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INTRODUCTION

Focus: Control design methodology, biomimicry scientific
foundations.

➙ Control systems are a key part of automation.
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Figure 1: Example control systems: (a) temperature control in a
home, and (b) cruise control for an automobile.
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➙ Design objectives: Reducing the effects of adverse conditions
and uncertainty, behavior in terms of time responses (stability,
rise-time, overshoot, settling time, steady state tracking, etc.)
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(b) Rise-time and overshoot.
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(c) Settling time.
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Figure 2: Desired speed (thick solid line at 75 mph) and possible
closed-loop time responses resulting from different controller designs.
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➙ Robustness is often the key design objective.

➙ Engineering goals/constraints (often ignored in the university):
Cost, computational complexity, manufacturability, reliability,
maintainability, adaptability (to similar applications),
expandability (for new-improved versions), understandability,
politics.
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Control System Design Methodology

Process
(plant)

Gain intuitive understanding
of the plant

Specify design objectives

Modeling

Figure 3: Early steps in the control system design procedure.

• Modeling forms the foundation for control design methodology.
No model is perfect; but, even uncertainties can be represented.
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• Construct model(s) (physics, system identification) and
representations for uncertainty

Truth model Design model

Process
(plant)

Physical modeling, system 
identification, and approximations

Approximations
(model order reduction, linearization, etc.)

Figure 4: The modeling procedure.
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• Analyze model accuracy and system properties

Truth model Design model

Process
(plant)

Experiment/compare process
and models

Evaluate model accuracy,
improve models

Learn about system behavior

Quantify system properties
(e.g., stability, controllabilty, 

observability)

Controller construction

Update design model to reflect
essential properties

Figure 5: Model evaluation/adjustment process.
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➙ A model should be simple, but accurate enough to succeed in
control design.

• Models help give intuition on how the plant behaves (e.g.,
stability, controllability, observability, rates, etc.).

• Construct and evaluate the control system
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Control design /
redesign

Mathematical and simulation
studies of performance

Controller implementation
and evaluation

Control system

Truth and design models

Figure 6: Controller construction and evaluation process (for conve-
nience, it ignores the possibility of iterative improvement of models).
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• Controller synthesis: “conventional methods” (PID, classical
control, state space methods, optimal control, robust control,
adaptive control, nonlinear control, stochastic control, discrete
event and hybrid systems.

➙ Analysis of closed-loop control system performance (analysis
entails the use of mathematics, simulations, and
experimentation; each has its own advantages and
disadvantages):

– You prove stability of a model not the system.

– Simulations are abstract representations of physical systems.

– Experiments are typically for one plant, not the class of all
possible ones that the controller could eventually be applied
to.
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Process in need of 
automation

(plant)

Modeling

Control design /
redesign

Mathematical and simulation
studies of performance

Controller implementation
and evaluation

Control system for automation

Gain intuitive understanding
of the plant

Specify design objectives

Figure 7: Flowchart of control system design steps.
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Methodology Without Mathematical Models: The Use of
Heuristics

➙ In many practical control problems it is difficult or impossible
to obtain a mathematical model and in this case we rely on the
use of heuristics for control design (e.g., in PID control).

➙ Heuristic control design methodology?
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Control design /
redesign via heuristics

Controller implementation
and evaluation

Control system for automation

Process in need of 
automation

(plant)

Gain intuitive understanding
of the plant

Specify design objectives

Figure 8: Heuristic control design methodology.
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• Close relationships with traditional design methodology (e.g.
for PID control).

• Performance evaluation? Only possible via implementation
studies? No model for simluation or mathematical analysis?

• Some use a truth model in the heuristic control design
methodology, one that would not be useful in a design
methodology beyond in simulation/tuning (e.g., not useful for
mathematical analysis).
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Complex Hierarchical Control Systems for Automation

➙ Computer decision-making can be very complex, hierarchical,
and distributed, and be designed to solve complex automation
problems, even when the “plant” contains intelligent human
adversaries.

Human

Process (plant)

Figure 9: Hierarchical control system.

• Examples: Robots, autonomous vehicles (ground, air, or
underwater), manufacturing and process control, networks of
intelligent agents
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Functional Architectures

• What functions are needed for control and automation?

• Examples: Interface to humans, interface to other systems, to
control parts of the system by sequencing operations and
guiding the overall behavior of the system, to handle
exceptions to normal operation of the control system , to cope
with special operating conditions.

• Why do hierarchies and distribution arise?:

– Need to “divide and conquer”

– Goals and priorities often split the performance of tasks into
different parts (a “behavioral hierarchy”)

– Components physically distributed.

– Complexity dictates need for distribution.

– Human interface unique, relative to plant interface.
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– Algorithm developers often view problems hierarchically.

• Organizing the controller into a “functional architecture”

Management level
("high level")

Users, other systems

Coordination level
("middle level")

Execution level
("low level")

Process (plant)

Figure 10: A typical hierarchical distributed control system (“lev-
els”).

• Fundamental Operational Characteristics: Task division, time
scales, models.

• Examples: Temperature control in large building, coordination
of multiple autonomous vehicles.
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Design Objectives/Methodology for Automation

➙ More sophisticated than for traditional single-loop control
systems.

➙ Examples: Dynamically changing composition of the
specifications of the traditional control systems, proper
sequencing of events, rate of operation, proper parsing and use
of information, orderly and efficient operation, the ultimate
goal—autonomy.

• Design methodology via software engineering for complex
control systems

• Implementation of complex control systems presents many
challenges (e.g., platform differences, communications, etc.)
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Scientific Foundations for Biomimicry

“Intelligent control” is the study of how to achieve control
automation via the emulation of biological intelligent systems
(bio-functionality or behavior).

Intelligent control seeks to develop/exploit biology as a foundation.

Control science, engineering,
and technology

Mathematics
(modeling, analysis)

Physics
(modeling and understanding

physical systems)

Chemistry
(basis for modeling/understanding

systems)

Biology
(evolution, brains, organisms 
physiological control systems)

Computer science and engineering
(artificial intelligence, theory,

software, hardware)

Psychology
(cognitive and neuropsychology)

Neuroscience
(cognitive neuroscience)

Figure 11: Mathematical, physical, and social sciences that impact
control science, engineering, and technology.
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Control Systems in Biology

• There is a type of hierarchy in biology (cells, tissue, organs,
organisms, populations).

➙ Control systems at the cellular and organ levels:

– In the (single-cell) E. coli (Escherichia coli) bacterium there
is sensing and locomotion involved in seeking nourishment
and avoiding harmful chemicals.

– Tracking of light and nutrient sources by plants.

– Homeostasis (e.g., thermoregulation)

– Immune systems recognize foreign substances and take
actions to help the animal survive by controlling the density
of antigens.

– The pancreas is involved in the regulation of blood sugar
levels.

– Motor functions in two-legged animals that provide for
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balancing while standing.

– In the human brain there is the supervision of motor control
for voluntary movement, supervision of the attentional
system, and others.

➙ At the organism and population levels:

– Humans control systems (e.g., in process control).

– Evolution acts to shape every biological system (notice
feedback).

Nervous Systems

Sensory, Motor, and Brain Processes

➙ The computer is a useful metaphor for the brain. Long term
memory is a hard disk, and short term memory is RAM. The
computer processes inputs and generates outputs.
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Figure 12: Functional areas of the cortex (figure taken from [1]).
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Figure 13: Functional map of the primary motor and somatosensory
cortex (figure taken from [3]).
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Vision
Auditory
Touch
Taste
Smell

Mental processes

- Perception/association
- Deduction
- Planning
- Attention
- Learning/induction

Memory

Short term

Long term

Recall Rehearsal

- Facts
- Relations
- Rules
- Associations

- Concepts
- Motion
- Dynamic  
  models

Limbs,
body

Speech

Sensory input
processing

Actuation
processes

Figure 14: Functional block diagram of some brain functions.

The Neurophysiological Level

• A network of neurons provides for information processing, and
generating responses for specific patterns of stimuli.
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(a)

(b)

Figure 15: The neuron (nerve cell). In (a) a vertebrate motor neuron
is shown, and in (b) a scanning electron micrograph of a neuron is
shown (figure taken from [1].

➙ Motor control is a type of neural hierarchical distributed
learning control system.

➙ Learning takes place via modifications to individual neurons,
and changes to interconnectivity of a neural network.



26

Hierarchical Neural Organization

• Neural network structures are sometimes organized in a
hierarchical fashion.

Figure 16: Hierarchy of motor control (figure taken from [4]).

• Brain science is an expanding frontier
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Biomimicry for Control and Automation: Cognition

• Neural networks

• Deduction

• Planning

• Attention

• Learning
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Organisms

➙ Organisms vs. computers for control—which is better?

• Example: B.F. Skinner’s pigeons for missile guidance

Figure 17: Pigeon being placed in nose cone of the Pelican missile
testbed (figure taken from [2]).

➙ Human control expertise and “human-mimicry”
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• Perception, deduction, planning, attention, and learning drive
the behavior of the human control expertise we seek to emulate.

• Key features to mimic:

– Rules

– Deduction over more complex representations

– Planning using mental models

– Attention to salient behaviors of the process

– Learning how to control

Human Operator Control Expertise: Quantity and Quality

➙ Do humans always have the needed control expertise?

• Computers may be able to perform better than humans in
some cases, but in others humans may do better.

➙ Do you want to emulate what a human would do?
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Figure 18: Homer Simpson on the job at a nuclear power plant (figure
taken from [5]).

➙ The goal is not emulation of substandard human behavior; it is
to design the best control system possible.
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Groups of Organisms

➙ Social foraging and emergent swarm behavior

• Animals search for and obtain nutrients in a way that
maximizes

E

T
where E is energy obtained, and T is time spent foraging.

• Foraging is an optimization process that has been fine-tuned
via evolution.

• Social foraging: birds, bees, ants, etc.

• Simple organisms in colonies that obey simple rules can
sometimes achieve a type of collective intelligent behavior.

➙ Example: Bacterial chemotaxis

• Bacterial foraging involves a type of nutrient “hill-climbing”
and hence optimization process.
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(a) (b) (c) (d)

Figure 19: Experiment showing how E. coli swarm towards nutrients,
and away from noxious substances (figure taken from [8]).
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Emulation of Coordinated Behavior of Humans

➙ Groups of humans may be able to coordinate their actions to
manage and control some enterprise; it can be useful to mimic
their collective behavior for automation.

Jane Doe
President

Jack Miller
Vice President
Finance

Sue Smith
Vice President
Manufacturing

Jim Jones
Vice President
Marketing

Engineering Efficiency and
reliability

Operations
management

Supervisor Supervisor

Worker Worker Worker WorkerWorkerWorker Worker

Figure 20: Hypothetical organizational chart for business manage-
ment.
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Biomimicry: Hierarchies and Social Foraging

➙ Hierarchical biological/cognitive structures and organizations

➙ Intelligent social foraging
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Evolution

➙ D. Dennett: “biology is engineering”

The Evolutionary Process

➙ Darwin:

1. Species have great potential fertility, population sizes are
largely fixed but do change with climate changes, and
resources are limited.

2. Life is a struggle and only a relatively few offspring survive.

3. Individuals in a population vary extensively and that the
variation is heritable.

4. Individuals that possess characteristics that allow them to
survive to reproduce leave more offspring than less fit
individuals.

5. This will then lead to a gradual change in a population, and
that the favorable characteristics will tend to accumulate in
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the population over many generations.

• Example: Polar bear

Figure 21: Polar bear (figure taken from [10]).
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Population, generation k

Population, generation k+1

Figure 22: Graphical depiction of the biological evolutionary process.



38

• Evolution has shaped biology at all levels, from cells to
organisms, behavior, and intelligence.

• Example: Selective breeding for behavior and intelligence

• “Selective breeding,” is a practice used for thousands of years
by plant and animal breeders
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Figure 23: Results of selective breeding in rats for learning capability
(figure taken from [4]).
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Biomimicry for Control and Automation: Evolution

• “Darwinian” design is stochastic optimization for design

• Evolution and learning—synergies in adaptation.

• Evolution for on-line adaptation

• Evolution of hierarchies and foragers

• Evolution of control technology—a global perspective
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A Control Engineering Viewpoint

➙ Why all the biology? Do I need it?

– Cohesive framework to think about the development of
control and automation systems.

– Another viewpoint on the dynamics, functionality, design,
and operation of high technology control systems for
automation.

– Concepts from biology can hence help to teach the
engineering methods.

– May provide additional ideas (the most successful robust
control system in existence is a biological system).

– Can help us explain what we do to others.

➙ The focus is engineering, not the foundational sciences (hence,
different from an AI focus)
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Elements of Decision-Making

Learning
Neuroscience of learning, classical and operant conditioning, place 

and observational learning, development and plasticity

Evolution
Darwinism (modern synthesis), genetics, populations

Genetic algorithms, evolutionary programming, learning/evolution synergy,
genetic adaptive estimation and control strategies

Nongradient and stochastic optimization/search, design, stochastic adaptive control

Foraging
Foraging theory, foraging search strategies, social foraging, swarms,

cooperative and competitive foraging, coevolution

Distributed optimization and search, stochastic and nongradient optimization,
distributed control via learning and planning, cooperative control, game theory

Part V

Part III

Part IV

Part II

Introduction
Control system design: the problem, solution methodology

Complex hierarchical and distributed control systems

Scientific foundations for intelligent control:
biology, neuroscience, psychology, foraging, evolution

Part I

Distributed coordination and control for autonomous teams of agents

Neural control, adaptive fuzzy control, adaptive planning and attention
On-line approximation based adaptive estimation and control

Stable adaptive fuzzy/neural control

Heuristic methods for adaptive control of nonlinear systems
Least squares and gradient optimization, interpolator construction

Stable adaptive estimation and control for nonlinear systems

Networks of neurons, deduction, planning, attention

Instinctual neural control, rule-based (fuzzy/expert) control, 
planning systems for control, attentional systems

Heuristic construction of nonlinear controllers, nonlinear model predictive control,
complexity management, resource allocation

Figure 24: Book overview.
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Figure 25: Cartoon to illustrate the importance of choosing the right
research problem, one that is not considered child’s play by another
group (figure taken from [6]).

Central Themes: Optimization, Adaptation, and Decision-Making

➙ Central themes wind throughout...
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– Automation via control.

– Decision-making for control.

– Optimization is needed to achieve learning (e.g., we try to
find the best information).

– Optimization and adaptation are key features of many
decision-making strategies.

– Foraging is an optimization process. Optimization, learning,
and decision-making are all used by an intelligent forager.

– Evolution is a design strategy, an optimization process, and
an adaptation method. It can be used for
design/adaptation.

➙ Intelligent vs. conventional control? No real conflict!

➙ The goal is not “intelligence,” it is autonomy
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ELEMENTS OF DECISION-MAKING

Focus:

• Instinctual neural networks for control

• Rule-based control (human-mimicry)

• Planning (guidance, model predictive control)

• Attention (dynamic focusing on multiple predators/prey)
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Neural Network Substrates for Control Instincts

Neurons and Neural Networks

(a) (b) (c)

Figure 26: Different forms of neurons (figure taken from [1]).
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• Processing characteristics of individual neurons and network
interconnections and hence topology of the network change via
learning.

Figure 27: Network of motor neurons in the spinal cord, photograph
taken through a microscope (figure taken from [4]).
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Dendrites

Synapse

Cell body

Axon

Figure 28: Three connected neurons, a simple biological neural net-
work.

• We study “hard-wired” neural networks that perform
“instinctual” control functions
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Examples: Instinctual Neural Control Functions in Simple Organisms

• “Command systems” of neurons are used in biological systems
for a variety of tasks, such as control of motion, locomotion,
digestion, etc.

• Neural network implements a “central pattern generator” that
produces a pattern of signals that results in a rhythmic
contraction and relaxation of muscles.

• Neurons that Control Swimming in a Clione:

• Even very simple networks of neurons can implement controls
for actions that are critical for survival.

• There are two neurons for moving each wing, one for
“upswing” and the other for “downswing.”

• Each neuron has an inhibitory effect on the other so that when
one is active, the other is not (i.e., it is inhibited by the other).
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Figure 29: Command system of neurons (neural controller) for swim-
ming in a Clione (figure taken from [7]).

• Neuron Stimulus-Response Actions to Achieve Control in a
Swimming Leech:

• Rhythmic bursts from a central pattern generator produce a
“wave” of contraction that travels from the front to the rear of
the leech - swimming.
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Figure 30: Neuron signaling connecting stimulus to swimming re-
sponse in a medicinal leech Hirudo medicinalis (figure taken from
[7]).
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Multilayer Perceptrons

• A feed-forward neural network. “Firing rate model”.

• It is composed of an interconnection of basic neuron processing
units (models of “tuning curves”).

The Neuron

• Suppose that we use xi, i = 1, 2, . . . , n, to denote the neuron’s
inputs

• Suppose that it has a single output y.

• Figure 31 shows the neuron.
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Figure 31: Single neuron model.

• We have

x̄ =

(
n∑

i=1

wixi

)
+ b

where wi are the interconnection “weights” and b is the “bias”
(these parameters model the interconnections between the cell
bodies in the neurons of a biological neural network such as the
one shown in Figure 28).
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• The signal x̄ represents a signal in the biological neuron, and
the processing that the neuron performs on this signal is
represented with an “activation function” f where

y = f(x̄) = f

((
n∑

i=1

wixi

)
+ b

)
(1)

• Basically, the neuron model represents the biological neuron
that “fires” (turns on and passes an electrical signal down the
axon so that it can go to other neurons as shown in Figure 28)
when its inputs are significantly excited (i.e., x̄ is big enough).

• There are many ways to define the activation function:

– Threshold function: We have

f(x̄) =


 1 if x̄ ≥ 0

0 if x̄ < 0
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so if x̄ is above zero the neuron turns on.

– Linear function: We have

f(x̄) = x̄

(it is on when f(x̄) > 0 and off when f(x̄) < 0).

– Logistic function: For this “sigmoid function,” we have

f(x̄) =
1

1 + exp(−x̄)
(2)

(x̄ continuously turns on the neuron as shown in Figure 32).

– Hyperbolic tangent function: Another sigmoid is the
hyperbolic tangent function (see Figure 32)

f(x̄) = tanh(x̄) =
1 − exp(−2x̄)
1 + exp(−2x̄)
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Figure 32: Activation functions for neurons.
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Feedforward Network of Neurons

• MLP, y = Fmlp(x, θ) is shown in Figure 33.

(1)

x 1

x 2

xn

.

.

.

x 1

x 2

.

.

.

x 1

x 2

2
xn

.

.

.

y

y

y

(1) (2)

m

1

2

(1)

(2)

xn1
(2)

First 
hidden
layer

Second
hidden
layer

Output
layer

Figure 33: Multilayer perceptron model.

• Circles represent the neurons (weights, bias, and activation
function) and lines represent the connections between the
inputs and neurons, and layers.
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Example: Multilayer Perceptron for Tanker Ship Steering

➙ Tanker ship heading regulation problem

δ
ψ

xu
V

v
y

Figure 34: Tanker ship steering problem.

• Tanker ship moves in x direction at a nominal speed u

• ψ denotes the heading angle (in radians)

• δ is the rudder input (in radians).
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• ψr is the desired ship heading

★ Goal: Want ψ to track ψr.

★ Steering performance is affected by:

– Speed of travel (the rudder becomes less effective at very
low speeds)

– The ship weighs different on different trips (and heavy ships
turn slower)

– Wind hits the side of the tanker and this can affect heading
regulation some

– The sensor for the heading has some noise

– The rudder can only move between ±80 degrees.
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➙ Nonlinear model: Can change ship weight from “ballast” to
“full” (a lighter ship), can change speed, can add wind effect
and sensor noise.

➙ Simulation issues:

– Use Runge-Kutta method

– Simulate a digital controller that updates once every 10 s,
but where the integration step size is 1 s (simulation of a
digital/analog system).
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Construction of a Multilayer Perceptron for Ship Steering

• Controller inputs: ψr, ψ

Tanker
ship

r Multilayer
perceptron
neural controller

δ ψψ

Figure 35: Control system for using a multilayer perceptron for
tanker ship steering.

Structure Choice and The First Hidden Layer

➙ MLP is a mapping from ψr and ψ to δ, δ = Fmlp(ψr, ψ)

➙ Controller construction = map synthesis

• Structure choice:
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f

f

= linear activation function

Σ

Σ

Σ

Σ

Σ Σ

ψ

ψ

r
w

11
(1)

w21
(1)

b
(1)
1

First hidden
layer

Second hidden
layer

Third hidden
layer

Output layer

w
11
(2)

w
12
(2)

b
(2)
1

b
(2)
2

f = logistic sigmoidal activation function

e

w
11
(3)

w
22
(3)

w
11

w
21

b
(3)
1

b
(3)
2

b1

δ

Figure 36: A multilayer perceptron for tanker ship steering.

• Hidden layer: Choose w
(1)
11 = 1, w

(1)
21 = −1, and b

(1)
1 = 0.



63

• Output of the first layer is the heading error

e = ψr − ψ

• A neural network can be designed to compare signals for use in
“decision-making”

Choosing Weights and Biases: Building Nonlinearities
with Smooth Step Functions

• Two “paths” of processing from the signal e

• Remove the path on the bottom.

• Top path used when

e = ψr − ψ ≥ 0

• In this case we want to have a negative rudder input.

• For larger values of |e| = |ψr − ψ| we generally want larger
values of δ
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• How do we get this?

➙ Neural network construction can be viewed as “building”
stimulus-response characteristics from basic neuron building
blocks that are deformable via their parameters (here, we build
functions from “smooth steps”).

• Notice:

δ = w11

(
w

(3)
11

1 + exp(−x̄)
+ b

(3)
1

)
+ b1

where
x̄ = b

(2)
1 + w

(2)
11 e

– b1, b
(3)
1 : Shift the mapping up and down.

– w11, w
(3)
11 : Scale the vertical axis.

– b
(2)
1 : Shifts the smooth step (logistic function) horizontally,

with b
(2)
1 > 0 shifting it to the left.

– w
(2)
11 : Scale the horizontal axis (you may think of this as a
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type of gain for the function, at least locally).

• Using these ideas, choose

b1 = b
(3)
1 = 0

w11 = 1

w
(3)
11 = −80π

180

b
(2)
1 = −200π

180
w

(2)
11 = 10

• Continue in this manner for all cases:
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Figure 37: Multilayer perceptron mappings, top plot is for the top
path of the perceptron from e to δ, middle plot is for the bottom
path of the perceptron from e to δ, bottom plot is for the entire
perceptron from e to δ.
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Figure 39: Closed-loop response resulting from using the multilayer
perceptron for tanker ship steering.
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➙ Tuning to get better performance = change mapping shape.

Effects of Wind on Heading Regulation

• Wind: Hits side of ship, pushes water against rudder.

• We add a disturbance onto the rudder angle input by adding

0.5
( π

180

)
sin (2π(0.001)t)
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Figure 40: Closed-loop response resulting from using the multilayer
perceptron for tanker ship steering, with wind.
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Figure 41: Closed-loop response resulting from using the multilayer
perceptron for tanker ship steering with speed of 3 meters/sec.
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Figure 42: Closed-loop response resulting from using the multilayer
perceptron for tanker ship steering, full rather than ballast condi-
tions.
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Radial Basis Function Neural Networks

• A locally tuned, overlapping receptive field is found in parts of
the cerebral cortex, in the visual cortex, and in other parts of
the brain.

• Different “tuning curve” shape, but again connect into network.

• A radial basis function neural network is shown in Figure 43.
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Figure 43: Radial basis function neural network model.

• The inputs are xi, i = 1, 2, . . . , n, and the output is y = Frbf (x)

• Let x = [x1, x2, . . . , xn]�.

• The input to the ith receptive field unit is x, and its output is
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denoted with Ri(x).

• It has what is called a “strength” which we denote by bi.

• Assume that there are nR receptive field units.

• Hence, from Figure 43,

y = Frbf (x, θ) =
nR∑
i=1

biRi(x) (3)

where θ holds the bi parameters (and possibly the parameters
of the receptive field units).

• There are several possible choices for the “receptive field units”
Ri(x):

1. We could choose

Ri(x) = exp
(
−|x − ci|2

σ2
i

)
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where ci = [ci
1, c

i
2, . . . , c

i
n]�, σi is a scalar, and if z is a

vector then |z| =
√

z�z.
– For the case where n = 1, c1 = [c1

1] = [2], and σ1 = 0.1,
R1(x) is shown in Figure 44(a).

– As x moves away from c1
1, R1(x) decreases, with the rate

of decrease dictated by the size of σ1.

2. We could choose

Ri(x) =
1

1 + exp
(
− |x−ci|2

σ2
i

)
where ci and σi are defined in choice 1.

– For the case where n = 1, c1 = [c1
1] = [2], and σ1 = 0.1,

R1(x) is shown in Figure 44(b).
– This is similar to the above but “flipped” upside down.
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Figure 44: Example receptive field units.
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• There are also alternatives to how to compute the output of
the radial basis function neural network.

• For instance, you could compute a weighted average

y = Frbf (x, θ) =
∑nR

i=1 biRi(x)∑nR

i=1 Ri(x)
(4)

• It is also possible to define multilayer radial basis function
neural networks.
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Example: RBF Neural Network for Ship Steering

Controller Input Choice and Control System Structure

• Inputs:
e = ψr − ψ

and
ė = ψ̇r − ψ̇

Tanker
shipd

dt

Σ
r e

Radial basis
function neural
controller

+

δ ψ
ψ

Replace with backward difference and 
denote controller input as c(k)

Figure 45: Radial basis function neural network used as a controller
for ship heading.
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• Need to synthesize the map:

δ(k) = Frbf (e(k), c(k))

Design of a Radial Basis Function Neural Network for
Steering

• RBF: n = 2, nR = 121

• For the Ri(e(k), c(k)) create a uniform grid for the ci centers,
i = 1, 2, . . . , 121.

• Assume
e(k) ∈ [−π

2
,
π

2
]

and
c(k) ∈ [−0.01, 0.01]
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Figure 46: Receptive field unit centers.
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• Choose:
σi

1 = 0.7
π√
nR

and

σi
2 = 0.7

0.02√
nR

• Example: Consider R73(e, c)
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➙ We can view construction of an RBF NN as building a
stimulus-response characteristic from tunable “spatially local”
functions.

• “Strengths” just scale heights

• Example:

2R61(e, c) + R62(e, c) + 2R72(e, c) + R73(e, c)
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• Need to choose the bi, i = 1, 2, . . . , 121

• View the parameters as being loaded in a matrix


b1 b12 b23 b34 b45 b56 b67 b78 b89 b100 b111

b2 · · · b112

... · · ·
...

b11 b22 b33 b44 b55 b66 b77 b88 b99 b110 b121




and then choose this matrix to be

Columns 1 through 7

1.3963 1.3963 1.3963 1.3963 1.3963 1.3963 1.3963

1.3963 1.3963 1.3963 1.3963 1.3963 1.3963 1.0472

1.3963 1.3963 1.3963 1.3963 1.3963 1.0472 0.6981

1.3963 1.3963 1.3963 1.3963 1.0472 0.6981 0.3491

1.3963 1.3963 1.3963 1.0472 0.6981 0.3491 0

1.3963 1.3963 1.0472 0.6981 0.3491 0 -0.3491

1.3963 1.0472 0.6981 0.3491 0 -0.3491 -0.6981

1.0472 0.6981 0.3491 0 -0.3491 -0.6981 -1.0472

0.6981 0.3491 0 -0.3491 -0.6981 -1.0472 -1.3963

0.3491 0 -0.3491 -0.6981 -1.0472 -1.3963 -1.3963

0 -0.3491 -0.6981 -1.0472 -1.3963 -1.3963 -1.3963



87

Columns 8 through 11

1.0472 0.6981 0.3491 0

0.6981 0.3491 0 -0.3491

0.3491 0 -0.3491 -0.6981

0 -0.3491 -0.6981 -1.0472

-0.3491 -0.6981 -1.0472 -1.3963

-0.6981 -1.0472 -1.3963 -1.3963

-1.0472 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

➙ Notice the pattern of elements in the matrix.
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Figure 49: Stimulus-response characteristics of the radial basis func-
tion neural network for tanker ship heading regulation.
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Figure 50: Closed-loop response resulting from using the radial basis
function neural network for tanker ship steering.
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Figure 51: Closed-loop response resulting from using the radial basis
function neural network for tanker ship steering.
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Figure 52: Closed-loop response resulting from using the radial basis
function neural network for tanker ship steering, with wind.
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Figure 53: Closed-loop response resulting from using the radial ba-
sis function neural network for tanker ship steering, speed of 3 me-
ters/sec.
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Figure 54: Closed-loop response resulting from using the radial basis
function neural network for tanker ship steering, full rather than
ballast conditions.
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Additional Topics

➙ Stability analysis possible?? Yes.

• Lyapunov stability analysis, circle criterion, describing function
analysis, etc.

➙ Hierarchical neural networks useful? Yes.

• Structure sythesis, coping with complexity, etc.
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Rule-Based Control: Fuzzy/Expert Control
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Figure 55: Fuzzy controller.

• A rule-base (a set of If-Then rules) that contains a fuzzy logic
quantification of the expert’s linguistic description of how to
achieve good control

• An inference mechanism which emulates the expert’s
decision-making in interpreting and applying knowledge about
how to do good control

• A fuzzification interface which converts controller inputs into
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information that the inference mechanism can easily use to
activate and apply rules, and

• A defuzzification interface which converts the conclusions of
the inference mechanism into actual inputs for the process.
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➙ Consider the tanker ship heading regulation problem, as shown
in Figure 56.

δ
ψ

xu
V

v
y

Figure 56: Tanker ship steering problem.

• Tanker ship moves in x direction at a nominal speed u

• ψ denotes the heading angle (in radians)

• δ is the rudder input (in radians).
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• ψr is the desired ship heading

★ Goal: Want ψ to track ψr.

★ Steering performance is affected by:

– Speed of travel (the rudder becomes less effective at very
low speeds)

– The ship weighs different on different trips (and heavy ships
turn slower)

– Wind hits the side of the tanker and this can affect heading
regulation some

– The sensor for the heading has some noise

– The rudder can only move between ±80 degrees.
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Choosing Fuzzy Controller Inputs and Outputs

• Consider a human-in-the-loop whose responsibility is to control
the tanker ship (i.e., the ship captain), as shown in Figure 57.

Tanker
ship

δψ ψr Ship
captain

Figure 57: Human controlling a tanker ship.

• The captain tells us what information she or he will use as
inputs to decision-making.

• Suppose the captain uses

e(t) = ψr(t) − ψ(t)
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and
de(t)
dt

= ė(t)

as the variables on which to base decisions.

➙ For more complex applications, the choice of the inputs to the
controller and outputs of the controller (inputs to the plant)
can be more difficult.

• The resulting fuzzy control system for the tanker ship is shown
in Figure 58.

Tanker
shipd

dt

Σ
r e

Fuzzy
controller

+
δ ψ

ψ

Figure 58: Fuzzy controller for a tanker ship steering problem.
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• Within this framework we seek to obtain a description of how
to control the process.

Putting Control Knowledge into Rule Bases

• The captain gives us a description of how best to control the
plant in some natural language (e.g., English) and we
characterize the expert’s description with “linguistics.”

Linguistic Descriptions

• “Linguistic variables” describe each of the time-varying fuzzy
controller inputs and outputs.

• For the tanker ship,

“error” describes e(t)
“change-in-error” describes de(t)

dt

“rudder-input” describes δ(t)

★ Keep the descriptions short - use whatever you would like!
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• Linguistic variables take on “linguistic values.”

• For the tanker ship example suppose that “error,”
“change-in-error,” and “rudder-input” take on the following
values:

“neghuge”
“neglarge”
“negbig”
“negmed”
“negsmall”

“zero”
“possmall”
“posmed”
“posbig”

“poslarge”
“poshuge”
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• For an even shorter description we could use integers:

“−5” to represent “neghuge”
“−4” to represent “neglarge”
“−3” to represent “negbig”
“−2” to represent “negmed”
“−1” to represent “negsmall”

“0” to represent “zero”
“1” to represent “possmall”
“2” to represent “posmed”
“3” to represent “posbig”

“4” to represent “poslarge”
“5” to represent “poshuge”

• We are not, for example, associating “−1” with any particular
number of radians of error; the use of the numbers for linguistic
descriptions simply quantifies the sign of the error (in the usual
way) and indicates the size in relation to the other linguistic
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values.

• We will call these “linguistic-numeric.”

➙ The linguistic variables and values provide a language for the
expert to express her or his ideas about the control
decision-making process.

• Suppose that for the tanker ship ψr(t) = 45 deg. (ψr(t) = 45π
180

rad.) and e = r − y so that

e =
45π

180
− ψ

and
de

dt
= −dψ

dt

since dψr

dt = 0.

• For the tanker ship each of the following statements quantifies
a different configuration of the ship (refer back to Figure 56):
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– The statement “error is poslarge” can represent the
situation where the ship heading is at a significant angle
counterclockwise to where it should be heading.

– The statement “error is negsmall” can represent the
situation where the ship heading is just slightly clockwise of
where it should be heading, but not too close to the
reference heading ψr to justify quantifying it as “zero” and
not too far away to justify quantifying it as “negmed.”

– The statement “error is zero” can represent the situation
where the ship heading is very near the desired heading (a
linguistic quantification is not precise, hence we are willing
to accept any value of the error around e(t) = 0 as being
quantified linguistically by “zero” since this can be
considered a better quantification than “possmall” or
“negsmall”).

– The statement “error is poslarge and change-in-error is
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possmall” can represent the situation where the ship
heading is counterclockwise to where it should be and, since
dψ
dt < 0, the ship heading is moving away from the desired
heading (note that in this case the ship is moving
counterclockwise).

– The statement “error is negsmall and change-in-error is
possmall” can represent the situation where the ship
heading is slightly clockwise of where it should be heading
and, since dψ

dt < 0, the ship heading is moving toward the
desired heading (note that in this case the ship is moving
counterclockwise).

Overall, we see that to do this properly you need to understand
the physics of the problem (which can be much more difficult for
more complex applications).
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Rules

• For the tanker ship in the three positions shown in Figure 59

ψr = desired ship heading is 45 deg., the dotted lines
ψ = ship heading, thin solid lines with arrow at end indicating direction of ship travel

Gray arrows indicate angular direction the ship is moving
Rudder angles shown are approximate

(a) (b) (c)

Figure 59: Tanker ship in various positions.
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• We have the following “linguistic rules”:

1. If error is negsmall and change-in-error is negsmall Then
rudder-input is posmed

This rule quantifies the situation in Figure 59(a) where the
ship has a heading angle that is clockwise of the desired
heading and is moving clockwise; hence it is clear that we
should apply a medium positive rudder angle so that we can
get the ship moving in the proper direction.

2. If error is zero and change-in-error is possmall Then
rudder-input is negsmall

This rule quantifies the situation in Figure 59(b) where the
ship is nearly moving in the proper direction (a linguistic
quantification of zero does not imply that e(t) = 0 exactly)
and is moving counterclockwise; hence we should apply a
small negative rudder angle to counteract the movement so
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that it moves toward zero (a positive rudder angle could
result in the ship heading overshooting the desired angle).

3. If error is possmall and change-in-error is negsmall Then
rudder-input is zero

This rule quantifies the situation in Figure 59(c) where the
ship is counterclockwise of the desired heading and is
moving clockwise; hence we apply a near zero rudder angle
since the ship is already moving in the proper direction.

• General form is

If premise Then consequent

Rule Bases

➙ There are at most 112 = 121 possible rules (all possible
combinations of premise linguistic values for two inputs) if you
use both premise terms in every rule.
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• A tabular representation of these rules is shown in Table 1.

• Notice that the body of the table lists the linguistic-numeric
consequents of the rules, and the left column and top row of
the table contain the linguistic-numeric premise terms. Then,
for instance, the (+1,−1) position (where the “+1” represents
the row having “+1” for a numeric-linguistic value and the
“−1” represents the column having “−1” for a
numeric-linguistic value) has a 0 (“zero”) in the body of the
table and represents the rule

If error is possmall and change-in-error is negsmall Then
rudder-input is zero

which is rule 3 above.

★ Notice the pattern.
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Table 1: Rule Table for the Tanker Ship
“rudder-input” “change-in-error” ė

δ −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 5 5 5 5 5 5 4 3 2 1 0

−4 5 5 5 5 5 4 3 2 1 0 −1

−3 5 5 5 5 4 3 2 1 0 −1 −2

−2 5 5 5 4 3 2 1 0 −1 −2 −3

“error” −1 5 5 4 3 2 1 0 −1 −2 −3 −4

e 0 5 4 3 2 1 0 −1 −2 −3 −4 −5

1 4 3 2 1 0 −1 −2 −3 −4 −5 −5

2 3 2 1 0 −1 −2 −3 −4 −5 −5 −5

3 2 1 0 −1 −2 −3 −4 −5 −5 −5 −5

4 1 0 −1 −2 −3 −4 −5 −5 −5 −5 −5

5 0 −1 −2 −3 −4 −5 −5 −5 −5 −5 −5
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Fuzzy Quantification of Knowledge

• We use fuzzy logic to quantify the meaning of linguistic
descriptions.

Membership Functions

• We quantify the meaning of the linguistic values using
“membership functions.”

• Consider, for example, Figure 60.

1.0

0.5

µ

e(t), (rad.)

“possmall”

π
10

π
10

2 4

Figure 60: Membership function for linguistic value “possmall.”
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• The function µ quantifies the certainty that e(t) can be
classified linguistically as “possmall.”

• For various values of e(t):

– If e(t) = −4π
10 then µ(−4π

10 ) = 0, indicating that we are
certain that e(t) = −4π

10 is not “possmall” (indeed, it is
negative).

– If e(t) = 2π
20 then µ(2π

20 ) = 0.5, indicating that we are
halfway certain that e(t) = 2π

20 is “possmall” (we are only
halfway certain since it could also be “zero” with some
degree of certainty—this value is in a “gray area” in terms
of linguistic interpretation).

– If e(t) = 2π
10 then µ(2π

10 ) = 1.0, indicating that we are
absolutely certain that e(t) = 2π

10 is what we mean by
“possmall.”
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• The membership function quantifies the linguistic statement
“error is possmall.”

★ There are many different possible membership functions
(Figure 61).
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Figure 61: A few membership function choices for representing “error
is possmall.”

• The set of values that is described by µ as being “positive
small” is called a “fuzzy set.”
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• Let A denote this fuzzy set.

• Notice that from Figure 60 we are absolutely certain that
e(t) = 2π

10 is an element of A, but we are less certain that
e(t) = 2π

40 is an element of A.

• Membership in the set is fuzzy, hence the term “fuzzy set.”

• A “crisp” (as contrasted to “fuzzy”) quantification of
“possmall” can also be specified, but via the membership
function shown in Figure 62.

1.0

0.5

µ

e(t), (rad.)π
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2 4

Figure 62: Membership function for a crisp set.
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• The horizontal axis in Figure 60 is called the “universe of
discourse” for the input e(t) (it is simply the domain).

• For the tanker ship we can define the membership functions as
in Figure 63.
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Figure 63: Membership functions for a ship steering example.
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• Notice then that the meaning of the linguistics on the ė

universe of discourse is different from those on the e universe of
discourse (due to a scale change).

• The human expert would just groups all large values together
in a linguistic description such as “poshuge” (or “neghuge”).

• They characterize “greater than” (for the right side) and “less
than” (for the left side).

★ It should be clear in your mind how different function values
arise as the controller inputs vary.

• For the “rudder-input” δ(t) the horizonal scale was chosen since
the rudder input can only be moved between ±80 degrees.

• Next, note that for the output δ, the membership functions at
the outermost edges cannot be saturated for the fuzzy system
to be properly defined (more on this later).
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The Meaning of Membership Functions and Rules

• Notice that the pattern of center positions for the output
membership functions in Figure 63 is not uniform as it is for
the input universes of discourse.

• To get a uniform distribution of output membership function
centers you can choose the center values, which we denote by bi

where i is the linguistic-numeric index for the corresponding
membership function, as

bi =
8π

18

(
i

5

)

where i = −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5 (and then use the
same base widths and rule base).

• Due to the lack of clarity of the meaning of control rules in the
linguistic rule base shown in Table 1, schemes are often used
which include membership function information in the rule



121

base table.
• For example, consider Table 2 where the centers of the

appropriate output membership functions are listed, up to a
scale factor, which in this case is 8π/18 (i.e., to get the actual
center from the rule base table you take the entry and multiply
it by 8π/18).
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Table 2: Rule Table for the Tanker Ship (body of table holds the
output membership function centers where each element should be
multiplied by 8π/18).

ė

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 1 1 1 1 1 1 .8 .6 .3 .1 0

−4 1 1 1 1 1 .8 .6 .3 .1 0 −.1

−3 1 1 1 1 .8 .6 .3 .1 0 −.1 −.3

−2 1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6

−1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8

e 0 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1

1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1

2 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1

3 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1

4 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1

5 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1 −1

➙ Coupled with our understanding of the meaning of the
linguistic-numeric indices for the error and change in error, all
the major components of the captain’s knowledge of ship
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steering are directly evident from Table 2 in the following
manner:

1. If the heading error and change in error are both too big
(upper left and lower right corners of the rule base shown in
Table 2), then use the appropriate maximum rudder input.

2. For zero e and ė, the rudder angle should be zero, but if e

and ė move positive then the rudder should move negative
(where if ė moves significantly positive, then the rudder
should move even more negative). Similar reasoning is used
for e and ė negative where we then make the rudder angle
positive and for the case where e and ė have opposite signs,
depending on the magnitude of the signals we will make the
rudder input either positive or negative.

3. For small e and ė be conservative in making changes to the
rudder position since such corrections may cause heading
deviations instead (i.e., lower the “gain” of the controller
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near zero so that noise is not amplified). Also, if the ship’s
angular position is moving sufficiently fast to remove the
heading error then be conservative in using the rudder to
help move it since this can require unnecessary control
energy.

• This provides a summary of the captain’s knowledge about
ship steering.

Fuzzification

★ The fuzzification process is simply the act of obtaining a value
of an input variable (e.g., e(t)) and finding the numeric values
of the membership function(s)

• Some think of the membership function values as an
“encoding” of the fuzzy controller numeric input values.



125

Matching: Determining Which Rules to Use

• The inference process generally involves two steps:

1. The premises of all the rules are compared to the controller
inputs to determine which rules apply to the current
situation. This “matching” process involves determining the
certainty that each rule applies, and typically we will more
strongly take into account the recommendations of rules
that we are more certain apply to the current situation.

2. The conclusions (what control actions to take) are
determined using the rules that have been determined to
apply at the current time. The conclusions are characterized
with a fuzzy set (or sets) that represents the certainty that
the input to the plant should take on various values.

Premise Quantification via Fuzzy Logic

• To perform inference we must first quantify each of the rules
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with fuzzy logic.

• To do this we first quantify the meaning of the premises of the
rules that are composed of several terms, each of which involves
a fuzzy controller input.

• Consider Figure 64, where we list two terms from the premise
of the rule

If error is zero and change-in-error is possmall Then
rudder-input is negsmall
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Figure 64: Membership functions of premise terms.

• Above, we had quantified the meaning of the linguistic terms
“error is zero” and “change-in-error is possmall” via the
membership functions shown in Figure 63.

• Now we seek to quantify the linguistic premise “error is zero
and change-in-error is possmall.”
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• To see how to quantify the “and” operation, begin by
supposing that e(t) = π/10 and ė(t) = 0.0005, so that using
Figure 63 (or Figure 64) we see that

µzero(e(t)) = 0.5

and
µpossmall (ė(t)) = 0.25

• What, for these values of e(t) and ė(t), is the certainty of the
statement

“error is zero and change-in-error is possmall”

that is the premise from the above rule?

• We will denote this certainty by µpremise.

• There are actually several ways to define it:

– Minimum: Define µpremise = min{0.5, 0.25} = 0.25, that is,
using the minimum of the two membership values.
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– Product: Define µpremise = (0.5)(0.25) = 0.125, that is,
using the product of the two membership values.

• Notice that both ways of quantifying the “and” operation in
the premise indicate that you can be no more certain about the
conjunction of two statements than you are about the
individual terms that make them up (note that
0 ≤ µpremise ≤ 1 for either case).

• We will obtain a multidimensional membership function
µpremise (e(t), ė(t)) for each rule (Figures 65 and 66).
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Figure 65: Membership function of the premise for a single rule using
minimum to represent the conjunction.
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Figure 66: Membership function of the premise for a single rule using
product to represent the conjunction.
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It is important you picture in your mind the situation where
e(t) and ė(t) change dynamically over time and the values of
µpremise (e(t), ė(t)) for each rule change, and hence the applica-
bility of each rule in the rule base for specifying the rudder input
to the ship, changes with time.

Determining Which Rules Are On

• Determining the applicability of each rule is called “matching.”

• We say that a rule is “on at time t” if its premise membership
function µpremise(e(t), ė(t)) > 0.

• For the ship example, suppose that

e(t) = 0

and
ė(t) = 0.0015
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• Figure 67 indicates with thick black vertical lines the values
above for e(t) and ė(t).

e(t), (rad.)

“possmall”

“zero”

“negsmall”
“neglarge” -1

-2 0

1
2

“poslarge”

dt
d

“posmed”
“posbig” “poshuge”

3

0

4
5“negmed”

“negbig”“neghuge”
-3

-4
-5

1

ππ
2

π
2

π

e(t) , (rad/sec)

“possmall”

“zero”

“negsmall”
“neglarge” -1

-2 0

1
2

“poslarge”“posmed”
“posbig” “poshuge”

3

0

4
5“negmed”

“negbig”“neghuge”
-3

-4
-5

1

0.005 0.010.0050.01

Figure 67: Input membership functions with input values.

• Notice that µzero(e(t)) = 1 but that the other membership
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functions for the e(t) input are all “off” (i.e., their values are
zero).

• For the ė(t) input we see that µzero (ė(t)) = 0.25 and
µpossmall (ė(t)) = 0.75 and that all the other membership
functions are off.

• This implies that rules that have the premise terms

“error is zero”
“change-in-error is zero”

“change-in-error is possmall”

are on (all other rules have µpremise (e(t), ė(t)) = 0).

★ So, which rules are these?

• Using Table 1, the following rules are on:

1. If error is zero and change-in-error is zero Then
rudder-input is zero
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2. If error is zero and change-in-error is possmall Then
rudder-input is negsmall

Note that since for the ship steering example we have at most
two membership functions overlapping, we will never have more
than four rules on at one time (this concept generalizes to many
inputs and is very useful to reduce computational complexity in
applications).

★ Actually, for this system we will either have one, two, or four
rules on at any one time. Why?

➙ It is useful to consider pictorially which rules are on. Consider
Table 3, which is a copy of Table 2 on page 121 with boxes
drawn around the consequents of the rules that are on (notice
that these are the same two rules listed above).
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Table 3: Rule Table for the Tanker Ship with Rules That Are “On”
Highlighted (body of table holds the output membership function
centers where each element should be multiplied by 8π/18).

ė

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 1 1 1 1 1 1 .8 .6 .3 .1 0

−4 1 1 1 1 1 .8 .6 .3 .1 0 −.1

−3 1 1 1 1 .8 .6 .3 .1 0 −.1 −.3

−2 1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6

−1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8

e 0 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1

1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1

2 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1

3 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1

4 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1

5 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1 −1



137

With this, you should picture in your mind how a region of rules
that are on (that involves no more than four cells in the body of
Table 3 due to how we define the input membership functions)
will dynamically move around in the table as the values of e(t)
and ė(t) change.

Inference Step: Determining Conclusions

Recommendation from One Rule

➙ Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then rudder-input
is zero

which for convenience we will refer to as “rule (1).”

• Using the minimum to represent the premise, we have

µpremise(1) = min{1, 0.25} = 0.25
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(the notation µpremise(1) represents µpremise for rule (1)) so
that we are 0.25 certain that this rule applies to the current
situation.

• The rule indicates that if its premise is true then the action
indicated by its consequent should be taken.

• For rule (1) the consequent is “rudder-input is zero” (this
makes sense, for here the ship is headed in the proper direction,
so we should not apply a rudder input that is different from
zero since this would tend to move the ship heading away from
the desired heading).

• The membership function for this consequent is shown in
Figure 68(a).
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Figure 68: (a) Consequent membership function and (b) implied
fuzzy set with membership function µ(1)(δ) for rule (1).

• The membership function for the conclusion reached by rule
(1), which we denote by µ(1), is shown in Figure 68(b) and is
given by

µ(1)(δ) = min{µpremise(1) , µzero(δ)}
(where µpremise(1) = 0.25 as determined above).

• This membership function defines the “implied fuzzy set” for
rule (1) (i.e., it is the conclusion that is implied by rule (1)).
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★ The justification for the use of the minimum operator to
represent the implication is that we can be no more certain
about our consequent than our premise (Zadeh’s compositional
rule of inference).

• Notice that µ(1)(δ) is a function of δ and that the minimum
operation will generally “chop off the top” of µzero(δ) to
produce µ(1)(δ)

• µ(1)(δ) is in general a time-varying function that quantifies how
certain rule (1) is that the force input δ should take on certain
values.

• It is most certain that the force input should lie in a region
around zero (see Figure 68(b)), and it indicates that it is
certain that the force input should not be too large in either
the positive or negative direction

• µ(1)(δ) quantifies the conclusion reached by only rule (1) and
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only for the current e(t) and ė(t).

Recommendation from Another Rule

• Consider the conclusion reached by the other rule that is on,

If error is zero and change-in-error is possmall Then
rudder-input is negsmall

which for convenience we will refer to as “rule (2).”

• Using the minimum to represent the premise, we have

µpremise(2) = min{1, 0.75} = 0.75

so that we are 0.75 certain that this rule applies to the current
situation.

• Notice that we are much more certain that rule (2) applies to
the current situation than rule (1).

• For rule (2) the consequent is “rudder-input is negsmall” (this
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makes sense, for here the ship is heading in the proper
direction but is moving in the counterclockwise direction with a
small velocity).

• The membership function for this consequent is shown in
Figure 69(a).
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180
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180
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24π
180

8π
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Figure 69: (a) Consequent membership function and (b) implied
fuzzy set with membership function µ(2)(δ) for rule (2).

• The membership function for the conclusion reached by rule
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(2), which we denote by µ(2), is shown in Figure 69(b) (the
shaded region) and is given by

µ(2)(δ) = min{µpremise(2) , µnegsmall(δ)}

(where µpremise(2) = 0.75 as determined above).

• This membership function defines the implied fuzzy set for rule
(2) (i.e., it is the conclusion that is reached by rule (2)).

• As rule (2) has a premise membership function that has higher
certainty than for rule (1), we see that we are more certain of
the conclusion reached by rule (2).

Converting Decisions into Actions

• Done via “defuzzification”

• First, we draw all the implied fuzzy sets on one axis as shown
in Figure 70.
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Figure 70: Implied fuzzy sets.

• We want to find the one output, which we denote by “δcrisp,”
that best represents the conclusions of the fuzzy controller that
are represented with the implied fuzzy sets.

➙ There are actually many approaches to defuzzification.

Combining Recommendations

• First consider the “center of gravity” (COG) defuzzification
method for combining the recommendations represented by the
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implied fuzzy sets from all the rules.

• Let bi denote the center of the membership function for the
implied fuzzy set for the ith rule (i.e., where the membership
function for the ith rule reaches its peak for our example since
the output fuzzy sets are all symmetric about their peaks).

• For our ship example we have

b1 = 0.0

and

b2 = −0.1
(

8π

18

)
as shown in Figure 70.

• Let ∫
µ(i)

denote the area under the membership function µ(i).
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• The COG method computes δcrisp to be

δcrisp =
∑

i bi

∫
µ(i)∑

i

∫
µ(i)

(5)

• Three items about Equation (5) are important to note:

1. We cannot have output membership functions that have
infinite area (this is why we could not saturate the output
membership functions).

2. You must be careful to define the input and output
membership functions so that the sum in the denominator
of Equation (5) is not equal to zero no matter what the
inputs to the fuzzy controller are.

3. While at first glance it may not appear so,
∫

µ(i) is easy to
compute for our example. For the case where we have
symmetric triangular output membership functions that
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peak at one and have a base width of w, simple geometry
can be used to show that the area under a triangle
“chopped off” at a height of h (such as the ones in
Figures 68 and 69) is equal to

w

(
h − h2

2

)

(note that if w is the same for every output membership
function then it cancels in Equation (5)).

• Using Equation (5) with Figure 70 we have

δcrisp =
(0)
(
0.25 − (0.25)2

2

)
+
(
−0.18π

18

) (
0.75 − (0.75)2

2

)
(
0.25 − (0.25)2

2

)
+
(
0.75 − (0.75)2

2

) = −0.0952

as the input to the ship for the given e(t) and ė(t).

➙ Does this value for a force input (i.e., −5.4545 degrees) make
sense?
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• Consider Figure 71, where we have taken the implied fuzzy sets
from Figure 70 and simply added an indication of what number
COG defuzzification says is the best representation of the
conclusions reached by the rules that are on.

“zero”
“negsmall”

-1 0

-10 δ(t), (rad.)16π
180

16π
180

δ
crisp

= -0.0952 rad.

= 0.2793 rad.

Figure 71: Implied fuzzy sets.

• Notice that the value of δcrisp is roughly in the middle of where
the implied fuzzy sets say they are most certain about the
value for the force input.
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• In fact, recall that we had

e(t) = 0

and
ė(t) = 0.0015

so the ship is at the desired heading at this time instant but is
moving counterclockwise with a small velocity; hence it makes
sense to apply a small negative rudder input, and the fuzzy
controller does this.

• It is interesting to note that for our example it will be the case
that

−8π

18
≤ δcrisp ≤ 8π

18
• To see this, consider Figure 72, where we have drawn the

output membership functions.

• Notice that even though we have extended the membership
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functions at the outermost edges past −8π/18 and +8π/18 (see
the shaded regions), the COG method will never compute a
value outside this range.
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Figure 72: Output membership functions.

Other Ways to Compute and Combine Recommendations

• Consider the use of the product for representing the premise.

• Consider Figure 73, where we have drawn the output
membership functions for “negsmall” and “zero” as dotted
lines.
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Figure 73: Implied fuzzy sets when the product is used to represent
the implication.

• The implied fuzzy set from rule (1) is given by the membership
function

µ(1)(δ) = 0.25µzero(δ)

shown in Figure 73 as the shaded triangle; and the implied
fuzzy set for rule (2) is given by the membership function

µ(2)(δ) = 0.75µnegsmall(δ)
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shown in Figure 73 as the dark triangle.

• Notice that computation of the COG is easy since we can use
1
2wh as the area for a triangle with base width w and height h

(and the factor 1
2w cancels in Equation 5).

• When we use product to represent the implication, we obtain

δcrisp =
(0)(0.25) +

(
−0.12π

18

)
(0.75)

0.25 + 0.75
= −0.1047

which also makes sense.

➙ Next, as another example of how to combine recommendations,
we will introduce the “center-average” method for
defuzzification.

• For this method we let

δcrisp =

∑
i biµpremise(i)∑
i µpremise(i)

(6)
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where bi once again denotes the center of the membership
function for the implied fuzzy set for the ith rule (i.e., where
the membership function for the ith rule reaches its peak for
our example since the output fuzzy sets are all symmetric
about their peaks).

• To compute the µpremise(i) we use, for example, minimum.

➙ Basically, the center-average method replaces the areas of the
implied fuzzy sets that are used in COG with the values of
µpremise(i) .

• For the above example, we have

δcrisp =
(0)(0.25) +

(
−0.18π

18

)
(0.75)

0.25 + 0.75
= −0.1047

which is the same value as above (for this special case).

• Some like the center-average defuzzification method because
the computations needed are generally simpler than for COG
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because when the output membership functions are symmetric
(the usual case) they are easy to store since the only relevant
information they provide is their center values (bi) Moreover,
the areas of the implied fuzzy sets do not have to be computed.

Graphical Depiction of Fuzzy Decision Making

★ For convenience, we summarize the procedure that the fuzzy
controller uses to compute its outputs given its inputs in
Figure 74.

• Here, we use the minimum operator to represent the “and” in
the premise and the implication and COG defuzzification.
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If   error is zero  and   change-in-error is zero    Then           rudder-input is zero

If error is zero  and        change-in-error is possmall    Then  rudder-input is negsmall
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Figure 74: Graphical representation of fuzzy controller operations.
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Multiple Input Multiple Output Fuzzy Systems

• A general multiple input multiple output (MIMO) fuzzy
system with inputs ui, i = 1, 2, . . . , n and outputs yj ,
j = 1, 2, . . . ,m is shown in Figure 75.
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Figure 75: Fuzzy system (controller).

➙ To define a MIMO fuzzy system you simply specify m multiple
input single output (MISO) fuzzy systems, where the output of
the jth fuzzy system is yj , j = 1, 2, . . . ,m.
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• All we need to do is explain how to define a MISO fuzzy system
with n > 2 inputs (then the case for n = 1 will be clear).

• For each input we define membership functions as we did for e

and ė for the ship example.

• You form rules using the n inputs in n premise terms.
Fuzzification is the same as earlier.

• Compute the fuzzy logic quantification of the conjunction
between n premise terms rather than just two.

• Use the same approach as before, but take the minimum (or
product) of n membership function values to represent the
conjunction of n premise terms.

• Provides µpremise(i) for the ith rule.

• From this point on the process is exactly the same as the
two-input case (the inference mechanism computations of the
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implied fuzzy sets and the defuzzification computations only
depend on µpremise(i)).

Takagi-Sugeno Fuzzy Systems

• The fuzzy systems discussed in the previous sections will be
referred to as a “standard fuzzy system” (“Mamdani-type”).

• Here, we will define a “functional fuzzy system,” of which the
Takagi-Sugeno fuzzy system is a special case.

• For the functional fuzzy system, we use singleton fuzzification
and the premise is defined the same as for the standard fuzzy
system.

• In the consequent we use a function bi = gi(·) that does not
have an associated membership function.

• Notice that often the argument of gi contains the fuzzy system
inputs that are used in the premise of the rule, but other
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variables may also be used.

• You may want to choose

bi = gi(·) = ai,0 + ai,1(u1)2 + · · · + ai,n(un)2

or
bi = gi(·) = exp [ai,1sin(u1) + · · · + ai,nsin(un)]

• The output is

y =
∑R

i=1 biµi(z)∑R
i=1 µi(z)

(7)

where µi(z) is the premise membership function and θ is the
vector of parameters that define the system (z is the premise
input).

• In the special case where z = [u1, . . . , un]�

bi = gi(·) = ai,0 + ai,1u1 + · · · + ai,nun
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(where the ai,j are fixed real numbers) the functional fuzzy
system is referred to as a “Takagi-Sugeno fuzzy system.”

➙ It performs a nonlinear interpolation between linear mappings.

• The inputs to the premise and consequent terms can be
different.

Mathematical Representations of Fuzzy Systems

Rules and Membership Functions

• To represent linguistic rules, let ũi, i = 1, 2, . . . , n, and ỹ denote
the linguistic variables that describe ui, i = 1, 2, . . . , n, and y,
respectively.

• Let Ãj
i denote the jth linguistic value for the ith input universe

of discourse (here, suppose that i = 1, 2, . . . , n, but that j can,
for instance, take on values that are equal to the
linguistic-numeric values).
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• Similarly, let B̃p denote the pth linguistic value on the output
universe of discourse that has linguistic variable ỹ.

• With this, a linguistic rule may be described mathematically
by

If ũ1 is Ãj
1

and ũ2 is Ãk
2

and · · ·
and ũn is Ãl

n

Then ỹ is B̃p

• Suppose that there are R such rules.

• Next, consider the mathematical quantification of membership
functions.

• See Tables 4 and 5 for a mathematical characterization of the
triangular and Gaussian membership functions (left, right, and
center).
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Table 4: Mathematical Characterization of Triangular Membership
Functions

Triangular, and related membership functions

Left µL(u) =


 1 if u ≤ cL

max
{
0, 1 + cL−u

0.5wL

}
otherwise

Centers µC(u) =


 max

{
0, 1 + u−c

0.5w

}
if u ≤ c

max
{
0, 1 + c−u

0.5w

}
otherwise

Right µR(u) =


 max

{
0, 1 + u−cR

0.5wR

}
if u ≤ cR

1 otherwise
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Table 5: Mathematical Characterization of Gaussian Membership
Functions

Gaussian, and related membership functions

Left µL(u) =




1 if u ≤ cL

exp
(
−1

2

(
u−cL

σL

)2
)

otherwise

Centers µ(u) = exp
(
−1

2

(
u−c

σ

)2)

Right µR(u) =




exp
(
−1

2

(
u−cR

σR

)2
)

if u ≤ cR

1 otherwise

Parameterization in Terms of Rules

• For the sake of illustration suppose we only use membership
functions of the “center” Gaussian form in Table 5
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(complicates representation otherwise).

• For the ith rule, suppose that the input membership function is

exp


−1

2

(
uj − ci

j

σi
j

)2



• If we let bi, i = 1, 2, . . . , R, denote the center of the output
membership function for the ith rule, use center-average
defuzzification, and product to represent the conjunctions in
the premise, then

y =

∑R
i=1 bi

∏n
j=1 exp

(
−1

2

(
uj−ci

j

σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
−1

2

(
uj−ci

j

σi
j

)2
) (8)

is an explicit representation of a fuzzy system.
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Relationships Between Neural Networks and Fuzzy
Systems

★ There are two ways in which there are relationships between
fuzzy systems and neural networks.

– Techniques from one area can be used in the other (e.g.,
training nonlinear maps).

– In some cases the functionality (i.e., the nonlinear function
that they implement) is identical (note that for the RBF
with a weighted average output computation if
Ri(x) = µi(x) then we get one of the standard forms for a
fuzzy system).

• Some label the intersection between fuzzy systems and neural
networks with the term “fuzzy-neural” or “neuro-fuzzy” to
highlight that techniques from both fields are being used.

★ Here, we avoid this terminology.
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• Some have claimed that neural networks offer an advantage
since they can be trained with data and fuzzy systems
cannot—but this is false—fuzzy systems can also be trained
with data as we will see.

• Fuzzy systems do facilitate the incorporation of a priori
knowledge.

★ Neural networks and fuzzy systems have many differences (e.g.,
recurrent neural networks, fuzzy dynamical systems, etc.).

Neural vs. fuzzy (or wavelets, polynomials, etc.) is the wrong
focus—the focus should be on “structure choice” as we will see
later.
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Design Example: Tanker Ship Steering

★ We seek to automate the decision-making process of a ship
captain in regulating the heading of the ship in Figure 56.

• We have
...

ψ (t)+
(

1
τ1

+
1
τ2

)
ψ̈(t)+

(
1

τ1 τ2

)
ψ̇(t) =

K

τ1 τ2

(
τ3 δ̇(t) + δ(t)

)
,

(9)
where ψ is the heading of the ship and δ is the rudder angle.

• Assuming zero initial conditions:

ψ(s)
δ(s)

=
K(sτ3 + 1)

s(sτ1 + 1)(sτ2 + 1)
, (10)

where K, τ1, τ2, and τ3 are parameters which are a function of
the ship’s constant forward velocity u and its length l.
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• In particular,

K = K0

(u

l

)
,

τi = τi0

(
l

u

)
i = 1, 2, 3

• Under “ballast” conditions, K0 = 5.88, τ10 = −16.91,
τ20 = 0.45, τ30 = 1.43, and l = 350 meters.

• The tanker dynamics change due to weight changes. Under
“full” conditions we have K0 = 0.83, τ10 = −2.88, τ20 = 0.38,
τ30 = 1.07,

• We have l = 350 meters and we will assume that nominally the
ship is traveling in the x direction at a velocity of 5m/s.

• For the above model the rudder angle should not exceed
approximately 5 degrees otherwise it will be inaccurate.

• We need a model which is suited for rudder angles which are
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larger than 5 degrees; one such model is given by

...

ψ (t)+
(

1
τ1

+
1
τ2

)
ψ̈(t)+

(
1

τ1 τ2

)
H(ψ̇(t)) =

K

τ1 τ2

(
τ3 δ̇(t) + δ(t)

)
,

(11)
where H(ψ̇) is a nonlinear function of ψ̇(t).

• An experiment known as the “spiral test” has shown that H(ψ̇)
can be approximated by

H(ψ̇) = āψ̇3 + b̄ψ̇

where ā and b̄ are real valued constants such that ā is always
positive (we pick ā = 1 and b̄ = 1).

• Also, the rudder cannot move past ±80 degrees (a saturation
nonlinearity).

• There is a wind disturbance w(t) that is possible which is
modeled by letting the input to the ship be the output



170

generated by the controller (δ) plus the wind disturbance,

δ̄ = δ + w(t)

w(t) =
0.5π

180
sin(2π(0.001)t)

• Simulate ship as a continuous time system with an integration
step size of 1. Simulate controller as a digital system with a
sampling period of T = 10.

• Consider control system shown in in Figure 76.
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Figure 76: Fuzzy controller for tanker ship with scaling gains g0, g1,
and g2.

➙ First, “normalize” the input and output universes of discourse.

• Here, we simply change the membership functions to those
shown in Figure 77 (i.e., normalize to an interval [−1, 1]).

• With the scaling gains in Figure 77, implemented as in
Figure 76, we implement the membership functions in
Figure 63.
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Figure 77: Normalized universes of discourse for fuzzy controller for
tanker ship (and boxed values of the scaling gains give the original
membership functions shown in Figure 63.)
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Design Example: Tanker Ship Steering

★ There is no general systematic procedure for the design of fuzzy
controllers that will definitely produce a high-performance
fuzzy control system for a wide variety of applications

Learn design via applications

Performance for the First Guess:

• The closed-loop response, using the design we developed, is
shown in Figure 78
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Figure 78: Response of fuzzy controller for tanker ship steering, g0 =
8π
18 , g1 = 1

π , and g2 = 100.
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★ Note that while the response is at least tracking the step
changes eventually, there is a significant amount of overshoot.

Tuning the Derivative Gain to Reduce Overshoot:

• To reduce the overshoot, we should increase the gain on the
derivative term (so that the controller gets more capability to
“predict where the response is going”).

• To do this we choose g0 = 8π
18 , g1 = 1

π , and g2 = 200 and get
the response in Figure 79, where we see that we have indeed
speeded up the response.
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Figure 79: Response of fuzzy controller for tanker ship steering, g0 =
8π
18 , g1 = 1

π , and g2 = 200.
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★ Unfortunately, however, this also reduced the response time of
the system (i.e., it “slowed” the system).

Tuning the Proportional Gain to Decrease the
Response Time: Finding “Good” Scaling Gains:

• Next, we seek to choose a good set of scaling gains by speeding
up the response from the previous case.

• To do this we increase the gain on the proportional term so
that we increase the speed of the response and hence reduce
the response time.

• When we do this, however, this can cause some overshoot, so
we also increase the gain on the derivative term to avoid that.

• In particular, choose g0 = 8π
18 , g1 = 2

π , and g2 = 250 to get a
faster response with very little overshoot as seen in Figure 80.
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Figure 80: Response of fuzzy controller for tanker ship steering, g0 =
8π
18 , g1 = 2

π , and g2 = 250.
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★ We take this set of gains as “good” values

★ Notice that we achieved all our tuning via the scaling gains,
although this is certainly not possible in all applications

The Resulting Nonlinear Control Surface:

★ The fuzzy controller implements a nonlinearity that is shown in
Figure 81.

• Notice that this surface is another way to view the captain’s
expertise in ship steering
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➙ A control surface for a simple proportional-derivative (PD)
controller is a plane in three dimensions.

• There is a type of interpolation that is performed by the fuzzy
controller

Design Concerns

Understand the Control Problem:

– Obtain a good understanding of the plant (understand the
physics and models can help)

– Pay attention to plant constraints (actuator saturation,
sensor noise, nonlinearities, disturbances, etc.)

– Develop appropriate specifications (rise time, overshoot,
steady state tracking error, stability, performance
robustness, etc.)

– Consider if it is possible to redesign the plant!

– Try the simplest thing (e.g., PID control).
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Proper Rule Base Construction:

★ The main sources of information for rule base construction are
the following:

– Interviews of human plant operators (or learning how to
operate the plant yourself).

– A good understanding of the plant, the constraints imposed
by it, and the closed-loop specifications that you are trying
to achieve.

– Modeling and simulation studies.

– Past development of controllers for the same plant (or
similar ones).

– Controller implementation studies for controllers that
ultimately do not adequately achieve the specifications (e.g.,
the controller that you are trying to replace in updating a
control system to achieve higher performance).
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• There are several issues to pay attention to in rule base
construction, including conflicting rules, rule base
“completeness,” etc.

Reducing Controller Complexity:

• Memory and “throughput”

• There are two fundamental reasons why complexity arises in
fuzzy and expert controllers:

– Complex nonlinear maps often take many computations to
implement.

– Exponential increase in number of rules with a linear
increase in the number of inputs. For example, for our ship
steering problem with two inputs and eleven membership
functions on each input universe of discourse there are
112 = 121 possible rules.

• Methods to reduce complexity are as numerous as there are



184

applications

➙ General approaches to reducing complexity:

1. Sometimes some regions of the input space are not visited
so the corresponding rules can be removed.

2. Sometimes you simply can get adequate performance with
fewer rules. The key is to determine the minimum number
of rules that still allows for the implementation of a control
surface that can achieve adequate performance.

Effects of Disturbances, Noise, and Plant Changes:

★ Plant parameter variations, disturbances, and sensor noise all
affect our ability to achieve good control—here, we study these
for the ship.

• Note that on different journeys ships will weigh different
amounts and the amount a ship weighs affects your ability to
steer it.
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• For the simulations up till now we have studied the case for
“ballast” conditions (a very heavy ship).

• Next, we will consider the case of how the ship steers when it is
under “full” conditions.

• Figure 82 shows how the fuzzy control system, that was tuned
for ballast conditions, performs for full conditions.

★ We see that there now is overshoot in the ship heading since a
lighter boat steers easier.

★ We see that plant parameter variations can impact
performance.
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Figure 82: Response of fuzzy controller for tanker ship steering,
“full” conditions, g0 = 8π

18 , g1 = 2
π , and g2 = 250.
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★ Next, consider the effect of a wind disturbance on the ship.

• Suppose that the wind is gusting.

• It hits the side of the ship and moves the ship a bit ,which then
pushes the rudder against the water which induces a torque to
move the rudder.

• To model this we add a disturbance onto the rudder angle
input by adding

0.5
( π

180

)
sin (2π(0.001)t)

to what the fuzzy controller commands as an input.

• In this case if we use g0 = 8π
18 , g1 = 2

π , and g2 = 250 (i.e., the
good tuned values) we get the response in Figure 82.

★ We see that the wind affects our ability to achieve very good
regulation of the ship heading.
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Figure 83: Response of fuzzy controller for tanker ship steering, wind
disturbance, g0 = 8π

18 , g1 = 2
π , and g2 = 250.
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★ Effects of speed on steering performance

• If we use g0 = 8π
18 , g1 = 2

π , and g2 = 250(i.e., the good tuned
values) we get the response in Figure 84.
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Figure 84: Response of fuzzy controller for tanker ship steering,
speed decrease, g0 = 8π

18 , g1 = 2
π , and g2 = 250.
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★ We see that the speed decrease causes a significant overshoot in
the response since the rudder is not as effective in tracking.

Stability and Limit Cycles:

• For the ship if you choose g0 = −8π
18 , g1 = 2

π , and g2 = 250
(notice minus sign) you can get an unstable response (in this
case the controller moves the rudder in the wrong direction to
try to reduce a heading error and each time it does this it
creates a bigger error).

★ There are many ways to mathematically study stability
properties of fuzzy control systems.

★ If you pick the wrong values of the scaling gains you can get
such oscillatory behavior.

• For example, if you pick g0 = 2000π
18 , g1 = 2

π , and g2 = 0.000001
for the ship you get the response shown in Figure 85.
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Figure 85: Response of fuzzy controller for tanker ship steering, g0 =
2000π

18 , g1 = 2
π , and g2 = 0.000001.



193

Expert Control

• An expert system that is used as a controller for a dynamic
system is shown in Figure 86.

• It uses the information in its knowledge-base and its inference
mechanism to decide what command input u to generate for
the plant.
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Figure 86: Expert control system.
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★ Conceptually, the expert controller is closely related to the
fuzzy controller.

★ Design philosophy is similar to that of the fuzzy controller.

★ The expert controller can use more general knowledge
representation and inference strategies.

• It can be used as a controller similar to how we used a fuzzy
controller, or it can be used as a “supervisory controller” (i.e.,
a controller that has as outputs parameters that dicate the
application of control strategies).
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Planning Systems

Psychology of Planning

Eat lunch

Consult phonebook
Ask students

and colleagues
Choose restaurant

Get directions
Choose route and

transportation
Go to restaurant

Order food, drinnk Eat Pay Return to office

Figure 87: Action plan as an action hierarchy, an example.
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➙ Learning and use of models for prediction is central to the
activity of planning.

• Plan over concepts, physical space (“cognitive map”), etc.

➙ Optimization is essential to choose which plan is “best.”

Steps to Planning

➙ Generic planning steps:

1. Represent the problem (“planning domain”): Many
different forms, “hard-wired” knowledge or “learned”
knowledge. Quality of model affects planning performance.
Level of model accuracy depends on the environment and
the organism.

2. Set goal: Without goals there is no purposeful behavior.
Goals determined by learning, evolution, values, ideals.
Goals are often hierarchical.

3. Decide to plan: React or plan?
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4. Build a plan (select a strategy): Project using a model the
alternatives and pick the “best” plan.
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j=3

Prediction
one step into
the future

Current
time

Figure 88: Tree representation of the alternative plans that can be
considered at some point in time, along with their costs.
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5. Execute plan, monitor, and repair/re-plan: Frequency of
replanning? Monitoring depends on plant observability.
“Plan failure” is possible. “Tweak” current plan or develop
a new one?
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Design Example: Planning for Vehicle Guidance
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Figure 89: Initial vehicle position, goal position, and obstacles.
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• Have perfect information about where obstacles (poles) are

• Vehicle knows its own position (GPS) and the goal position

One sensor focus

x

y

Driven wheels (4)

Vehicle
top 
view

Obstacle to be 
avoided

r

Wall (to be avoided)

θλ

Figure 90: Autonomous vehicle guidance problem (cubical, 2.5 units
per side).

➙ Vehicle’s current position is (x(k), y(k)) and command it to
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move at an angle θ a distance of λ = 0.1,
 x(k + 1)

y(k + 1)


 =


 x(k)

y(k)


+ λ


 cos(θ)

sin(θ)


+ ∆λ


 cos(∆θ)

sin(∆θ)




• Do not perfectly achieve desired position.

• Choose ∆λ to be a random number chosen at each time step
uniformly on [−0.1λ, 0.1λ]

• Assume that ∆θ is uniformly distributed on [−π, π].

• We have a perfect model of a part of our environment, but not
all of it.

➙ Feedback control is used for guidance: the current position is
sensed, and the command is made to move the vehicle to the
new position—the vehicle may not end up where it was
commanded to go, but at the next time instant we will sense
the vehicle’s position and make adjustments from that point.
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Path Planning Strategy

Obstacle and Goal Functions

➙ Planning → we need to formulate the path-finding problem as
an optimization problem.

• Obstacles: To represent the obstacles in Figure 89 we use an
“obstacle function” Jo(x, y) in Figure 91

➙ Key idea: Move to minimize Jo(x, y). Would this work?



203

0
5

10
15

20
25

30

0

5

10

15

20

25

30
0

0.2

0.4

0.6

0.8

1

x

Function w
1
J

o
 showing (scaled) obstacle function values

y

w
1J o

Figure 91: Obstacle function Jo(x, y) (scaled by w1).
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Figure 92: Obstacle function Jo(x, y) (scaled), contour form, with
initial vehicle position and goal position.



205

➙ Goal: Penalize not being at the goal position (25, 25) via

w2Jg(x, y) = w2[[x, y]� − [25, 25]�]�[[x, y]� − [25, 25]�]

where w2 = 0.00010.

• What if the vehicle moved to try to minimize this function?
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Figure 93: Goal function w2Jg(x, y), contour form, with initial vehi-
cle position and goal position.
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➙ Multiple goals can be represented by a multiobjective cost
function:

J(x, y) = w1Jo(x, y) + w2Jg(x, y)

shown in Figure 94

• What if it moved to minimize this function?
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Figure 94: Multiobjective cost function J(x, y) for evaluating plans.
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Plan Generation and Selection

➙ Simple approach: At (x, y) compute the value of J at Ns values
(xi, yi), i = 1, 2, . . . , Ns, regularly spaced on a circle of radius r

around the vehicle position (see Figure 90 where we have
Ns = 8).

• Use r = 1 and Ns = 16.

• Get 16 plans, where we “predict” ahead one step (plan: “the
vehicle is at (x, y), move it to (xi, yi)”)

➙ Plan selection: Find i∗,

J((xi∗ , yi∗) ≤ J((xi, yi), i = 1, 2, . . . , Ns

• Call this direction θ(k) and command the vehicle to take a step
of length λ in the direction θ(k).

➙ Approximates the “steepest descent approach” (but do not
need analytical gradient information).
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Simulation of the Guidance Strategy
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Figure 95: Vehicle path for obstacle avoidance and goal seeking.
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More Challenges: Complex Maizes, Mobile Obstacles, and Uncertainty

➙ Dead ends and circular loops (how to avoid?)

➙ Mobile obstacles and uncertainty also possible.

Initial vehicle
position

Goal position

N

Initial vehicle
position

Goal position

N

1

2

3
4

5
6

(a) (b)

Figure 96: (a) Obstacle path viewed as a maize (notice dead ends),
(b) Possible paths through the maize as computed by prediction in
a planning strategy (numbered 1–6).
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Planning Strategy Design

Closed-Loop Planning Configuration

Plan
step

Find
problem

Plan generation

Project(Re )Plan

Set
of

plans
One
plan

Planner

Plan
decisions

Plan
execution

Goals

Problem
domain

Control
actions

Measured
outputs

Disturbances

Execution monitoringPlan
failure

r(k)

d(k)

y(k)

u(k)

(Plant)

Figure 97: Closed-loop planning system.

➙ Plant:
y(k + 1) = f(x(k), u(k), d(k)) (12)

where y(k) is the measured output and f is a generally
unknown smooth function of the state u(k) and measurable
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state x(k),

x(k) = [y(k), y(k−1), . . . , y(k−n), u(k−1), u(k−2), . . . , u(k−m)]�

(13)

• Let
e(k + 1) = r(k + 1) − y(k + 1)

be the tracking error (want it small, at least asymptotically).

➙ The ith plan of length N at time k is

ui[k,N ] = ui(k, 0), ui(k, 1), . . . , ui(k,N − 1)

➙ Objective: Develop a controller that is based on a planning
strategy → need a model and optimization method to evaluate
the quality of each plan.
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➙ Best plan is i∗), let the control input be

u(k) = ui∗(k, 0)

• Different frequency replanning is possible.

Models and Projecting into the Future

➙ Good models lead to good plans, bad models can lead to
unstable behavior and poor performance.

• Linear MPC—linear models are used.

➙ No model is perfectly accurate; hence, predictions based on it
are always in error.

➙ Here use:
ym(j + 1) = fm(xm(j), u(j))

with output ym(j), state xm(j) and input u(j) for



215

j = 0, 1, 2, . . . , N − 1.

• Let yi
m(k, j) denote the jth value generated at time k using the

ith plan ui[k,N ]; similarly for xm(k, j).

➙ To predict the effects of plan i (project into the future) at each
time k you compute for j = 0, 1, 2, . . . , N − 1,

yi
m(k, j + 1) = fm(xm(k, j), ui(k, j))

• At time k to simulate ahead in time, for j = 0 you initialize
with xm(k, 0) = x(k).

• Then, generate ym(k, j + 1), j = 0, 1, 2, . . . , N − 1, using the
model and generate values of ui(k, j), j = 1, 2, . . . , N − 1, for
each i.

Criterion and Optimization Method for Plan Selection

• Set of plans (strategies) is “pruned” to one plan that is the
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best one to apply at the current time (where “best” can be
determined based on, e.g., consumption of resources).

• A “shortest path problem”??

Criteria for Selecting Plans

➙ Use J(ui[k,N ]) for plan ui[k,N ] using the fm model.

• Assume that the reference input r(k) is either known for all
time, or at least that at time k it is known up till time k + N .

➙ For example:

J(ui[k,N ]) = w1

N∑
j=1

(
r(k + j) − yi

m(k, j)
)2

+ w2

N−1∑
j=0

(
ui(k, j)

)2
(14)

➙ Options: Use the output of a “reference model,” an error
measure on the other past values of the inputs and outputs, or
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an error measure on some other system variable.

➙ This is “model predictive control” (or “receding horizon
control”).

Nonlinear Optimization for Plan Selection

➙ Which optimization method and model to use?

➙ Problem: Complexity (infinite number of plans?)

➙ Problem: Optimization algorithm convergence?

➙ Linear MPC solution: linear model, linear least squares

• What if a linear model is not accurate enough?

➙ Infinite number of plans → nonlinear optimization (e.g.,
gradient methods). Convergence?

➙ Finite-branching tree of plans → combinatorial optimization.
Accuracy?
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Brute-Force Approach to Plan Selection

➙ Discretize the model, quantize the inputs

• Creation and evaluation of all possible plans is often
computationally prohibitive.

• Suppose that there are Nu possible input values for a
deterministic model

• Number of input sequences (plans)?

(Nu)N

• The curse of dimensionality!

• Generate all plans, rank, and choose best? Perhaps

➙ There are ways to trade-off computational complexity for the
quality of plan selection and ultimately performance.
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Planning Using Preset Controllers and Model Learning

➙ Try to prune the tree of plans, without reducing prediction
accuracy.

Planning Using Multiple Controllers

➙ Consider a specific controller (a “preset” controller) applied to
the current state and reference input to be a type of “plan
template”

• Suppose that there are S such plan templates, which have the
form of functions F i

u

ui(k, j) = F i
u(x(k, j), r(k + 1)) i = 1, 2, . . . , S

where we assume we can measure r(k + 1).

➙ At each step we take each of these S plans and project into the
future how each will perform, pick the best one, then let the
control input be ui∗(k, 0) where i∗ is the best plan as measured
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by some cost function.

➙ In some applications S need not be too large, and hence if we
take the “brute-force” approach of the last section we overcome
the problems discussed there in complexity and optimization.

➙ Could also take an approach where multiple models are used in
planning, or where tuned models are used (adaptive model
predictive control).

➙ In practical applications often use “hierarchical planning
systems.” Multiple model granularities, horizons, sequences of
tasks/subtasks/goals.

Discussion: Concepts for Stable Planning

• Most work for linear MPC

➙ Stability anlaysis of closed-loop planning strategies depends
critically on model accuracy, plant uncertaity, and plant
nonlinearities.
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➙ Key issues:

– Model accuracy: Assume that model is perfect, the same as
the physical plant?

– Navigating through uncertainty: Planning your way
through a “noisy tree” of paths to the goal state(s). Plant is
an adversary! May get trapped in deadends! How far to
predict ahead?

– Avoiding traps: Circular traps may make it impossible to
reach the goal.
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Design Example: Planning for a Process Control Problem

Level Control in a Surge Tank

➙ “Surge tank” modeled by

dh(t)
dt

=
−d̄
√

2gh(t)
A(h(t))

+
c̄

A(h(t))
u(t)

where u(t) is the input flow (control input), which can be
positive or negative (it can both pull liquid out of the tank and
put it in); h(t) is the liquid level (the output of the plant);
A(h(t)) = |āh(t) + b̄| is the cross-sectional area of the tank and
ā > 0 and b̄ > 0 (their nominal values are ā = 0.01 and
b̄ = 0.2); g = 9.8; c̄ ∈ [0.9, 1] is a “clogging factor” for a filter in
the pump actuator where if c̄ = 0.9 there is some clogging of
the filter and if c̄ = 1 the filter is clean so there is no clogging
(we will take c̄ = 1 as its nominal value); and d̄ > 0 is a
parameter related to the diameter of the output pipe (and its
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nominal value is d̄ = 1).

h(t)

u(t)

Figure 98: Surge tank.

• Let r(t) be the desired level of the liquid in the tank (the
reference input) and e(t) = r(t) − h(t) be the tracking error.

• Assume that you know the reference trajectory a priori and
assume that r(t) ∈ [0.1, 8] and that we will not have h(t) > 10.
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• Assume that h(0) = 1.

➙ Use discretization:

h(k + 1) = h(k) + T

(
−d̄
√

19.6h(k)
|āh(k) + b̄| +

c̄

|āh(k) + b̄|u(k)

)

where T = 0.1.

• Saturate the input:

u(k) =




50 if ū(k) > 50

ū(k) if −50 ≤ ū(k) ≤ 50

−50 if ū(k) < −50

• Avoid negative levels:

h(k+1) = max

{
0.001, h(k) + T

(
−d̄
√

19.6h(k)
|āh(k) + b̄| +

c̄

|āh(k) + b̄|u(k)

)}
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Planner Design

➙ Use the discrete model as our model for planning, but with

A(h(t)) = ām(h(t))2 + b̄m

with ām = 0.002 and b̄m = 0.2.

➙ We do not assume that we know the values of c̄ and d̄, so for
these we use c̄m = 0.9 and d̄m = 0.8.
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Figure 99: Cross-sectional area A(h) for the plant (solid) and model
to be used for projection (dashed).
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• So, is the model accurate enough to be used in projection?

• Consider a simple controller to evaluate this.

➙ Use a PI controller as the “plan template.”

• If e(k) = r(k) − h(k),

u(k) = Kpe(k) + Ki

k∑
j=0

e(j) (15)

➙ Goal: Reasonably fast response, with no overshoot in the
tracking error e(k).

• Suppose that via experience in designing PI controllers for
surge tanks with various cross-sectional areas you know that
typically

Kp ∈ [0, 0.2]
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and
Ki ∈ [0.15, 0.4]

• With Kp = 0.01 and Ki = 0.3 you get the response in
Figure 100.

★ Notice that while the response is relatively fast, there is some
overshoot and that is undesirable.
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Figure 100: Closed-loop behavior of the surge tank using a PI con-
troller.
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★ You actually get a similar response if you use the same gains
for the above model that will be used for projection in our
planning strategy.

★ To see this consider Figure 101

• But the true test is whether it works in a planner.
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Figure 101: Error between cases where the truth model and projec-
tion model are used as the plant.
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➙ We use the cost function in Equation (14) with N = 20 (for
two seconds projection into the future), w1 = 1, and w2 = 1

• We assume at each time instant that the reference input
remains constant while we project into the future.

• Our “plan templates” are the PI controllers, with different
values of Kp and Ki.

➙ Create a grid on the above ranges by considering all possible
combinations of

Kp ∈ {0, 0.05, 0.1, . . . , 0.2}

and
Ki ∈ {0.15, 0.2, . . . , 0.4}

• There are 5 × 6 = 30 different plans (controllers) that are
evaluated at each time step.

• Predict 2 s into future for each PI controller.
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Figure 102: Closed-loop behavior of the surge tank using a planning
strategy.
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★ Get a slower rise-time than in Figure 100 when we used the PI
controller, but that we were able to tune the planning strategy
(by adjusting w1, w2, and the grid on the PI gains) so that
there is no overshoot and that was our main objective.

➙ How does it achieve this performance?

★ It switches controllers on-line and to see this consider
Figure 103.
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Figure 103: Indices of PI controllers that are used at each time step
for the tank.
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★ We used indices that are proportional in size to the Kp and Ki

values; hence it seeks to increase the Kp value to reduce
tracking error and get a good rise-time, and lower the Ki value
to try to reduce overshoot.

• What about plant parameter variations?

• Let c̄ = 0.8 (representing more clogging) you get similar results
to above.

★ If you use the nominal value for c̄ and use ā = 0.05 you get the
the cross-sectional area shown in Figure 104 and we get the
closed-loop response in Figure 105.
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Figure 104: Cross-sectional area A(h) for the plant (solid) and model
to be used for projection (dashed).



238

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Li
qu

id
 h

ei
gh

t, 
h

Liquid level h and reference input r

5 10 15 20 25 30
-50

0

50
Tank input, u

Time, k

Figure 105: Closed-loop behavior of the surge tank using a planning
strategy (different cross-sectional area).
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★ Get an adequate rise-time, but a small amount of
overshoot—may need to tune.

• How robust is the controller to plant perturbations?

Effects of Planning Horizon Length

➙ Use nominal plant and study the effect of changing the
projection length N .

★ In particular we plot the tracking energy

1
2

∑
k

(e(k))2

and control energy
1
2

∑
k

(u(k))2

vs.

N ∈ {1, 5, 10, 15, 17, 20, 25, 30, 33, 35, 36, 37, 38, 39, 40, 45, 50}
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Figure 106: Tracking energy vs. projection length N .
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Figure 107: Tracking energy vs. projection length N .
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➙ Prediction horizon choice is difficult.

➙ Prediction too far into the future is often not useful due to
plant uncertainty, it costs many computations, and could result
in performance degradation.
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Attentional Systems

Neuroscience and Psychology of Attention

➙ Attention is the process of focusing or concentrating.

➙ Hierarchy: Consciousness, sleeping, awareness, and
attentiveness

➙ Disengage from one focus, move, and then engage on another
focus (“vigilance”).

➙ Have attention for all senses!

➙ Attention allows us to amplify some sensory signals and
attenuate others (e.g., “cocktail party effect”)
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Figure 108: Attentional experiment with event-related potentionals
illustrating amplification of signals that are attended to (figure taken
from [3]).
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Dynamically Changing Focus

➙ For vision, focus of attention is a type of “spot light” (where
signals are amplified)

– Spot light may coincide with where our eyes are
focused—“overt” attention

– Or, it may not—“covert” attention

➙ Control of attentional focus:

– Goal-driven (often “voluntary”) attention reorientation:
Executive functions reorient the focus. “Top-down”
refocusing based on our problem-solving strategy and goals.
Typically, slower less “potent” refocusing than...

– Stimulus-driven (often “involuntary”) attention
reorientation: Sensory signals control the focus in a
“bottom-up” fashion. For example, an object that is moving
on a trajectory toward us, a bright flash of light (e.g., a
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fire), or blood (with evolutionary forces likely at work).
Sensory inputs can achieve an automatic reorienting of
attention, faster and more potent

➙ Learning can play a key role in attention (habituation,
sensitization).
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Multistage Processing: Filtering, Selection, and Resource Allocation
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Figure 109: Multistage attention process (adapted from [3]).

➙ Attention involves filtering out (discarding) some information.

➙ “Early selection” before higher-level processing, and “late
selection” via abstract anlaysis and processing of sensory
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signals

• A multistage process with feedback control paths.

• A cascaded filtering process, the most important information is
focused on (“selected”), and less important information is
ignored.

• Attention helps cope with “bottlenecks” in information
processing.

• Attention allows us to allocate our cognitive resources to help
us meet our goals.

➙ Key aspect: Strategies used to allocate cognitive resources,
especially in an “optimal” manner.

➙ Attention is for complexity management.
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Attentional Strategies for Multiple Predators and Prey

➙ Organism in environment with multiple predators (to avoid)
and prey (to pursue)

➙ Want an accurate “picture” of environment with limited
resources to obtain it.

➙ Organism dynamically focuses its attention.

Cognitive Resource Allocation Model

• Assume there is a recognizer for predators and prey

• Need to decide what to focus on (cognitively process).

• Selection process that could be occurring in either early or late
selection

• There is a “limited channel” or one resource that must be
shared, and the attention strategy must decide how it is shared.
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➙ Resource allocation

• Ignore overt/covert attention

Quantifying Length of Time Predators/Prey are
Ignored

➙ Set of predators and prey:

P = {1, 2, . . . , N}

• Let
Ti(t), i ∈ P, t ≥ 0

denote the last time at which predator/prey i was detected.

➙ “Detected”—the organism has focused its attention on the
predator/prey, has identified it, and its characteristics (e.g., its
position).

➙ Attentional strategies = “controllers”
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Ti

Figure 110: Attentional strategy viewed as a controller.

• Assume there is a cognitive tracking mechanism that is trying
to estimate where predators/prey are moving.

• Not perfect tracking of multiple predators/prey—allow them to
be “lost” for a period of time (due to hiding, limited field of
view, etc.).

• Initially
Ti(0) = 0, i ∈ P
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➙ Meaning? A good initialization?

➙ If attention not active, then

Ti(t) → ∞, i ∈ P, t → ∞

• Attention strategy tries to avoid Ti(t) → ∞ for any i ∈ P and
indeed try to keep the Ti(t) values as small as possible

➙ Why?

• Assume each predator/prey will persistently periodically
“appear” (in fact, a finite amount of time between
predator/prey appearances)

Environmental and Cognitive Delays Affecting
Attentional Switching

➙ Let δ(t) > 0 denote a “processing delay” that may represent
the delay from the environment (e.g., due to a predator being
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occluded for a period of time bounded by δi) and a “cognitive
processing delay” (known δi,j to switch from focus on i to j)

➙ Assume: δs = δi,j for all i, j ∈ P .

• Let δe(t) be the delay incurred by the organism in first getting
an indication of the presence of a predator/prey, from the time
that it gets switched to focus on that predator/prey.

• If we let
δ̄ = max

i

{
δi
}

then δe(t) ≤ δ̄. Let
δ(t) = δs + δe(t)

• Let δ denote a constant that is the least upper bound on δ(t)
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Rate of Cognitive Processing

➙ The organism may take additional time to detect an
predator/prey that it has not detected for a long period of
time.

➙ Let
ai, i ∈ P

and 1/ai represents a “rate” at which the organism cognitively
processes information about predators/prey in order to detect
them.
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Figure 111: Illustration of timing of organism decision-making and
predator/prey appearances (note that pulses represent the first times
that predators/prey appear).

• At time t′ + δs the organism has switched its focus to
predator/prey i.

• Starting at t′ + δs the organism is looking for predator/prey i
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and before t′ + δs + δ1 we know that an predator/prey
appearance will occur.

• At time t′ + δs + δe(t′) the organism initiates the completion of
the “detection” of predator/prey 1 and the amount of time
that it takes to do that is dictated by the a1 parameter.

• Declare predator/prey 1 “detected” at the time at which T1 is
decreased to zero.

➙ Consider an attentional strategy...

Focus on a Predator/Prey Ignored for the Longest Time

• Let Dkr denote the time at which the attentional strategy
chooses a predator/prey to focus on (i.e., it is the decision
time), and suppose that D1 = 0.

➙ An attentional strategy that focuses on the predator/prey that
was ignored for the longest time makes choices of which
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predator/prey to focus on such that at Dkr the attentional
strategy chooses to focus on predator/prey i∗(kr) such that

Ti∗(kr)(Dkr ) ≥ Ti(Dkr ),∀i ∈ P (16)

and focuses on it until it detects it.

• Ties broken randomly.

Decision-Timing for Attentional Switches

➙ The times when the attentional strategy makes decisions are
given by

Dkr+1 = Dkr
+δ(Dkr

)+ai∗(kr)Ti∗(kr)(Dkr
)+(Dkr+1 − Dkr

) ai∗(kr)

(17)

1. The first term is simply the last decision point Dkr .

2. The second term is the delay δ(Dkr ) where

δ(Dkr
) = δs + δe(Dkr

)
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3. Third, the term ai∗(kr)Ti∗(kr)(Dkr ) is the amount of time it
takes to detect predator/prey i∗(kr) that arises due to the
fact that we have not detected it for some time.

4. Finally, the fourth term quantifies that there is additional
time needed to detect the predator/prey simply because
during the time that the cognitive processing for the
predator/prey is occuring, even when it is focused on, the
length of time since the last detection continues to increase

• Rearrange Equation (17) to get

Dkr+1 = Dkr
+

δ(Dkr
) + ai∗(kr)Ti∗(kr)(Dkr

)
1 − ai∗(kr)

(18)

• The delay δ directly influences the rate at which we can switch
attentional focus.

• The length of time between decisions can be lengthened if a
particular predator/prey has been ignored for too long due to
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the effects of the ai parameters.

The Cogntive Capacity Constraint

➙ What is the effect of the ai parameters on how fast a
predator/prey is detected?

• What is the slope of the bold line in Figure 111?

• Notice that the peak value

Ti∗(kr)(Dkr
+ δs + δe(Dkr

)) = Ti∗(kr)(Dkr
) + δs + δe(Dkr

)

since the slope of the dashed line in Figure 111 is unity.

• Notice that Equation (18) gives the amount of time between
the decision time Dkr

and time of detection Dkr+1 so that the
slope of the bold line in Figure 111 is

−


 Ti∗(kr)(Dkr

) + δs + δe(Dkr
)

δs+δe(Dkr )+ai∗(kr)Ti∗(kr)(Dkr )

1−ai∗(kr)
− (δs + δe(Dkr ))
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which with some simple algebra reduces to

−(1 − ai∗(kr))
ai∗(kr)

(19)
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Figure 112: Magnitude of the slope of the bold line in Figure 112 for
various values of a1.

• You will see that it is necessary that ai∗(kr) < 1.

• Using this fact, Equation (19) indicates how fast detection
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occurs as shown in Figure 112 (i.e., how fast cognitive
processing occurs).

➙ Small values of ai (high values of 1/ai, the rate of processing
by the organism in trying to detect) we get fast detection, and
with larger ones we get slower detection.

➙ It is necessary that the “capacity condition”

ρ =
N∑

i=1

ai < 1 (20)

be satisfied in order for any attentional strategy to ensure that
the values of Ti(t), i ∈ P , remain bounded.

➙ If the predators/prey can get more difficult to detect if they
have not been detected for a long time, the organism must be
able to operate “fast enough” to be able to find them.

➙ Cognitive capacity quantifies when an environment presents
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too large of an attentional load for an organism.

Additional Attentional Strategies

➙ Other strategies...

➙ Choose the predator/prey to focus on that has been ignored
more than the average time that all the predators/prey have
been ignored.

• At Dkr the attentional strategy chooses to focus on
predator/prey i∗(kr) such that

Ti∗(kr)(Dkr ) ≥
1
N

N∑
i=1

Ti(Dkr ) (21)

and focus on it until it detects it.

• Note that Equation (18) also holds for this strategy, and that
of course the capacity condition Equation (20) must hold.
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➙ How does the strategy choose which particular predator/prey
to focus on?

• Randomly or “predator/prey priorities”

➙ An attentional strategy that focus on the predator/prey that
may be the one that is most difficult to find makes choices of
which predator/prey to focus on such that at Dkr the
attentional strategy chooses to focus on predator/prey i∗(kr)
such that

ai∗(kr)Ti∗(kr)(Dkr
) ≥ aiTi(Dkr

),∀i ∈ P (22)

and focuses on it until it detects it.

• Since ai is the amount of “load” you can think of this
attentional strategy as choosing the predator/prey to focus on
that may be the most difficult one to find.

➙ Consider one more strategy...
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➙ If you pick predator/prey i∗(kr) to focus on

Ti∗(kr)(Dkr
) + δs + δe(Dkr

)

is the peak that Ti∗(kr)(Dkr ) reaches before the predator/prey
is detected.

• We do not know δe(Dkr
)

• However, a known bound on the peak value is given by

Ti∗(kr)(Dkr ) + δs + δe(Dkr ) ≤ Ti∗(kr)(Dkr ) + δs + δi∗(kr)

➙ Consider choosing predator/prey i∗(kr) to focus on at time Dkr

if

i∗(kr) = arg max
i

{
wi

(
Ti(Dkr

) + δs + δi

(1−ai)
ai

)}
(23)

where wi > 0, i ∈ P are weighting factors.

➙ The strategy picks the predator/prey to focus on that is
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expected to have the highest peak, and hence in a sense the
one that is most difficult to detect.

➙ The weighting factors wi can be chosen to force the
predator/prey to focus on some predators/prey.

➙ Can also be tuned to improve performance measures.

➙ Strategies based on priority parameters pi > 0, pi ∈ �, i ∈ P ,
that scale Ti.

• Simply scale Ti by pi, i ∈ P in each of the cases and then make
all decisions based on the same formulas as above, but with Ti

replaced by piTi, i ∈ P .

• Assume:

ρp =
N∑

i=1

piai < 1 (24)

➙ Can view attention scheduling as on-line optimization. How?
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Design and Simulation of Attentional Strategies

• Use a sampling period of Ts = 0.01 and N = 4 predators/prey.

• Predator/prey appearance sequences (constant frequency).
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Figure 113: Predator/prey appearance sequences, for N = 4 preda-
tors/prey (predator/prey i = 1 is the top plot, i = 2 is the next one
down, i = 3 is below that, and i = 4 is the bottom plot).
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➙ Let:
δ1 = 1.05, δ2 = 1.15, δ3 = 1.25, δ4 = 1.35

• Let δs = 0.03.

➙ Choose:
a1 = 0.1, a2 = 0.2, a3 = 0.3, a4 = 0.1

➙ Performance measures:

1
N

N∑
i=1

Ti(k)

and the time average of this quantity.

max
i=1

{Ti(k)}

and the time average of this quantity.
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➙ To measure priority focusing:

1
N

∑
k

i∗(k)

Attentional Strategy Behavior

➙ Strategy: Chooses the predator/prey to focus on that has not
been detected for the longest period of time.
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Figure 114: Attention scheduler decisions, and Ti(t) for preda-
tors/prey 1 and 2. Notice focusing sequences.
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Figure 115: Scheduler decisions, and Ti(t) for predators/prey 3 and
4.
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Figure 116: Attention scheduler decisions, and Ti(t) for preda-
tors/prey i = 1, 2, 3, 4.
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Figure 117: Performance measures (average and maximum times
since last detection) and the time averages of their values (3.4066).
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★ The time average of the average values is 3.4066, and this
provides a good measure of scheduler performance. Good
performance?

Focusing on High Priority Predators/Prey

➙ Strategy: Choose the predator/prey that has been ignored
longer than the average one, but with priorities (i > j, i higher
priority)

★ Get different focusing sequences.

★ The time average of the average values of the lengths of times
waited is 3.8204 (worse)

★ Frequent focusing on high priority predators/prey generally
requires you to ignore others for longer periods of time.
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Figure 118: Attention scheduler decisions, and Ti(t) for preda-
tors/prey i = 1, 2, 3, 4.
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Figure 119: Performance measures (average and maximum times
since last detection) and the time averages of their values.
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Tuning Attentional Strategy Parameters

➙ Can we tune the wi values to improve the performance
measures?

★ Choose w1 = 4, w2 = 2, w3 = 1, and w4 = 4 (tune via raising
weight on predator/prey with higher peaks on Ti(t) values)

★ Get the time average of the average values of the lengths of
times waited as 3.2755 - better
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Stablity Analysis of Attentional Strategies

Stability Properties of Attentional Strategies

Theorem 1: Assume that Equation (20) holds. The attentional
strategies where the predator/prey that was ignored the longest
time, or one that has been ignored longer than the average one, as
defined in Equations (16) and (21), have the following properties:

• They are stable in that

sup
t≥0

{Ti(t)} < Bi, i ∈ P

for some Bi > 0, i ∈ P so that they will not ignore any
predator/prey for too long.

• A specific bound on the ultimate longest time that the
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organism will ignore any predator/prey is given by

lim
t→∞

sup

N∑
i=1

Ti(t) ≤ δ

[∑N

i=1
ai

a
+

āN

a
(
1 −
∑N

i=1
ai

) max
i

{
−ai +

∑N

i=1
ai

ai

}]

where a = mini{ai} and ā maxi{ai}.
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Attention and Control: Synergies

• Neural networks models of attention exist

• Attention for rule-based control, rules for attention

• Attention for planning, planning for attention

• Attention for learning, learning for attention,
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Figure 120: Attentional strategy for rule pruning for rule based con-
trol.
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Figure 121: Attentional strategy for plan pruning.
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