that it should be moved
outside the interval, then you leave it on the boundary of the
interval.

➙ However, if it is on the boundary and the update law indicates
that it should be moved on the boundary or to within the
interval, then the update from Equations (76) and (77) is
allowed.

• Returning to the stability analysis, clearly since θ∗αi
and θ∗βi

are
within the allowable ranges, this projection modification to the
update laws will always result in a parameter estimation error
that will decrease Vi at least as much as if the projection were
not used; hence, the right hand side of Equation (78) will over
bound the V̇i that would result if projection is used.
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➙ For this reason, we conclude that

V̇i ≤ −γe2
s − (wα(x) + wβ(x)uce)es − (βk(t) + β(x))usies (79)

Sliding Mode Control Term

• To ensure that Equation (79) is less than or equal to zero, we
choose

usi =
(Wα(x) + Wβ(x)|uce|)

β0
sgn(es) (80)

where

sgn(es) =


 1 es > 0

−1 es < 0
(81)

• Note that

−(wα(x) + wβ(x)uce)es ≤ (|wα(x)| + |wβ(x)uce|) |es|
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• Hence,

V̇i ≤ −γe2
s + (|wα(x)| + |wβ(x)uce|)|es|

−es(βk(t) + β(x))
(

(Wα(x) + Wβ(x)|uce|)
β0

sgn(es)
)

• Now, considering the last term in this equation and noting that

(βk(t) + β(x))
β0

≥ 1

we have

V̇i ≤ −γe2
s + |wα(x)||es| + |wβ(x)uce||es|

− essgn(es)Wα(x) − essgn(es)Wβ(x)|uce|

• Notice that |es| = essgn(es) (except at es = 0) and recall that
|wα(x)| ≤ Wα(x) and |wβ(x)| ≤ Wβ(x) so

|wα(x)||es| − essgn(es)Wα(x) =
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|es|(|wα(x)| − Wα(x)) ≤ 0

and

|wβ(x)uce||es|−essgn(es)Wβ(x)|uce| = |es|(|wβ(x)uce|−Wβ(x)|uce|) ≤ 0

so
V̇i ≤ −γe2

s (82)

➙ Since γe2
s ≥ 0 this shows that Vi, which is a measure of the

tracking error and parameter estimation error, is a
nonincreasing function of time.

➙ Notice that γ > 0 has an influence on how fast Vi → 0.

➙ By picking γ larger you will often get faster convergence of the
tracking error.
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Asymptotic Convergence of the Tracking Error and
Boundedness of Signals

• Given the above assumptions the following hold:

– The plant output is such that y, ẏ, . . . , y(d−1) are bounded.

– The input signals u, uce, and usi are bounded.

– The parameters θα(t) and θβ(t) are bounded.

– We get asymptotic tracking, that is,

lim
t→∞

e(t) = 0

• To see this, first note that since Vi is a positive function and

V̇i ≤ −γe2
s (83)

we know that es, θα, and θβ are bounded.

• Since es is bounded and ym and its derivatives (i.e.,
ym, ẏm, . . . , y

(d−1)
m ) are bounded, we know that y, ẏ, . . . , y(d−1)



476

are bounded.

• Hence, by assumption we have that z and hence x are bounded.

• Hence, α(x), α̂(x), αk(t), β(x), β̂(x), and βk(t) are bounded.

• Since x is bounded and (βk(t) + β̂(x)) ≥ β0, uce and usi and
hence u are bounded.

• Next, note that∫ ∞

0

γe2
sdt ≤ −

∫ ∞

0

V̇idt = Vi(0) − Vi(∞) (84)

• This establishes that es ∈ L2 (L2 = {z(t) :
∫∞
0

z2(t)dt < ∞})
since Vi(0) and Vi(∞) are bounded.

• Note that via Equation (72) ės is bounded.

• Hence, since es and ės are bounded and es ∈ L2, we have that
limt→∞ es(t) = 0 (this is what is called Barbalat’s lemma).
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• It should be clear then, via the definition of es(t), that
limt→∞ e(t) = 0.

Smoothed Control Law

➙ It is possible to augment the above control law with a
“bounding control term” that will ensure that the states stay
bounded within some region and this can be useful in defining
the approximator structures to provide good approximation
properties in the region where the states will be.

➙ It is possible to reduce the high frequency signals that can
result from the sliding mode control term by using a “smoothed
version” of this signal (i.e., one that has a smooth transition
from negative to positive values, not the sgn(es) term).

➙ In this case, however, you only get convergence to an
ε-neighborhood of es = 0
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Direct Adaptive Control

➙ Can get the same theoretical results via a “direct” adaptive
control approach.

➙ Approximate an unknown controller

➙ Which approach, direct or indirect, is better?
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Design Example: Aircraft Wing Rock Regulation

➙ Aircraft wing rock is a limit cycling oscillation in the aircraft
roll angle φ and roll rate φ̇.

➙ If δA is the actuator output, a model of this phenomenon is
given by

φ̈ = a1φ + a2φ̇ + a3φ̇
3 + a4φ

2φ̇ + a5φφ̇2 + bδA

where ai, i = 1, 2, 3, 4, 5, and b, are constant but unknown.

• We assume that we know the sign of b.

• Choose the state vector x = [x1, x2, x3]� with x1 = φ,
x2 = p = φ̇, and x3 = δA.

• Suppose that we use a first order model to represent the
actuator dynamics of the aileron (the control surface at the
outer part of the wing).
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• Then we have

ẋ1 = x2

ẋ2 = a1x1 + a2x2 + a3x
3
2 + a4x

2
1x2 + a5x1x

2
2 + bx3

ẋ3 = −1
τ

x3 +
1
τ

u

y = x1

where u is the control input to the actuator and τ is the
aileron time constant.

• For an angle of attack of 21.5 degrees, a1 = −0.0148927,
a2 = 0.0415424, a3 = 0.01668756, a4 = −0.06578382,
a5 = 0.08578836.

• Also, b = 1.5 and τ = 1
15 .

• Take these as constant nominal values that you do not know.

• Suppose, however, that you know that b ∈ [1, 2] and
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τ ∈ [ 1
20 , 1

10 ].

➙ Also, assume that you know that there is a constant but
unknown gain that multiplies the input u (i.e., assume that you
know it is not a nonlinear function of x); however, suppose that
you do not know that the particular plant nonlinearities are of
the form indicated above, or that the parameters appear as
they do (i.e., do not use the fact that they enter linearly).

• Suppose that you want the output y(t) to track the reference
signal ym(t) that is zero, and has all its derivatives identical to
zero, for all time.

• Assume that you have sensors to measure y, ẏ, and ÿ.

• We will use x(0) = [0.4, 0, 0]� in all our simulations.
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Indirect Adaptive Controller Development and Results

➙ The relative degree is d = n = 3.

➙ Assume that αk = βk = 0.

➙ We use β0 = 10.

➙ After a bit of tuning we chose k0 = 100, k1 = 20, and γ = 2.

➙ Also, we tuned the adaptation gains to get fast enough
adaptation to meet the objectives.

➙ In particular, we used ηα = ηβ = 2.

➙ Since we assume that we know that b is an unknown constant
we can simply use a constant to estimate it

• We use projection for b to keep it in range.

➙ To estimate the α term we will use a Takagi-Sugeno fuzzy
system but as an input to the premise terms we will only use
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x1 and x2 (key system variables where nonlinearities enter),
while we will use all three state variables as inputs to the
consequent (we are trying to avoid problems with
computational complexity).

• We placed the centers of the membership functions on the two
universes of discourse at −2, 0, and 2, with the spread values
all equal to 2, and used all possible combinations of rules so we
get R = 9 rules.

• This means that we will tune 36 parameters for our
approximator.

• We chose Wα = 0.01 (simply a guess) and Wβ = 0 (since we
know that ideally our approximator can succeed).
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Figure 155: Wing rock controller results, roll angle.
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Figure 156: Wing rock controller results, θβ .
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Figure 157: Wing rock controller results, components of θα.
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EVOLUTION

Focus:

➙ Genetic algorithms (simulated evolution)

➙ Stochastic optimization for design (response surface methods,
SPSA, set-based, robustness, control design, learning system
design)

➙ Evolutionary adaptive control (GAs for on-line adaptation)
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Genetic Algorithms

• GA uses Darwin’s theory on natural selection, and Mendel’s
work in genetics on inheritance, to simulate biological
evolution.

Figure 158: Flightless cormorant.
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➙ Engineering perspective—GA is a stochastic optimization
technique that evaluates more than one area of the search
space.

• If it “gets stuck” at a local optimum, it tries via multiple
search points to simultaneously find other parts of the search
space and “jump out” of the local optimum to a global one.

The Population of Individuals

• The “fitness function” measures the fitness of an individual to
survive, mate, and produce offspring in a population of
individuals for a given environment.

➙ The genetic algorithm will seek to maximize the fitness function
J̄(θ) by selecting the individuals that we represent with θ.
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Strings, Chomosomes, Genes, Alleles, and Encodings

• A string θ represents a chromosome

Gene = digit location

Values here = alleles

String of genes = chromosome

Figure 159: String for representing an individual.

• A chromosome is a string of “genes” that can can take on
different “alleles” that are encoded with number systems in a
computer.

• Use convention that a gene is a “digit location” that can take
on different values from a number system (i.e., different types
of alleles).

• For instance, in a base-2 number system, alleles come from the
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set {0, 1}, while in a base-10 number system, alleles come from
the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

➙ Depending on the chosen number system, may need to encode
and decode.

➙ Here, study base-2 or base-10 number systems but in examples
use base-10 representation to simplify encoding and decoding.

• A 13-position base-10 chromosome:

8219345127066

➙ Add a gene for the sign of the number (either “+” or “−”) and
fix a position for the decimal point.

• For the above chromosome we could have

+821934.5127066

(remember where the decimal point is).
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➙ You could also use a floating point representation.

Proportional-Integral-Derivative Controllers: Encoding

• For instance, suppose that you want to evolve a
proportional-integral-derivative (PID) controller (e.g., using a
fitness function that quantifies closed-loop performance and is
evaluated by repeated simulations).

• Three gains Kp, Ki, and Kd and that at some time we have

Kp = +5.12, Ki = 0.1, Kd = −2.137

then we would represent this in a chromosome as

+051200 + 001000 − 021370

which is a concatenation of the digits, where we assume that
there are six digits for the representation of each parameter
(two before the decimal point and four after it) plus the sign
digit (this is why you see the extra padding of zeros).
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• We see that each chromosome will have a certain structure (its
“genotype” in biological terms, and the entire genetic structure
is referred to as the “genome”).

• Here, we will use the term from biology “phenotype,” to refer
to the whole structure of the controller that is to be envolved;
hence, in this case the phenotype is

Kpe(t) + Ki

∫ t

0

e(τ )dτ + Kd
de(t)
dt

where e = r − y is the error input to the PID controller, r is
the reference input, and y is the output of the plant.

➙ Similarly, to encode lead-lag compensators, state feedback
controllers, nonlinear controllers, fuzzy systems, neural
networks, planning systems, attentional systems, learning
systems, etc. Structure also.
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The Population of Individuals

• Let θj
i (k) be a single parameter at time k (a fixed-length string

with sign digit), and suppose that chromosome j is composed
of p of these parameters, which are sometimes called “traits” .

• Let, jth chromosome,

θj(k) =
[
θj
1(k), θj

2(k), . . . , θj
p(k)

]�
• Concatention–vector representation, use both.

• The population of individuals at time k is

P (k) =
{
θj(k) : j = 1, 2, . . . , S

}
(85)

➙ S big enough to cover search space, but not too big to hurt
computational complexity. S time-varying?
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Genetic Operations

• The population P (k) at time k is often referred to as the
“generation” of individuals at time k.

➙ Darwin: Most qualified individuals survive to mate and
produce off-spring.

• We quantify “most qualified” via an individual’s fitness
J̄(θj(k)) at time k.

• For selection, we create a “mating pool” at time k, something
every individual would like to get into, which we denote by

M(k) =
{
mj(k) : j = 1, 2, . . . , S

}
(86)

• The mating pool is the set of chromosomes that are selected for
mating.
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• Here, we perform selection to decide who gets in the mating
pool, mate the individuals via crossover, then induce mutations.

• After mutation we get a modified mating pool at time k, M(k).

➙ To form the next generation for the population, we let

P (k + 1) = M(k)

➙ Evolution occurs as we go from a generation at time k to the
next generation at time k + 1.
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Selection

Fitness-Proportionate Selection:

➙ Select an individual for mating by letting each mj(k) be equal
to θi(k) ∈ P (k) with probability

pi =
J̄(θi(k))∑S

j=1 J̄(θj(k))
(87)

➙ Use the analogy of spinning a unit circumference roulette wheel
where the wheel is cut like a pie into S regions where the ith

region is associated with the ith element of P (k).

➙ Clearly, individuals who are more fit will end up with more
copies in the mating pool; hence, chromosomes with
larger-than-average fitness will embody a greater portion of the
next generation.

• At the same time, due to the probabilistic nature of the
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selection process, it is possible that some relatively unfit
individuals may end up in the mating pool.

Other Selection Strategies:

• Rank and “kill” fixed number of unfit individuals before
selection.

➙ “Elitist” strategies where very fit individuals are “cloned” into
the next generation.
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Reproduction Phase, Crossover

• We think of crossover as mating in biological terms, which at a
fundamental biological level involves the process of combining
(mixing) chromosomes.

Figure 160: Chomosome swapping in mating.
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Figure 161: Pollenation in corn, and resulting “offspring.”

• The crossover operation operates on the mating pool M(k).

• “Crossover probability” pc (usually chosen to be near one since
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when mating occurs in biological systems, genetic material is
swapped between the parents).

Single-Point Crossover:

➙ Single-point crossover (popular):

1. Randomly pair off the individuals in the mating pool M(k).
There are many ways to do this. For instance, you could
simply pick each individual from the mating pool and then
randomly select a different individual for them to mate with.

2. Consider chromosome pair θj , θi that was formed in step 1.
Generate a random number r ∈ [0, 1].

(a) If r < pc then cross over θj and θi. To cross over these
chromosomes select at random a “cross site” and
exchange all the digits to the right of the cross site of one
string with those of the other. This process is pictured in
Figure 162.
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θ i 1 2 3 4 5 6 7 8 9 10 11 12 13

θ j 1 2 3 4 5 6 7 8 9 10 11 12 13

Cross site

Switch these two parts of the strings

Figure 162: Crossover operation example.

(b) If r > pc then we will not cross over; hence, we do not
modify the strings, and we go to the mutation operation
below.

3. Repeat step 2 for each pair of strings that is in M(k).

• As an example, suppose that S = 10 and that in step 1 above
we randomly pair off the chromosomes.

• Suppose that θ5 and θ9 (j = 5, i = 9) are paired off where

θ5 = +2.9845
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and
θ9 = +1.9322

• Suppose that pc = 0.9 and that when we randomly generate r

we get r = 0.34.

• Hence, by step 2 we will cross over θ5 and θ9.

• According to step 2 we randomly pick the cross site.

• Suppose that it is chosen to be position three on the string.

• In this case the strings that are produced by crossover are

θ5 = +2.9322

and
θ9 = +1.9845

➙ Basically, crossover perturbs the parameters near good
positions to try to find better solutions to the optimization
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problem.

➙ It tends to help perform a localized search around the more fit
individuals.

• Note: With fitness-proportionate selection we can have
multiple copies of an individual in the mating pool; hence, it is
possible that an individual will mate with itself in this case.

Other Crossover Methods:

➙ Multi-point crossover

➙ Only allow “similar” individuals to mate or “spatially” restrict
mating.
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Reproduction Phase, Mutation

• Like crossover, mutation modifies the mating pool (i.e., after
selection has taken place).

• The operation of mutation is normally performed on the
elements in the mating pool after crossover has been performed.

➙ The biological analog of our mutation operation is the random
mutation of genetic material.

Gene Mutations:

• To perform mutation in the computer, first choose a mutation
probability pm.

➙ With probability pm, the most common approach is to change
(mutate) each gene location on each chromosome randomly to
a member of the number system being used.
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• For instance, in a base-2 genetic algorithm, we could mutate

1010111

to
1011111

where the fourth bit was mutated to one.

• What do you do for base-10?

➙ Basically, mutation provides random excursions into new parts
of the search space.

➙ It is the main mechanism (crossover can also help) that tries
(via luck) to make sure that we do not get stuck at a local
maxima and that we seek to explore other areas of the search
space to help find a global maximum for J̄(θ).
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• Usually, the mutation probability is chosen to be quite small to
avoid degradation to exhaustive search via a random walk in
the search space.

Other Mutation Methods:

➙ Mutate a set of genes (a trait)

➙ Change pm over time (e.g. decrease it).
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Example: Solving an Optimization Problem
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Figure 163: Nonlinear function with multiple extremum points—a
fitness function, do not know analytically.

Genetic Algorithm Design

• Matlab + base-10 encoding.



509

• We use two digits before the decimal point and four after it for
a total number of six digits (clearly this constraints the
accuracy that we can achieve in the solution to the
optimization problem).

• Random or all at zero.

• Know the size of the domain that we want to optimize over and
use “projection”

• Since, in Figure 163, the function goes below zero we will shift
the whole plot up by a constant (a value of 5 in this case).

• Just shifts fitness values.

➙ Why perform this “shift”? We need postive fitness due to
selection method.

• Use fitness-proportionate selection, single-point crossover, and
to pair off individuals for mating we pick each one in the
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mating pool and randomly select a mate for it.

• For a termination criterion we allow no more than a fixed
maximum number of iterations (here, 1000).

• Also, we terminate the program when the best fitness in the
population has not changed more than ε = 0.01 over the last
100 generations.

Algorithm Performance and Tuning

Random Initial Population:

➙ Use pc = 0.8, pm = 0.05, S = 20, random initial population.

• Put on contour plot points that represent individuals at some
iteration.
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Figure 164: Contour plot of surface in Figure 163 with random initial
population.
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Figure 165: Fitness and optimization parameter evolution, with ran-
dom initial population.

★ The algorithm performs well, but it does find the best
individual, then later it loses it.

★ Note that if you run the algorithm again it may not do as well
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since it may be unlucky in its random initial choices (this shows
why you may want a big population size; if it is big then it is
more likely that it will make at least one good initial choice).

Initial Population of all Zeros:

• All same but an initial population with all zeros.

★ Fails to find the optimum point by termination.
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Figure 166: Contour plot of surface in Figure 163 with initial popu-
lation of all zeros.
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Figure 167: Fitness and optimization parameter evolution, with ini-
tial population of all zeros.

Increased Mutation Probability:

• Next, pc = 0.8 and pm = 0.1 (a larger value than above) and
S = 20.
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★ Fails, mutation is destroying good solutions (i.e., it destroys the
progress of the method).
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Figure 168: Contour plot of surface in Figure 163 with random initial
population and higher mutation probability.
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Figure 169: Fitness and optimization parameter evolution, with ran-
dom initial population and higher mutation probability.

★ Mutation probability too high → “random walk” in the
parameter space → attribute its success to “dumb luck.”
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Decreased Crossover Probability:

• Next, pc = 0.5 (a smaller value than above) and pm = 0.05
(i.e., return it to its earlier value) and S = 20.

★ Lower crossover probability → does less local search between
good solutions.
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Figure 170: Contour plot of surface in Figure 163 with random initial
population and lower crossover probability.
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Figure 171: Fitness and optimization parameter evolution, with ran-
dom initial population and lower crossover probability.

★ If you make pc = 0.1 it fails to find a local optimum (at least
for one time the algorithm was run).

★ In this case it is passing too many individuals through the
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mating process without mixing genetic material; hence it
stagnates.

Increased Population Size:

• Next, pc = 0.8 and pm = 0.05 and consider S = 40 (i.e., twice
as big as earlier).

★ Still get convergence but increasing its size is not necessarily
good
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Figure 172: Contour plot of surface in Figure 163 with random initial
population and increased population size.
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Figure 173: Fitness and optimization parameter evolution, with ran-
dom initial population and increased population size.

★ Of course, we have to qualify this statement by saying “for this
run of the program, with these termination criteria, etc.”

★ This simulation was produced simply to make the point that
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bigger is not always better (even though for the population, for
some applications, this may generally be true).

Effects of Elitism:

• Next, pc = 0.8 and pm = 0.05 and S = 20.

• Now, however, we use elitism with a single elite member.

★ Quicker convergence (notice that the early termination
criterion was invoked) since crossover and mutation do not
alter the best individual.
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Figure 174: Contour plot of surface in Figure 163 with random initial
population and elitism.
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Figure 175: Fitness and optimization parameter evolution, with ran-
dom initial population and elitism.

★ Elitism successful for a variety of applications.

• Part of the population explores, another part remembers best
progress.
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Stochastic and Nongradient Optimization for

Design

Relevant Theories of Biological Evolution

➙ Evolution of Robust Organisms and Systems:

– Evolution (engineering design) is the design of optimized
robust organisms (systems), for typical events encountered
in an environment, and complexity may result depending on
the ecological niche (problem domain).

– “Highly optimized tolerance” (HOT) by J. Doyle et
al.—systems that have been designed, via engineering
methodology or evolution, to have optimized performance in
an uncertain environment.

– “Robust yet fragile”—Optimal robust designs are for a
certain set of conditions, and these designs are sensitive to
conditions they were not optimized for—robustness
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trade-offs. Get tolerance to some events at expense of
sensitivity to others, good design optimizes trade-offs
(“conservation principle” at work).

– Familiar concept in robust control (via “sensitivity
function”).

➙ Learning and Evolution: Synergistic Effects:

– Learning provides one approach to achieve robust behavior.

– Genes determine learning (e.g., example in mice), evolution
works on gene pool.

– Learning evolved. Why? Environment has static parts and
unknown but predictable parts. Organism simpler than
environment, can sense environment but cannot store
perfect representation, costs to store information
(physiologically), so it operates under uncertainty, with
potential to increase success via storage of information.
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– Organism will encode static part of environment? Instincts?

– Uncertain part? Store and try to predict potentially
successful so selective pressure for learning.

– Above robustness principles (trade-offs) apply—cannot
learn everything, so will be best at learning what is most
important for survival.

– The Baldwin Effect—learning can accelerate the evolution
of instincts! How? Higher probability of “genetic encoding”
of information about some aspect of the environment if
learning is present.

– Characteristics of the environment drive the construction of
an optimal balance between instincts and learning.

– Cultural influence on learning and evolution?
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Response Surface Methodology for Design

➙ An intuitive approach, based on surface construction (visually
appealing).

• Show via the tanker ship controller design problem

Proportional Derivative Controller Design for a Tanker Ship

• Design the Kp and Kd gains

δ = Kpe + Kdc

where e = ψr − ψ and c is the “change-in-error”

• The ith design is Ki
p and Ki

d.

• Performance objective uses a (discretized) linear first order
reference model

G(s) =
1

150

s + 1
150
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• ψr is input, output ψm.

➙ Conduct simulation for a specified reference input sequence and
the ith controller design, Ns values

Jcl(Ki
p,K

i
d, ψr) = w1

Ns∑
j=0

(ψ(j) − ψm(j))2 + w2

Ns∑
j=0

(δ(j))2 (88)

• Choose w1 = 1 and w2 = 0.01.



532

Constructing a Response Surface, Choosing “Optimal Gains”

• Grid the (Kp,Kd) “design space”

Kp ∈ [−1.5,−0.5]

and
Kd ∈ [−500, 100]

• Compute the performance index Jcl(Ki
p,Ki

d, ψr) in Equation 88
for nominal conditions, the same reference input sequence ψr,
w1, and w2.
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Figure 176: Response surface of Jcl for PD controller designs (best
gains are Kp = −3.3421 and Kd = −500).
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Figure 177: Closed-loop tanker response for best (Kp,Kd) gains as
indicated by the response surface in Figure 176.
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Figure 178: Response surface of Jcl for PD controller designs, “full”
tanker ship (best gains are Kp = −2.8684 (increased–make sense?)
and Kd = −500).
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Figure 179: Closed-loop tanker response for best (Kp,Kd) gains as
indicated by the response surface in Figure 178.
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Design Optimization Over Multiple Response Surfaces

➙ Can construct response surfaces for different ψr, noise, wind,
speeds, ship weights, etc.

• Theoretically infinite number of response surfaces, each one
corresponding to the infinite number of possible conditions that
the plant (environment) can present.

➙ Theoretically, you could then combine the response surfaces to
obtain a single performance measure and then find the
minimum point on the resulting surface and call it the “best
design” for all the conditions tested.

➙ Example: Sum the response surfaces for the full and ballast
conditions to get a “combined” response surface (best PD
controller if we will encounter both situations with equal
probability?)
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Figure 180: Response surface resulting from the sum of the response
surfaces for PD controller designs for the “ballast” and “full” condi-
tions (best gains Kp = −3.1053 (in between) and Kd = −500).
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➙ Fundamental trade-offs in design.

➙ Performance and hence optimal design choices are different for
different plant conditions; hence, finding the “best” single
design entails allocating good performance across different
situations.

➙ If consider stochastic effects, the set of “optimal gains”
indicated by one surface is highly unlikely to perfectly
correspond to the “optimal gains” suggested by another
surface.

➙ Can optimize design for narrow range of conditions, but
performance will certainly suffer under conditions other than
what the design is for.

• Fundamental trade-offs in robustness.
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RSM Issues

➙ Choosing Design Points: “Design of Experiments”: Cannot use
fine grids. Must choose points carefullly. if many dimensions,
but could pick two points per dimension—“2p factorial design”

• Example: Would this have worked for the tanker ship
controller design?

➙ Response Surface Construction is Function Approximation:
RSM uses “first” or “second order” models, and least squares is
used to fit the models to the data. Response surface is the
tuned approximator shape.

• Basic principles of approximation apply.

• DoE is training data set choice.

• Use response surface to consider intermediate design points.

• Pick optimal design off response surface.
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RSM for Learning System Design

Design Example: Robust Approximator Size Design

• Different G lead to different estimators (e.g., using our theme
problem and BLS).

➙ For a fixed size G and fixed unknown nonlinear mappping,
what is the best choice for p—approximator size?

• Use RSM for p ≤ M = 100. Choose MΓ = 200.

• From earlier studies, need p ∈ [4, 40].

• For each p use BLS to construct Nt = 100 approximators (TS
fuzzy systems, place centers uniformly for each p) and compute
the mean squared error relative to the test set.
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Figure 181: Average MSE response surface for approximator size,
Nt = 100.
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• MSE is a random variable so must pick Nt large enough

★ Typical “knee” in the curve-for increasingly large p little is
gained in approximation accuracy.

➙ What happens for very large p?
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Design Example: Instinct-Learning Balance in an Uncertain Environment

➙ Example: Estimator design problem, with focus on analogies
with learning instinct balance.

• Will discuss problem as if we use evolution, but here really just
study the shape of the underlying “fitness function” (inverse of
it) which is really a response surface.

Estimator Design Problem, Analogies with Instincts
and Learning

➙ Learning: “Any process through which experience at one time
can alter an individual’s behavior at a future time” [5] (i.e., any
system with memory has the potential to be a learning system).

➙ Define learning ability to be the number n of values that can be
remembered by an organism in performing some activity
during a life time.
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➙ The value of n affects how the organism performs the activity
(e.g., in helping it to perform the activity better).

➙ The value of n is how much memory the organism has, a key
component of learning.

➙ Organism can sense some aspect of its environment and store
this in a (scalar) variable y(k, �) at time k, k = 1, 2, . . . , NL, for
“generation” �, � = 1, 2, . . . , Ng.

• NL is life time length

• Ng is the number of generations of evolution (here generations
simply correspond to repeated runs of lifetimes of a single
individual organism).

➙ We use a very simple model of the “environment” that the
organism performs the task in where

y(k, �) = x(k, �) + z(k, �)
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• Here, we will assume that x(k, �) = x̄ = 2 is a constant that
the organism wants to estimate in order to be successful in
performing some activity (which enhances it reproductive
success)

• z(k, �) is noise representing uncertainty in the environment.

• z(k, �) is drawn from a normal distribution with zero mean and
a variance

σ2
z(k, �)

that could change over the life time, or over generations.

• First, consider the case where σ2
z = 0.5 for all k and �.
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➙ Our organism can sense and store (remember) n values of
y(k, �) at each time k and that it estimates x(k, �) via

x̂(k, �) =
1
n

k∑
j=k−n+1

y(j, �)

• Uses a “sliding window” of n values that it computes the mean
of as an estimate of the x value.

➙ Instincts are the intial conditions x̂0 of the estimator.

• At k = 1 we need initial values at k − 1, k − 2, . . . , k − n + 1.

• Assume that all past intial values needed before k = 1 are
equal to x̂0.
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➙ To define fitness (seek minimization):

J(x̂0, n, �) = w1n + w2
1

NL

NL∑
j=1

(x(j, �) − x̂(j, �))2

+w3 exp

(
−(x(1, �) − x̂0)

2

σ2

)
(89)
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➙ Three terms:

1. w1n, quantifies the cost of remembering more sensed values.

2. Mean-squared estimation error over its entire life time (one
with particular insincts x̂0 and learning abilities n). Better
instincts should lead to better estimation performance, and
using more values to compute the mean (higher n) should
also improve performance.

3. Cost of accurate instincts (e.g., physiological costs) via a
Gaussian function centered at the actual value of the
variable to be estimated.
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Response Surfaces for Optimal Instinct-Learning Balance

• Use w1 = 0.01, w2 = 1, and w3 = 0.05

★ Get optimal point

x̂∗
0 = 1.6410, n∗ = 5

➙ Since very good instincts are costly and learning abilities are
relatively inexpensive (low w1), it is best to have a somewhat
accurate instinct, coupled with an ability to sense and
remember several values from the environment.
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Figure 182: Response surface (fitness landscape) for instinct-learning
balance problem, σ2

z = 0.5, optimum point shown with a dot (Ng =
100).
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• Next, let w1 = 0.1, expensive n.

★ Now, get
x̂∗

0 = 1.5385, n∗ = 2

➙ Now better to use fewer stored values since storage costs more.
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Figure 183: Response surface (fitness landscape) for instinct-learning
balance problem, σ2

z = 0.5, w1 = 0.1, optimum point shown with a
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• Next, consider an environmental change, σ2
z = 0.75,

• Also, use w1 = 0.01 and w2 = 1 (same as above), but
w3 = 0.005—cheap to have good instincts.

★ Gives
x̂∗

0 = 2.2564, n∗ = 8

➙ Get better instincts, use of higher n.
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Nongradient Optimization

Pattern and Coordinate Search

Approximations to the Gradient

➙ We can use a “central difference formula” to approximate a
gradient with respect to each parameter (that we denote with
gi(j), the approximation of the gradient with respect to the ith

parameter at the jth iteration).

∂J(θ(j))
∂θi

≈ 1
2c

(J(θ(j) + cei) − J(θ(j) − cei)) = gi(j) (90)

where c is a positive scalar and ei is the ith column of the
p × p identity matrix.
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Simple Pattern Search Methods

➙ Basic idea: Compute cost at each point in a pattern of
“exploratory” points around the current estimate θ(j) and then
decide how to move the estimate and pattern of points at the
next iteration so as to reduce the cost.

➙ Sometimes pattern allows for approximations to the gradient in
a region

➙ At iteration j we start with a pattern

P =
{
θ0, θ1, θ2, . . .

}
and the method generates another set of points for iteration

j + 1, j = 0, 1, 2, ....

• Suppose that θ0 is always θ(j) (algorithm maintains this).

• θ(j) is the current estimate of an optimum point.
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➙ Points in P (j) are candidate solutions considered in “parallel”

• Let C denote a matrix whose columns specify perturbations to
the current estimate θ(j) to specify the pattern P .

• Let θi
s(j) denote the ith exploratory perturbation from θ(j),

i = 1, 2, . . . , |C|.
• How to specify a pattern?

Evolutionary Operation Using Factorial Designs Method

• Columns of the matrix C are chosen to have elements that are
all possible combinations of {−1, 1} and one column of zeros.

➙ This is the 2p corners of a hypercube centered at θ(j), plus a
column of zeros, which represent the center point θ(j) = θ0(j)
(what is the relationship to the design of experiments choice for
response surface methodology?).

• |C| = 2p + 1 = |P |.
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• Let ci denote the ith column of C.

• As an example, if p = 2 then

C =


 1 1 −1 −1 0

1 −1 −1 1 0



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Figure 186: The pattern of points for the p = 2 case in evolutionary
operation using factorial designs is shown in (a), and in (b) for simple
coordinate search.

➙ For what we will call “simple coordinate search”

C = [I − I 0]

where I is the p × p identity matrix, so that C is a p × 2p + 1
matrix.
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Pattern Search Algorithm

• Initial pattern P (0) given via the choice of C and θ(0) = θ0(0).

• Use γc to specify how the pattern should contract at the next
iteration if a lower cost exploratory point was not found in the
current pattern (usual choice is γc = 1

2).

• If a lower cost point was found on the current pattern, then the
pattern is not contracted and the parameter λj , for example
with λ0 = 1, will be used to specify the actual contraction that
the algorithm takes at the next step.

➙ Let θs(j) denote the perturbation from θ(j) that is chosen at
step j as the best point in the pattern of exploratory points (if
θs(j) = 0 at some step this represents that no better point was
found so θ(j + 1) = θ(j) and the pattern is contracted).

• At each iteration let Jmin denote a scalar that is the lowest
cost point found so far in computing the cost at each point in
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the pattern.

➙ Algorithm for evolutionary operation using factorial designs is:

1. For j = 0, 1, 2, . . .:

2. Compute J(θ(j)).

3. Exploratory moves:
(a) Let θs(j) = 0, ρj = 0, and Jmin = J(θ(j)).
(b) For i = 1, 2, . . . , |C| − 1:

– Compute J(θi(j)) where

θi
s(j) = λjc

i

and
θi(j) = θ(j) + θi

s(j)

– If J(θi(j)) < Jmin let ρj = J(θ(j)) − J(θi(j)),
Jmin = J(θi(j)), and choose θs(j) = θi

s(j).
– Next i.
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4. Update/contract:
– If ρj > 0 then a better point was found on the pattern so

let θ0(j + 1) = θ(j + 1) where

θ(j + 1) = θ(j) + θs(j)

and let
λj+1 = λj

so that we do not contract since this pattern size seems to
be making good progress.

– If ρj ≤ 0 a better point was not found on the pattern so
let

θ(j + 1) = θ(j)

and contract the pattern by letting

λj+1 = γcλj

5. Next j.
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Algorithm Complexity and Convergence

➙ At each iteration need to compute |C| cost values.

➙ Under mild restrictions these pattern search algorithms can be
shown to possess certain convergence properties.

• Can be shown that

lim
j→∞

||∇J(θ(j))|| = 0

Coordinate Descent

➙ Coordinate descent via line search involves iteratively cycling
across all the dimensions and performing a one-dimensional
line search each time.

➙ Can also use gradient approximations
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The Multidirectional Search Method

➙ Pattern search method, borrows some ideas from “Nelder-Mead
Simplex Method” (which is more popular, but does not have
guaranteed convergence)

• Consider minimizing J(θ), θ ∈ �p, and assume that J is
continuous in θ and that ∇J(θ) exists.

➙ Multidirectional search iterates on a simplex (a “convex hull”)
of p + 1 candidate solutions

P =
{
θ0, θ1, . . . , θp

}
⊂ �p

➙ Suppose that at each iteration θ0(j) is the best vertex of P (j)
so

J(θ0(j)) ≤ J(θi(j)), i = 0, 1, . . . , p

➙ The goal at each iteration is to find another candidate solution
with a cost that is strictly less than J(θ0(j)).
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• To do this, it searches along lines passing through θ0(j) and its
p adjacent vertices.
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Figure 188: Illustration of search directions and possible next sim-
plices for multidirectional search for p = 2.
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➙ Simplex P (j) has its vertices connected by black lines.

• Steps:

1. “Rotation” step: θ1(j) and θ2(j) are reflected about θ0(j)
on the gray dashed lines to obtain θ1

rot(j) and θ2
rot(j),

respectively (hence the simplex P (j) is rotated about θ0(j)).

2. If the cost at θi
rot(j), i = 1, 2, is better than the one at

θ0(j), then an “expansion” is computed by reflecting about
θ0(j), but more than twice as far as in the rotation step, to
produce θi

exp(j), i = 1, 2.

3. If the cost at any of these two new vertices, θi
exp(j), i = 1, 2,

is better than the cost at θi
rot(j), i = 1, 2, then accept the

minimum cost vertex from the expansion as the new
minimum cost vertex (θ0(j + 1)) and it, with θi

exp(j) (i so
that θi

exp(j) �= θ0(j + 1)) and θ0(j) define the new simplex
P (j + 1).
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4. If expansion does not result in points with lower cost than
the costs for the new vertices from the rotation step, then
you accept the minimum cost vertex from the rotation step
as θ0(j + 1) and it together with θ0(j) and the other vertex
from the rotation step form the new simplex.

5. Now, if θi
rot(j), i = 1, 2, did not result in a lower cost than

the one at θ0(j) (so expansion was not used), then you take
a “contraction” step where you move the adjacent vertices
θ1(j) and θ2(j) towards θ0(j) along the gray dashed lines to
the points θi

cont(j), i = 1, 2.

• The process of rotation, expansion, and contraction repeats
until a stopping criterion is satisfied.

• Explicit analytical gradient information is not available, but
there is a type of approximation to the gradient that is being
used
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• Simplex methods try to ignore “noise” perturbations on the
cost by using a region-based approximation to the gradient.
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Figure 189: An example cost function with multiple local minima.
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Algorithm Complexity and Convergence

➙ If get cost reduction need 2p cost evaluations per iteration, but
may need many steps if do not get reduction.

➙ Under mild restrictions the multidirectional search method
possesses convergence properties like the earlier pattern search
method.
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Figure 190: Multidirectional search example, parameter trajectory
on the contour plot of the cost function.
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Simultaneous Perturbation Stochastic

Approximation Algorithm

➙ Minimize J(θ) by adjusting θ ∈ �p.

• Gradient ∇J(θ) is not known analytically and cannot be
measured.

• Can compute or measure J(θ), but get

Jn(θ) = J(θ) + w

where w is noise, a noisy cost.

➙ Parameter update formula

θ(j + 1) = θ(j) − λjg(θ(j), j) (91)

where g(θ(j), j) ∈ �p is an estimate of ∇J(θ(j)) at θ(j), and
λj > 0.
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➙ For i = 1, 2, . . . , p the gradient approximation is chosen as

gi(θ(j), j) =
Jn(θ(j) + cj∆(j)) − Jn(θ(j) − cj∆(j))

2cj∆i(j)
(92)

where cj > 0 for all j and

∆(j) =




∆1(j)
...

∆p(j)




is a random perturbation vector.

• The components of the vector ∆(j) should be independently
generated from a zero mean probability distribution

• A theoretically valid choice is a Bernoulli ±1 distribution for
each ±1 outcome.

• In this way, the θ(j) ± cj∆(j) lie on corners of a hypercube



576

centered at θ(j).

• For p = 2,

∆(j) ∈




 1

1


 ,


 1

−1


 ,


 −1

1


 ,


 −1

1






• In general, there are 2p possible ∆(j) values. For example, see
Figure 191.
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Figure 191: Illustration of what values are used in computing an
approximation to the gradient in the SPSA method.
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• For this example, if ∆(j) = [1, 1]�, then

θ+(j) = θ(j) + cj∆(j) =


 3

3




θ−(j) = θ(j) − cj∆(j) =


 1

1




which are the upper right and lower left corners (denoted with
large black dots) of the square centered at θ(j) in Figure 191
(and these values are swapped if ∆(j) = [−1,−1]�).
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➙ Example: Jn(θ) = θ�θ with no noise. Can get cost increase!

• The cj and λj sequences of values decrease at each iteration,
the size of the hypercube and the size of changes to the
parameter values at each iteration do also.
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Algorithm Complexity and Convergence

• For the Bernoulli ± distribution for ∆ there are 2p possible
∆(j) vectors and 2(p−1) possible diagonals on the hypercube
centered at θ(j).

• Consider the no noise case.

• There are in general 2(p−1) possible approximations to the
gradient at each iteration, and hence one of 2(p−1) possible
update directions is chosen at each iteration. However, only 2
cost calculations are made at each step.

• Stochastic gradient method: analytical gradient information
used, and one of an infinite number of possible update
directions is chosen. Constraints on the perturbations to the
gradient; here, the use of points on the hypercube centered at
θ(j) constrains the size and directions of the update.
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• The “Keifer-Wolfowitz finite difference stochastic
approximation” (FDSA) algorithm computes the cost at 2p

points (two per dimension).

• See Figure 191.

➙ With no noise, only one possible update direction per iteration.
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➙ It has been shown that under reasonably general conditions
SPSA and FDSA achieve the same level of statistical accuracy
for a given number of iterations and

Number of measurements ofJn(θ)in SPSA
Number of measurements ofJn(θ)in FDSA

→ 1
p

as the number of measurements gets large.

➙ Important for large p.
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Guidelines for Choosing SPSA Parameters

➙ First, choose

λj =
λ

(λ0 + j)α1

where λ > 0, λ0 > 0, and α1 > 0, and

cj =
c

jα2

where c > 0 and α2 > 0.

• However, if the θi have very different magnitudes you may
want to use a different λj for each of the p dimensions.

• Some actual values that have been found useful in applications
are α1 = 0.602 and α2 = 0.101 which are effectively the lowest
allowable ones that satsify theoretical conditions.

• However, values α1 ∈ [0.602, 1) and α2 ∈ [0.101, 1
6 ] may work

also.
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• In fact α1 = 1 and α2 = 1
6 are the “asymptotically optimal”

values so if the algorithm runs for a long time it may be
beneficial to switch to these values.

• With this choice, if the noise is significant you may need to
choose λ smaller and c larger than in a low-noise case.

• With the Bernoulli ±1 choice, set c to a level that is
approximately the standard deviation of the noise w(j) to keep
the components of g(θ(j), j) from being too large in magnitude.

• If there is no noise term w(j), then you should choose some
small value c > 0.

• You can choose λ0 to be approximately 10% of the maximum
number of iterations and λ to try to achieve a certain amount
of change in the cost function values at each iteration.
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SPSA for Decision-Making System Design: Examples

➙ PD controller design, but with sensor noise. Climbs down
surface we showed earlier.

➙ Can we exploit one advantage of the SPSA—that is should be
efficient for high p problems, with noise cost, and no gradient
information?

➙ Many possibilities!
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Parallel, Interleaved, and Hierarchical Methods

➙ “Parallel” methods (“set-based” techniques) are implemented
by executing N copies of an optimization method.

• Is information shared between algorithms?

➙ “Interleaving” involves alternating between the use of different
algorithms as the optimization process proceeds.

➙ “Hierarchical” methods employ one algorithm to supervise the
operation of several algorithms.
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Set-Based Stochastic Optimization for Design

• SPSA considers two designs (cost evaluations) per iteration

• GAs consider S designs at each point

• Are there other “set-based” stochastic optimization methods?

➙ Could they model aspects of evolutionary algorithms, without
the overhead of the encoding/decoding used there?



588

A Set-Based Stochastic Optimization Method

➙ Use a set (population) of design points,

P (k) =
{
θi(k)|i = 1, 2, . . . , S

}
with S members, with initial value P (0).

• Cost measure J for each member, want to minimize.

• At each k, compute cost for each member (could parallelize).

➙ Select “best” design and name it i∗.
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➙ Create next generation via

θi∗(k + 1) = θi∗(k)

(“elitism”) and for i �= i∗,

θi(k + 1) = θi∗ (k + 1) +




β1r1

...

βprp




where ri, i = 1, 2, . . . , p are random numbers drawn from
normal distributions with zero mean and unit variances.

• The parameters βi, i = 1, 2, . . . , p scale the variances.

➙ Generate a “cloud” of design points centered at the best design
point to form the next generation.



590

• What are effects of βi? Range of exploration.

• Can use projecction to keep values in range.

• To avoid getting “stuck,” a mutation-type mechanism was
added. Select one i �= i∗ and for this i generate the design
point at a random point anywhere in the domain (uniform
distribution).
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Design Example: Evolving Instinct-Learning Balance

• Return to RSM example

• Here, study changes over time in environment, changing from
σ2

z = 0.5 to σ2
z = 0.75 after 100 generations.

• What do you expect? Response surface (fitness function) shifts,
tracks new optimum point → evolution

➙ Algorithm parameters: Evolve x̂0 and n so p = 2, but n must
be an integer (just randomly increment/decrement by one or
leave unchanged), and use β = 0.01 for cloud generation along
instinct dimension, pm = 0.1, and S = 100.

➙ Initial conditions: All unity. Poor instincts, no (low)
memory/learning capability.
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Figure 192: Cost J (fitness function) for set-based stochastic opti-
mization for instinct-learning balance.
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Figure 193: Initial condition x̂0 for set-based stochastic optimization
for instinct-learning balance (averages=1.9911 and 1.9811 for first
and last 100 generations).
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Figure 194: Learning capability n for set-based stochastic optimiza-
tion for instinct-learning balance (increases).
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★ Time-varying features of the environment shift the fitness
landscape, and hence bring about changes in the design of an
organism.



596

Evolutionary Control System Design

➙ CACSD following above ideas.

➙ Can we evolve hardware?

➙ Can we evolve software.

➙ Evolutionary strategies in the marketplace

➙ Darwinian design in the laboratory → robust controller design?
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Figure 195: Experiment to perform Darwinian design for physical
control systems.
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